搜档网
当前位置:搜档网 › 高考数学解答题的解题方法

高考数学解答题的解题方法

高考数学解答题的解题方法
高考数学解答题的解题方法

高考数学解答题的解题方法

数学解答题是高考数学试卷中的一类重要题型,这些题涵盖了中学数学的主要内容,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点,解答题综合考查学生的运算能力、逻辑思维能力、空间想象能力和分析问题、题解决问题的能力,分值占70~80分,主要分六块:三角函数(或与平面向量交汇)、函数与导数(或与不等式交汇)、概率与统计、解析几何(或与平面向量交汇)、立体几何、数列(或与不等式交汇).从历年高考题看综合题这些题型的命制都

呈现出显著的特点和解题规律,从阅卷中发现考生“会而得不全分”的现象大有人在,针对以上情况,在高考数学备考中认真分析这些解题特点及时总结出来,这样有针对性的进行复习训练,能达到事半功倍的效果.

解答题的解答技巧

解答题是高考数学试卷的重头戏,占整个试卷分数的半壁江山,考生在解答解答题时,应注意正确运用解题技巧. (1)对会做的题目:要解决“会而不对,对而不全”这个老大难的问题,要特别注意表达准确,考虑周密,书写规范,关键步骤清晰,防止分段扣分.解题步骤一定要按教科书要求,避免因“对而不全”失分.

(2)对不会做的题目:对较大多数考生来说,更为重要的是

如何从拿不下来的题目中分段得分.有什么样的解题策略,就有什么样的得分策略.对这些不会做的题目可以采取以下策略:

①缺步解答:如遇到一个不会做的问题,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步.特别是那些解题层次明显的题目,每一步演算到得分点时都可以得分,后结论虽然未得出,但分数却可以得到一半以上.

②跳步解答:解题过程卡在某一过渡环节上是常见的.这时我们可以先承认中间结论,往后推,看能否得到结论.若题目有两问,第(1)问想不出来,可把第(1)问的结论当作“已知”,先做第(2)问,跳一步再解答.

③辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤.实质性的步骤未找到之前,找辅助性的步骤是明智之举.如:准确作图,把题目中的条件翻译成数学表达式,根据题目的意思列出要用的公式等.罗列这些小步骤都是有分的,这些全是解题思路的重要体现,切不可以不写,对计算能力要求高的,实行解到哪里算哪里的策略.书写也是辅助解答,“书写要工整,卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应.

④逆向解答:对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.

顺向推有困难就逆推,直接证有困难就反证.

怎样解答高考数学题

1.解题思维的理论依据

针对备考学习过程中,考生普遍存在的共性问题:一听就懂、一看就会、一做就错、一放就忘,做了大量的数学习题,成绩仍然难以改善的现象,我们很有须要对自己的学习方式、方法进行反思,解决好“学什么,如何学,学的怎么样”的问题.要解决这里的“如何学”就需要改进学习方式,学会运用数学思想方法去自觉地分析问题,弄清题意,善于转化,能够将面对的新问题拉入自己的知识网络里,在短的时间内拟定解决问题的较佳方案,实现学习效率的较优化.

美国卓著数学教育家波利亚在名著《怎样解题》里,把数学解题的一般思维过程划分为:弄清问题→拟订计划→实现计划→回顾.这是数学解题的有力武器,对怎样解答高考数学题有直接的指导意义.

2.求解解答题的一般步骤

第一步:(弄清题目的条件是什么,解题目标是什么?)

这是解题的开始,一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,多方位、多角度地看问题,不能机械地套用模式,而应从各个不同的侧面、角度来识别题目的条件和结论以及图形的几何特征与数学式的数量特征之间的关系,从而利于解

题方法的选择和解题步骤的设计.

第二步:(探究问题已知与未知、条件与目标之间的联系,构思解题过程.)

根据审题从各个不同的侧面、不同的角度得到的信息,全面地确定解题的思路和方法.

