搜档网
当前位置:搜档网 › 剪力墙的设计方法(2016)

剪力墙的设计方法(2016)

剪力墙的设计方法(2016)
剪力墙的设计方法(2016)

剪力墙的设计方法

一、剪力墙布置及尺寸确定的基本原则

1、结构布置时剪力墙的经济长度

“短肢剪力墙结构”是指“截面高度不大于1600mm,且截面厚度小于300的剪力墙”,具有较多短肢剪力墙的剪力墙结构是指,“在规定水平地震作用下,短肢剪力墙承担的底部倾覆力矩不小于结构底部总地震倾覆力矩的30%的剪力墙结构”(省《高规》)。

当结构体系属短肢剪力墙结构时,按省《高规》第7.1.8条规定,结构的最大适用高度有所降低,7度的剪力墙结构限高100米,同时短肢剪力墙在底部所占倾覆力矩的比例不得大于50%。采用短肢剪力墙时,需相应采取加强措施,对实际设计影响较大的有“一、二、三级短肢剪力墙轴压比,在底部加强部位分别不宜大于0.45、0.50、0.55,一字形截面短肢剪力墙的轴压比限值相应减少0.05;在底部加强部位以上的其他部位不宜大于上述规定值加0.05”、“…其他各层(非底部加强部位)一、二、三级短肢剪力墙的剪力设计值应分别乘以增大系数1.4、1.2和1.1”、“截面高厚比不大于6时,墙全部竖向钢筋配筋率,一、二级和三、四级,底部加强和非底部加强部位分别不宜小于1.2%、1.0%和1.0%、0.8%;截面高厚比大于6时,仍设边缘构件,配筋率分别不宜小于1.6%、1.4%和1.4%、1.2%”等。经与长度为1650mm厚度为200mm的经济长度剪力墙作经济比较,结论为:从考虑混凝土、模板与钢筋的综合造价来看,长度缩短了的短肢剪力墙总是更经济或造价基本相当;仅从钢筋含量的角度来看,则抗震等级分别为一、二或三、四级时,当短肢剪力墙分别不大于1400mm、1200mm、1000mm时,含钢量更低,可称为短肢剪力墙的经济界限长度。故实际设计时,为节省造价,可适当采用短肢剪力墙,一般情况下控制不达到属于较多短肢剪力墙的程度,且其长度小于经济界限长度,在满足高厚比不小于4仍属剪力墙的前提下,厚度相同时长度越短越经济。

根据省《高规》,通常上部标准层剪力墙厚度在200-250mm之间,长度可取1650mm以上则属一般剪力墙;下部楼层层高较大时,可将墙厚取至300mm及

以上,则当截面高厚比大于4则属一般剪力墙。从经济的角度考虑,可按上述原则采用合适比例的短肢剪力墙。

实际设计时,常会遇到是设一片长的剪力墙,还是开洞变为两片剪力墙的选择问题,两片剪力墙由于多了2个暗柱,其含钢量与综合造价未必低于一片长墙,为此需对两者作经济比较,假定两片墙均为1650mm的一般经济长度剪力墙,比较的结果为:(1)从含钢量的角度看,分别位于底部加强区和非加强区的剪力墙,当长墙的长度分别不大于7000mm、12000mm时,其含钢量比开洞分成两片剪力墙更低;(2)从考虑混凝土、钢筋和模板的综合造价来看,分别位于底部加强区和非加强区的剪力墙,当开洞长度不大于1000mm、1200mm时,一片长墙造价低于开洞分成两片经济长度短墙。从上可见,只考虑含钢量与考虑综合造价两者的结论可能相反,但目前市场普遍只重视含钢量指标,故有时可布一片长墙时,不必刻意分成两片经济长度短墙。