第三步:(形成书面的解题程序,书写规范的解题过程.) 解题过程其实是考查学生的逻辑推理以及运算转化等能力.评分标准是按步给分,也就是说考生写到哪步,分数就给到哪步,所以卷面上讲究规范书写.

第四步:(反思解题思维过程的入手点、关键点、易错点,用到的数学思想方法,以及考查的知识、技能、基本活动经验等.)

(1)回头检验——即直接检查已经写好的解答过程,一般来讲解答题到后得到结果时有一种感觉,若觉得运算挺顺利则好,若觉得解答别扭则十有八九错了,这就要认真查看演算过程.

(2)特殊检验——即取特殊情形验证,如值问题总是在特殊状态下取得的,于是可以计算特殊情形的数据,看与答案是否吻合.

2018上海高考数学大题解题技巧

上海高考数学大题解题技巧 一、立体几何题 1.证明线面位置关系,一般不需要去建系,更简单; 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 二、三角函数题 注意归一公式、二倍角公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!),正弦定理,余弦定理的应用。 三、函数(极值、最值、不等式恒成立(或逆用求参)问题) 1.先求函数的定义域,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 2.注意最后一问有应用前面结论的意识; 3.注意分论讨论的思想; 4.不等式问题有构造函数的意识; 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法); 四、圆锥曲线问题 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3.战术上整体思路要保10分,争12分,想16分。 五、数列题 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用数列的单调性(或者放缩法);如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3.如果是新定义型,一定要严格的套定义做题(仔细理解新定义)。 4.战术上整体思路要保10分,争12分,想16分。

高考数学解答题解题技巧

高考数学解答题解题技巧 大题是高考数学科目的重要组成部分,也是比分占得很重的一部分,考生需要掌握解题技巧,才能正确答题,下面学习啦小编给大家带来高考数学大题的最佳解题技巧,希望对你有帮助。 一、三角函数题 三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题12分对学生至关重要。主要有以下几类: 1.运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。 2.运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。 3.解三角形问题,判断三角形形状,正余弦定理的应用。 注意辅助角公式、诱导公式的正确性(转化成同名同角三角函数时,套用辅助角公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输! 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。构造新数列思想,如“累加、累乘、错位相减、倒序相加、裂项求和”等方法的应用与创新。 3、数列自身内部问题的综合考查,如前n项和与通项公式的关系问题、递推数列问题的考查一直是高考的热点,求数列的通项与求数列的和是最常见的题目,数列求和与极限等综合性探索性问题也考查较多。 全国卷的数列大题上手容易,但这不意味着容易拿满分,因为考的很广,像复习时没放在心上的冷门求和方法也会考查。因此全国卷考生复习时不能偷懒耍滑,老师讲解的各种数列解题方法都要掌握,深入复习好累加累乘法、待定系数法、错位相减法等方法。例如总能得到命题人青睐的错位相减法,因难度较大抱着侥幸心理的学生就会放低了对自己的学习要求。 三、立体几何题

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

高考数学选择题的解题技巧精选.

高考数学选择题解题技巧 数学选择题在当今高考试卷中,不但题目多,而且占分比例高。数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。 解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。 高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。 1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。 例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( ) 125 27 . 12536.12554.12581.D C B A 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 125 27)106(104)106(33 3223= ?+??C C 故选A 。 例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。其中正确命题的个数为( ) A .0 B .1 C .2 D .3 解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D 。 例3、已知F 1、F 2是椭圆162x +9 2 y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于 ( ) A .11 B .10 C .9 D .16 解析:由椭圆的定义可得|AF 1|+|AF 2|=2a=8,|BF 1|+|BF 2|=2a=8,两式相加后将|AB|=5=|AF 2|+|BF 2|代入,得|AF 1|+|BF 1|=11,故选A 。 例4、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。 ∴a>1,且2-a>0,∴1tan α>cot α(2 4 π απ < <-),则α∈( ) A .(2π- ,4π-) B .(4π-,0) C .(0,4π) D .(4π,2 π) 解析:因24παπ<<-,取α=-6 π 代入sin α>tan α>cot α,满足条件式,则排除A 、C 、D ,故选B 。 例6、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( ) A .-24 B .84 C .72 D .36 解析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。 (2)特殊函数 例7、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5