2、控制合理的剪力墙折算厚度

某楼层的剪力墙折算厚度我们这里定义为:该楼层的剪力墙混凝土体积与楼层的结构面积之比,这是反映剪力墙结构体系经济性的一个重要指标。当剪力墙折算厚度在一个合适的范围时,只要我们将剪力墙的配筋率在满足规范及受力要求的前提下控制在一个合理的数值,那么我们就可以基本保证该剪力墙结构造价是经济的。根据我司以往设计的若干剪力墙结构工程的统计经验,当建筑为12层左右的小高层时,标准层剪力墙折算厚度控制在90~100mm左右;当为18层左右时,控制在120~130mm左右;当为25层左右时,控制在140~150mm 左右,则该工程会达到一个较好的经济指标。若剪力墙折算厚度偏大较多,则说明该工程布置的剪力墙数量或面积过多了,计算结果的具体表现为:轴压比普遍较小,层间位移角比规范限制有较大富余(即侧向刚度较大),这时应考虑对剪力墙的布置或截面进行优化,以控制结构成本。最优的剪力墙截面应为,所有的剪力墙的轴压比均等于或接近轴压比限值,当上部楼层剪力墙轴压比较小,而厚度已达到200mm,层间位移角又有富余的情况下,可通过缩短上部剪力墙长度的方法,来达到更优的经济指标。

3、合理确定剪力墙的截面高度与厚度

(1)标准层:一般住宅标准层剪力墙的厚度取为200mm则基本可满足稳定

性和轴压比的要求,这时,除提高刚度需要或建筑构造需要或减少梁跨需要等情况外,剪力墙截面高度可取1650mm,即可满足成为一般剪力墙,我们可称之为200厚剪力墙的经济长度;在剪力墙的轴压比及层间位移角仍能满足要求的前提下,可适当采用小于经济界限长度的短肢剪力墙。

(2)底部层高较大的楼层:由于建筑使用功能的需要,建筑物在底部的地下室、架空层、裙楼等楼层往往具有较大的层高,这时剪力墙因稳定性的要求(构造或稳定验算)需有较大的厚度,当厚度达到300mm及以上时,对上部标准层长度为1650的一般剪力墙,和长度大于1200mm的短肢剪力墙,则仍属一般剪力墙。

二、剪力墙抗震等级及约束边缘构件配置范围的确定

1、一般剪力墙

多层、高层建筑结构的剪力墙分别按《抗规》表6.1.2和省《高规》第3.9.3、3.9.4条查表确定抗震等级,注意对非高层结构不存在短肢剪力墙的提法,故多层结构均对截面高度与厚度之比大于4的剪力墙均按一般剪力墙考虑。一、二、三级剪力墙底部加强部位及其上一层需设约束边缘构件,四级剪力墙全高只需设构造边缘构件而不需设约束边缘构件。

2、短肢剪力墙

短肢剪力墙是专门针对高层结构提出的概念,按省《高规》规定,一、二、三级短肢剪力墙轴压比,在底部加强部位分别不宜大于0.45、0.50、0.55,一字形截面短肢剪力墙的轴压比限值相应减少0.05;在底部加强部位以上的其他部位不宜大于上述规定值加0.05”、“截面高厚比不大于6时,墙全部竖向钢筋配筋率,一、二级和三、四级,底部加强和非底部加强部位分别不宜小于1.2%、1.0%和1.0%、0.8%;截面高厚比大于6时,仍设边缘构件,配筋率分别不宜小于1.6%、1.4%和1.4%、1.2%”。

3、错层结构的剪力墙

错层在省《高规》第11.4.1条文说明中有定量化的定义:楼层板面高差大于相连处楼面梁高,或板面高差小于相连处楼面梁高但楼板间垂直净距大于支承梁宽时称为错层。错层主要会带来以下不利影响:(1)楼板变高差处导致楼板传递剪力的路径局部中断,严重时造成楼板平面内无限刚的假定不成立;(2)当楼

板变高差两侧的结构在地震作用下出现反向的运动趋势时,将对交接处的竖向构件产生非常不利的附加内力。设计中因楼板凹凸的情况十分复杂,对整个结构的影响也未必会产生上述不利影响,故需根据实际情况灵活掌握判断尺度。如一般标准层中的厕所凹板或大厅板的下沉,并不会造成剪力传递整体中断(只是局部削弱),下沉板因较小也不会产生反向振动,故不作错层论;又如首层平面塔楼外范围楼板下沉覆土与塔楼范围的楼板形成高差,因塔楼外的楼盖全埋在地下,较低一侧楼盖受地震反应的影响较小(可近似看成振动基本与地基土同步),同时由于覆土对高差处形成侧限,塔楼的水平剪力可通过两侧平行方向的高差处梁纵向传递至覆土顶板,从而大幅减少较高一侧楼盖对交接处竖向构件的附加内力,故也可不作错层论。