高考数学解题方法

一、选择填空题技巧 人生选择,选择人生,用兵之道,奇正相生,数学解题,其理相同。迂回曲径,直捣黄龙,审时度势,天佑功成。 (一)特值法 要点是:从条件中,取一些方便于计算的满足所有已知条件的数值进行验证,从而否定答案。选项不满足特值的 一定排除,满足的特值不一定选。 1. 如果0<x <1,则式子的化简结果是( ) A 、 B 、 C 、 D 、﹣ 2、化简) 4 sin()4cos() 4sin()4cos(x x x x +π++π+π-+π的结果是( ) 。 A 、-tan x B 、tan 2 x C 、 tan2x D 、cot x 3、 已知f( x x +1)= x x x 1 12 2++,则f (x)=( )。 A 、(x +1)2 B 、(x -1)2 C 、x 2 -x +1 D 、x 2 +x +1 4、 在ABC ?中,若 C ∠为钝角,则tgB tgA ?的值( ) A 、等于1 B 、小于1 C 、 大于1 D 、 不能确定 5、 已知{a n }满足a 1=1, a 2= 3 2 ,且n n n a a a 21111=++- (n ≥2),则a n 等于( )。 A 、 12+n B 、(3 2)n -1 C 、(32)n D 、22+n 6、设4 7 10 310()22222()n f n n N +=++++ +∈,则()f n =( ) A 、 2(81)7n - B 、12(81)7n +- C 、32(81)7n +- D 、42 (1)7 n n +-

7、已知数列{a n }的通项公式为a n =2n-1 ,其前n 和为S n ,那么C n 1 S 1+ C n 2 S 2+…+ C n n S n =( ) A 、2n -3n B 、3n -2n C 、5n -2n D 、3n -4n 8、若- 23π≤2α≤2 3π,那么三角函数式α32 cos 2121+化简为( ) A 、sin 3α B 、-sin 3α C 、cos 3α D 、-cos 3 α 9、已知α-β=6 π,tan α=3m , tan β=3-m , 则m 的值是( )。 A 、2 B 、-31 C 、-2 D 、2 1 10、直线x -ay +a 2=0(a >0且a ≠1)与圆x 2 +y 2 =1的位置关系是( ) A 、相交 B 、相切 C 、相离 D 、不能确定 11、若a , b 是任意实数,且a >b ,则( )。 A 、a 2 >b 2 B 、 a b <1 C 、lg(a -b )>0 D 、(21)a <(2 1)b 12、设n ≥2时,数列n n n n n n nC C C C 1 4 n 3 2 1 ) 1(,,4C - ,3 ,2 ,--- 的和是( )。 A 、0 B 、(-1)n 2n C 、1 D 、1 2+n n 13、已知a , b 是两个不等的正数,P =(a + a 1)( b +b 1 ), Q =(ab +ab 1)2, R =(2b a ++b a +2)2, 那么数值最大 的一个是( )。 A 、P B 、Q C 、R D 、与a , b 的值有关 14、已知m >n >1, 0log n a B 、a m >a n C 、a m 0且a ≠1,P =log a (a 3+1),Q =log a (a 2 +1),则P 、Q 的大小关系是( )。 A 、P >Q B 、p