按省《高规》第11.4.6条,对错层交接处平面外受力的剪力墙,抗震设计时厚度不应小于250mm,并均应设置与之垂直的墙肢或扶壁柱,抗震等级应提高一级采用。错层处剪力墙的混凝土强度等级不应低于C30,水平和竖向分布钢筋的配筋率,抗震设计时不应小于0.5%。另,错层处的框架柱截面高度不应小于600,砼强度等级不低于C30,抗震等级提高一级,箍筋全柱段加密。

4、大底盘多塔楼结构的剪力墙

按省《高规》第11.6.3条,塔楼中与裙房连接体相连的外围柱、剪力墙,从固定端至裙房屋面上一层的高度范围内,柱纵向钢筋的最小配筋率宜适当提高,柱箍筋宜在裙楼屋面上、下层的范围内全高加密,剪力墙宜设置约束边缘构件。相应条文说明解释为,为保证塔楼与底盘共同工作,塔楼之间裙房连接体的屋面梁以及塔楼外围一圈墙柱从固定端到出裙房屋面上一层的高度范围内,在构造上应予特别加强。故我司在执行该条时,要求将塔楼外围一圈剪力墙设约束边缘构件,范围从固定端到大底盘屋面上一层,约束边缘构件按二级构造配筋。

三、剪力墙边缘构件纵筋及分布钢筋的构造要求

有关剪力墙配筋的构造要求主要依据省《高规》第7.2.12~7.2.15条,请大家认真阅读规范。

四、剪力墙构造配筋计算表的原理简介、使用说明

我司编制剪力墙构造配筋计算表的主要目的是为了简化剪力墙设计的工作

量,使剪力墙的配筋标准化,提高设计效率。其简化理念为,一方面将大量机械重复的配筋率计算工作以查表代替,在提高计算效率的同时也减少了计算出错的机会,另一方面以标准大样结合填表的形式可大幅减少边缘构件制图的工作量,由于边缘构件纵筋采用固定间距的约定,与板、独立基础等的配筋方式类似,且标出了钢筋的总数,故也不存在读图困难或施工出错的问题。

其基本原理是:根据约束和构造边缘构件的纵筋配筋率及配箍率构造特点(约束边缘构件的配筋及配箍率较大,构造边缘构件相对较小),在使箍筋、纵筋直径较适合施工的条件下(如箍筋直径一般控制不大于12mm,否则对于一般边缘构件箍筋尺寸较小的情况施工加工有一定困难)约定纵筋的间距(不大于200或300),箍筋或拉筋与纵筋成每根纵筋布置一肢的固定关系,也就是使纵筋间距和箍筋肢距按固定间距的分布筋的形式确定,约定间距和肢距的目的是使与配筋率、配箍率相关的变量数量尽量少,这样对一定尺寸和砼等级的边缘构件,其纵筋配筋率仅与纵筋直径有关,体积配箍率则与箍筋直径和竖向间距有关,从而使知道抗震等级、截面尺寸和混凝土强度等级的边缘构件,通过查表得出纵筋直径、箍筋直径及竖向间距,并结合标准截面大样图即可确定整个构件的构造配筋。剪力墙构造配筋计算表中边缘构件的配筋率及配箍率是完全依据省《高规》第7.2.12~7.2.15条确定的,每个参数的计算均在EXCEL表格中有反映,只是为方便查表而将中间过程隐藏,同时也考虑了当剪力墙厚度较大时需在截面端部中间加配纵筋的影响。