高考数学大题题型总结及答题技巧

高考数学大题题型总结及答题技巧 高考数学大题题型一般有5种,关于后面的大题,通常17题是三角函数,18题是立 体几何,19题是导数,但也不排除变更的可能,前面三道题和后面两道大题比起来会简单很多。 如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提 高快 17题三角函数 17题考的知识点比较简单,只要在平时多加注意和总结就不成问题,但是重要的公式譬如二倍角公式等一定要熟记,这些是做题的基础; 18题立体几何 18题的第一小题通常是证明题,有时利用现成的条件马上就可以证明,但是也不排除需要做辅助线有一点难度的可能,而且形势越来越偏向后一种,所以在平时要多多注意需 要做辅助线的证明题,第二小题通常是求线面角和线线角的大小,也有可能是求相关的体积,不过这样也是变相的让你求线面角或线线角的大小,至于求面面角大小,我们老师说 不大可能,因为求面面角的难度稍大所需要的时间也会比较多,这样对后面的发挥会有比 较大的影响,虽然高考的目的是选拔人才,但是全省的平均分也不能太低。 点击查看:高考数学大题有哪几种题型 提醒一点:如果做第二小题时没有很快有思路,那就果断选择向量法,向量法的难点 是空间直角坐标系的建立,一定要找到三条相互垂直的线分别作为x轴y轴z轴,相互垂 直一定要是能证明出来的,如果单凭感觉建立空间直角坐标系万一错了后面的就完全错了。 19题导数 19题的难点是求导,如果你对复杂函数的求导掌握的很熟练,那第一小题就不用担心啦,第二小题会比较有难度,但是基础还是求导,无论有没有思路都要先求导,说不定在 求导的过程中就找到思路了; 最适合高考学生的书,淘宝搜索《高考蝶变》购买 20题圆锥曲线 20题是圆锥曲线,第一小题还是比较基础的但完全正确的前提是要掌握椭圆、双曲线、抛物线的定义,因为很有可能会出现让你判断某某是椭圆、双曲线、还是抛物线的题目。 第二小题比较难,但是简单在有一定的套路,做题做多了就知道的套路就是1.设立坐标,一般是求什么设什么.2.将坐标带入所在曲线的方程中.3.利用韦达定理求出x1+x2,x1x2,y1+y2,y1y2.4.所求的内容尽力转换为与x1、x2、y1、y2相关的式子,在转换的过程中

2020年高考数学答题技巧(全套完整精品)

2020 年高考数学答题技巧(全套完整精品) 一、考前准备 1.调适心理,增强信心 (1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考; (2)合理安排饮食,提高睡眠质量; (3)保持良好的备考状态,不断进行积极的心理暗示; (4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。 2.悉心准备,不紊不乱 (1)重点复习,查缺补漏。对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。强化联系,形成知识网络结构,以少胜多,以不变应万变。 (2)查找错题,分析病因,对症下药,这是重点工作。 (3)阅读《考试说明》,确保没有知识盲点。 (4)回归课本,回归基础,回归近年高考试题,把握通性通法。 (5)重视书写表达的规范性和简洁性,掌握各类常见题型的表达模式,避免“会而不对,对而不全”现象的出现。 (6)临考前应做一定量的中、低档题,以达到熟悉基本方法、典型问题的目的,一般不再做难题,要保持清醒的头脑和良好的竞技状态。 3.入场临战,通览全卷最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事: (1)填写好全部考生信息,检查试卷有无问题; (2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定); (3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B 两类:A 类指题型比较熟悉、容易上手的题目;B 类指题型比较陌生、自我

高考数学几何大题解题技巧

高考数学几何大题解题技巧 1、平行、垂直位置关系的论证的策略 1由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。 2利用题设条件的性质适当添加辅助线或面是解题的常用方法之一。 3三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。 2、空间角的计算方法与技巧 主要步骤:一作、二证、三算;若用向量,那就是一证、二算。 1两条异面直线所成的角①平移法:②补形法:③向量法: 2直线和平面所成的角 ①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用 向量计算。 ②用公式计算。 3二面角 ①平面角的作法:i定义法;ii三垂线定理及其逆定理法;iii垂面法。 ②平面角的计算法: i找到平面角,然后在三角形中计算解三角形或用向量计算;ii射影面积法;iii向量 夹角公式。 3、空间距离的计算方法与技巧 1求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角 形中求解,也可以借助于面积相等求出点到直线的距离。 2求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直 接作出公垂线的情况下,可转化为线面距离求解这种情况高考不做要求。 3求点到平面的距离:一般找出或作出过此点与已知平面垂直的平面,利用面面垂直 的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有 时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与 平面的距离一般均转化为点到平面的距离来求解。

4、熟记一些常用的小结论 诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。 5、平面图形的翻折、立体图形的展开等一类问题 要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。 6、与球有关的题型 只能应用“老方法”,求出球的半径即可。 7、立体几何读题 1弄清楚图形是什么几何体,规则的、不规则的、组合体等。 2弄清楚几何体结构特征。面面、线面、线线之间有哪些关系平行、垂直、相等。 3重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。 8、解题程序划分为四个过程 ①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。 ②拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。 ③执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。 ④回顾。对所得的结论进行验证,对解题方法进行总结。 感谢您的阅读,祝您生活愉快。

关于高考数学压轴题解题方法

2019年关于高考数学压轴题解题方法 关于高考数学压轴题解题方法压 轴题的解题方法,具体题目还是要具体分析,不能一一而谈,总体来说,思路如下: 1.复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。 2.运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,高中政治,在找到变化线段之间的联系,用代数式慢慢求解。 3.一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。 另外,还有一些细节要注意,三角比要善于运用,只要有直角就可能用上它,从简化运算的角度来看,三角比优于比例式优于勾股定理,中考命题不会设置太多的计算障碍,如果遇上繁难运算要及时回头,避免钻牛角尖。

如果遇到找相似的三角形,要切记先看角,再算边。遇上找等腰三角形同样也是先看角,再看底边上的高(用三线合一),最后才是边。这都是能大大简化运算的。还有一些小技巧,比如用斜边上中线找直角,用面积算垂线等不一而足 具体方法较多,如果有时间,我会举实例进行分析。 最后说一下初中需要掌握的主要的数学思想: 1.方程与函数思想 利用方程解决几何计算已经不能算难题了,建立变量间的函数关系,也是经常会碰到的,常见的建立函数关系的方法有比例线段,勾股定理,三角比,面积公式等 2.分类讨论思想 这个大家碰的多了,就不多讲了,常见于动点问题,找等腰,找相似,找直角三角形之类的。 3.转化与化归思想 就是把一个问题转化为另一个问题,比如把四边形问题转化为三角形问题,还有压轴题中时有出现的找等腰三角形,有时可以转化为找一个和它相似的三角形也是等腰三角形的问题等等,代数中用的也很多,比如无理方程有理化,分式方程整式化等等 4.数形结合思想 高中用的较多的是用几何问题去解决直角坐标系中的函数

高考数学各个题型解题技巧

高考数学各个题型解题技巧 选择题 方法多样,不择手段。高考试题凸现能力,小题一般要小做,除直接法解答外,还要注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形、特殊角度、特殊体等等)、排除、验证、转化、分析、估算等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,如果确实没有思路,可先蒙一个,并做标记,能做到“题可以不会,分不可以不得”,即使是“蒙”也有25%的胜率,后面有时间的话再做。 填空题 由于填空题和选择题有相似之处,所以有些解题方法、策略是可以共用的。填空题要认真运算,表达结果必须数值准确、形式规范,否则将前功尽弃,因为填空题无过程分。 解答题 数学阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”或者“踩点给分”——踩上知识点就得分,踩得多就多得分。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分,能分布做的一定不列综合式,解答过程中,该展示的推理过程和步骤决不省略,一个题目不能完整做出也要尽可能得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”。 对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的———会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。 对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。 ①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。 ②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。 ③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。 ④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。

高考数学大题每题解题策略与技巧(精品)

大题总体解题思想:注意“子条件”画出“关键词” 17、解三角形 解题指导:仔细审题,画出关键词(如锐角三角形等) 边角互化规则:(1)先考虑统一为角;后考虑统一为 边;(2)尽量减少角的个数 最值及范围问题: (1)注意应用两边之和大于第三边; (2)统一为角就用三角函数解题;统一为边就用不等式解题。 面积公式的选择优先考虑用已知角。 18、立体几何 解题指导:仔细审题,画出关键词 建系规则:尽量使各个点都落在坐标轴上。 求点的坐标技巧:一是转化为平面图形;二是利用向量共线 已知条件的意图:(1)已知边长有两个作用,一是方便建系设点的坐标;二是利用勾股定理证明垂直。 (2)已知面面垂直的作用:证明线面垂直。 线面平行的证明:法1 线线平行;法2 面面平行 温馨提示:有些时候法向量就是坐标轴哦 19、概率与统计 解题指导:仔细审题,正确判断随机变量的取值。(1)若题中有关键词或关键信息:相互独立,互不影响,已知概率等,则考独立事件或二项分布 (2)若题中有关键信息:已知概率且概率相等,直接求期望,实验次数多,实验具有重复性,则考独立重复试验(二项分布) (3)与统计相结合的概率题目解题技巧:分层抽样与独立性检验结合,系统抽样与频率分布直方图相结合,有“频率视为概率”则考二项分布,有“在(从)...选取...”则考古典概型或超几何分布) 温馨提示:有些时候期望可以带公式哦(二项分布,超几何分布) 20、解析几何 解题指导:仔细审题,注意画图,注意焦点位置。设点的坐标注意利用对称性,以减少变量个数 定值定点问题:法1特值探路;法2利用对称性判断定点位置。 存在性问题:法1特值探路;法2假设存在。 最值问题:合理构建函数关系式,然后用换元法,求导法,配方法等求最值。 温馨提示:1、直线方程可以正设和反设,还可以设为两点式哦 2、与圆综合多考虑图形的几何特征哦 3、考抛物线可与导数切线相结合哦 21、函数与导数 解题指导:仔细审题,注意画函数图像,注意定义

高中数学大题解题思路

高中数学大题解题思路 1、高考数学大题结构安排: A、三角函数与向量的结合 B、概率论 C、立体几何 D、圆锥曲线 E、导数 F、数列 2、解题方法浅析:其实高考大题并不可怕,它就是一个按部就班的过程,只要你能把握其中的解题思路,随便怎么都可以搞到六七十分的,甚至猛一点的可以拿满分。那么我就简单的说一下我的想法和思路,希望对大家有帮助,同时也希望大家下来在这些方面有所加强,高考数学大题就不是问题了! a、三角函数与向量: 考点:对于这类题型我们首先要知道它一般都是考我们什么,我觉得它主要是考我们向 量的数量积以及三角函数的化简问题看,同时可能会涉及到正余弦定理,难度一般不大。 只要你能熟练掌握公式,这类题都不是问题。 题型:这部分大题一般都是涉及以下的题型: 最值(值域)、单调性、周期性、对称性、未知数的取值范围、平移问题等 解题思路: 第一步就是根根据向量公式将表示出来:其表示共有两种方法,一种是模长公式(该种方法是在题目没有告诉坐标的情况下应用),即,另一种就是用坐标公式表示出来(该种方法是在题目告诉了坐标),即 第二步就是三角函数的化简:化简的方法都是涉及到三角函数的诱导公式(只要题目出现了跟或者有关的角度,一定想到诱导公式),还有就是倍角半角公式(只要题目中的角度出现一半或者两倍的关系,一定要此方法),最后可能就是用到三角函数的展开公式(注意辅助角公式的应用) 第三步就是将化简为一个整体的式子(如y=a 的形式)根据题目要求来解答: 最值(值域):要首先求出的范围,然后求出y的范围 单调性:首先明确sin函数的单调性,然后将代入sin函数的单调范围解出x的范围(这里一定要注意2 的正负性) 周期性:利用公式求解 对称性:要熟练掌握sin、cos、tan函数关于轴对称和点对称的公式,同时解题过程中 不要忘记了加上周期性。 未知数的取值范围:请文科生参照第九套试卷第二问的做法;理科生同样参照第九套试 卷第二问的做法。 平移问题:永远记住左右平移只是对x做变化,上下平移就是对y 做变化,永远切记。 b、概率: 考点:对文科生来说,这个类型的题主要是考我们对题目意思的理解,在解题过程能学 会树状图和列表,题目也是相当的简单,只要你能审题准确,这类题都是送分题;对理 科生来说,主要注意结合排列组合、独立重复试验知识点,同时会要求我们准确掌握分 布列、期望、方差的公式,难度也是不大,都属于送分题,是要求我们必须拿全部分数。 题型:在这里我就不多说了,都是求概率,没有什么新颖的地方,不过要注意我们曾经 在这里遇到过的线性规划问题,还有就是篮球成功率与命中率和防守率之间关系的类似 题目。

高考数学答题规律和思路汇总

高考数学答题规律和思路汇总 1函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……; 4选择与填空中出现不等式的题目,优选特殊值法; 5求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必 须先考虑是否为二次及根的判别式; 8求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简注意去掉不符合条件的特殊点; 9求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可; 10三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围; 11数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的 思想; 12立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之 间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题; 13导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意 点是否在曲线上;

2019高考数学大题必考题型及解题技巧分析

快戳!数学6大必考题型全总结!掌握好轻松考到140+! 高考数学大题必考题型及解题技巧分析 1 排列组合篇 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。 6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。 7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。 8. 会计算事件在n次独立重复试验中恰好发生k次的概率。 2 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立体几何中的计算型问题,而解答题着重考查立

体几何中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点;

高考数学答题技巧总结

高考数学:不同题型的答题套路来了 1. 选择题十大速解方法: 排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法; 2. 填空题四大速解方法: 直接法、特殊化法、数形结合法、等价转化法。 3. 解答题答题模板 专题一、三角变换与三角函数的性质问题 1、解题路线图 ①不同角化同角 ②降幂扩角 ③化f(x)=Asin(ωx+φ)+h ④结合性质求解。 2、构建答题模板 ①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。 ②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。 ④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。 专题二、解三角形问题 1、解题路线图 (1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。 (2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。 2、构建答题模板 ①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。 ②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。 ③求结果。 ④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。 专题三、数列的通项、求和问题 1、解题路线图 ①先求某一项,或者找到数列的关系式。 ②求通项公式。

③求数列和通式。 2、构建答题模板 ①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。 ②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。 ③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。 ④写步骤:规范写出求和步骤。 ⑤再反思:反思回顾,查看关键点、易错点及解题规范。 专题四、利用空间向量求角问题 1、解题路线图 ①建立坐标系,并用坐标来表示向量。 ②空间向量的坐标运算。 ③用向量工具求空间的角和距离。 2、构建答题模板 ①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。 ②写坐标:建立空间直角坐标系,写出特征点坐标。

高考数学解题技巧汇总

高考数学解题技巧汇总 调整大脑思绪 我们在考试前要排除杂念,使自己尽快的进入考试的状态,在脑中回忆数学知识点, 进行针对性的自我暗示,减轻压力,稳定情绪,以平和的心态应对考试。 确保运算准确 高考的数学题题量比较大,所以时间比较紧张,基本不会给我们逐题检查的时间。所 以运算准确十分重要,最好是一次成功。我们要知道,解题的速度是建立在准确度上的, 而且解题的质量也影响着我们接下来的解答。最好是在快的基础上稳扎稳打。不要盲目的 追求速度而忽略了准确度。 面对难题,讲究方法 在面对一道我们不会的题的时候,我们可以试着将这道题划分成一个个的子问题,先 解决其中的一部分,说不准在做到哪个步骤的时候就会激发你的灵感,如果在某一道题的 环节上耽误的时间过多,我们可以换一个途径,跳过这个步骤,从其他步骤开始做起。 选择题 选择题是数学考试中常见的题型,我们想要提高选择题的正确率,就要求我们在平时 练习的时候要注意归纳题干中的信息,排除干扰选项,找到正确的答案。 填空题 一般高考数学的填空题都在选择题之后,难度相比其他题型来说也会低不少,而且分 值也不是非常高。数学考试的填空题主要考察我们最基础的能力。一般填空题的运算量都 不算很大,只要我们熟练掌握各个知识点,都可以顺利的解答。 身体技巧 正确的审题是解答问题的关键,审题的过程包括明确条件,分析条件,确定解题思路。分析条件是指我们在数学考试的时候要找出题目中已知的条件。分析条件就是根据已知条 件来找出隐含的条件,从掌握的信息来进行推导,以达到解题的目的。确定思路就是分析 已知条件和最终解答之间的联系,需要用到哪些定理,运用哪些步骤,最后完成解答。 感谢您的阅读,祝您生活愉快。

高中数学各种题型的解题技巧

高中数学各种题型的解题技巧 高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。也就是在转化过程中,没有注意转化的等价性,会经常出现错误。数学大题表面上是很难,但是通过多年的教学积累和经验总结,我们发现数学整个学科的解题思维基本上趋于一致,能够形成通解,使我们在数学教学上大幅的简化,甚至不需要刻意的思考。掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在高考前一个月集中复习。 六种题型解题技巧 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单; 2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

高考数学选择题答题技巧

高考数学选择题技巧方法 例1【2012辽宁L6】在等差数列{}n a 中,已知48+=16a a ,则该数列前11项和11=S ( ) A .58 B .88 C .143 D .176 【常规解法】481111111()11()1116 88222 a a a a S ++?==== 【秒杀技巧】采用特值法取48=8a a =则{}n a 为公差为0每一项都等于8的常数列则11=118=88S ? 例2【2009辽宁L6】设等比数列{}n a 的前n 项和为n S 若 63S S =3则6 9S S = ( ) A. 2 B. 73 C.8 3 D.3 【常规解法】由等比数列性质可知n S ,2n n S S -,32n n S S -为等比数列,设3S k =,则由 6 3 3S S = 可得63S k =然后根据等比数列性质进行求解。 一、技巧方法 [1] 小题不能大做 [2] 不要不管选项 [3] 能定性分析就不要定量计算 [4] 能特值法就不要常规计算 [5] 能间接解就不要直接解 [6] 能排除的先排除缩小选择范围 [7] 分析计算一半后直接选选项 [8] 三个相似选相似 [答题口诀] [1.特值法] 通过取特值的方式提高解题速度,题中的一般情况必须满足我们取值的特殊情况,因而我们根据题意选取适当的特值帮助我们排除错误答案,选取正确选项。 [方法思想]

【秒杀技巧】采用特值法令31S =则63S =根据n S , 2n n S S -,32n n S S -为等比数列得97S = 所以 9673 S S = 例3【2012辽宁L7】 已知()sin -cos 0,αααπ∈,则tan α=( ) A .1-B .2- C .2 D .1 【常规解法】 对等式sin cos αα-= 左右平方得12sin cos 2αα-=,则2sin cos 1αα=- 又因为22sin cos 1αα+=,所以22 2sin cos 1sin cos αααα =-+分式中分子分母同时除2 cos α 得到22tan 1tan 1 α α=-+然后解方程得tan 1α=- 【秒杀技巧】 因为sin cos 1αα-=>则sin 0,cos 0αα><则tan 0α<选项C 、D 错误, 又因为sin cos αα-= 则sin ,cos αα 的值必然和有关,由此分析猜测可 取sin 22 αα==- ,此时满足题中已知条件,所以sin tan 1cos ααα==- 例1【2009辽宁L7】曲线2 x y x =-在点(1,1)-处的切线方程为 ( ) A .2y x =- B .32y x =-+ C .23y x =- D .21y x =-+ 【常规解法】要求切线方程先求切线斜率k ,则要对函数求导2 2 ()'(2) f x x -= -,则'(1)2k f ==- [2.估算法]

相关主题