剪力墙构造配筋计算表的使用方法详见相关的PPT文件。目前还开发了图形化的插件,详见研发中心的相关教程。

五、采用剪力墙构造配筋表方法进行剪力墙设计的步骤

1、计算确定各层剪力墙的长度及厚度。

2、确定各墙肢的抗震等级,明确短肢剪力墙、错层交接处、大底盘塔楼外围等有特殊构造及配筋要求的剪力墙。

3、按省《高规》7.2.12、7.2.13条确定各墙肢的边缘构件尺寸。

4、先按构造要求查表完成各墙肢的配筋,注意如下问题:

(1)约束边缘构件与构造边缘构件的区别

①尺寸大小不同,详见省《高规》7.2.12、7.2.13条规定。

②纵筋配筋率要求不同,详见省《高规》7.2.12、7.2.13条规定,另需注意对连体结构、错层结构以及B级高度剪力墙结构中的剪力墙,配筋率的要求有所提高。

③箍筋的配箍特征值要求不同,约束边缘构件要求配箍特征值λv=0.2;构造边缘构件分为两种情况,对于一般剪力墙结构无配箍特征值的要求,按不低于省《高规》表7.2.13的构造配置即可,对连体结构、错层结构以及B级高度剪力墙结构中的剪力墙,要求配箍特征值λv=0.1,需按此计算确定构造配筋。另需建立对边缘构件中箍筋作用的正确概念,注意它并非由内力计算所得,边缘构件箍筋的作用在于通过箍筋的约束,使边缘构件范围的砼成为约束砼,与普通砼相比,约束砼具有更大的极限压应变,即砼在压碎破坏前具有更强的变形能力,亦即使剪力墙构件具有更高的延性。故该措施作用在于通过构造加强提高剪力墙在极限状态下的延性,在程序的计算输出中不会提供该项内容。

当同一墙柱平面中既有约束边缘构件又有构造边缘构件时,必须分别用相应的构件配筋表及标准大样。

(2)确定有特殊构造及配筋要求的剪力墙(短肢、错层、大底盘多塔楼)的钢筋。

(3)剪力墙分布钢筋的确定

①不小于规范的构造要求值(一般0.25%,转换层落地加强部位0.3%,错层交接处0.5%,特一级0.4%),EXCEL表根据条件自动确定;

②对底部加强部位及超高的结构作适当加强,详见EXCEL计算表格中的剪力墙墙身构造配筋表;

③其余部位为0.25%,当厚度为200mm时,为双层双向Ф8@200(HRB400级钢)。

(4)对同时属某方向墙肢的剪力墙翼缘的配箍处理。

因墙肢同时有水平分布筋的配筋要求,故当翼缘相对较长,分担的水平剪力较大时,若整个按边缘构件的构造要求配箍可能会偏于不安全。故我司现定当翼缘高厚比不小于4时,该边缘构件的配箍水平应与水平分布筋的配筋水平相当。如在底部加强部位,箍筋不小于Ф10@150与Ф12@200的水平分布筋水平相当。

5、查由程序计算控制的边缘构件纵筋及水平分布筋,并对前面按构造完成的剪力墙配筋进行相应调整。

6、剪力墙及其边缘构件编号规则约定。

凡由计算控制配筋的边缘构件和墙身编号加上s后缀。

剪力墙结构设计注意要点

剪力墙结构设计要点 整体规定 ◆A级高度乙类、丙类高层建筑的剪力墙结构最大适用高度: 全部落地剪力墙——非抗震、6度、7度、8度、9度抗震时,分别为150、140、120、100、60m 部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为130、120、100、80m,9度抗震时不宜采用 A级高度甲类高层建筑的剪力墙结构最大适用高度: 6度、7度、8度抗震时,将本地区设防烈度提高一级后,按乙类、丙类建筑采用 9度抗震时,应专门研究 (说明:房屋高度指室外地面至主要屋面高度,不包括局部突出屋面的电梯机房、水箱、构架等高度) ◆B级高度乙类、丙类高层建筑的剪力墙结构最大适用高度: 全部落地剪力墙——非抗震、6度、7度、8度抗震时,分别为180、170、150、130m 部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为150、140、120、100m B级高度甲类高层建筑的剪力墙结构最大适用高度: 6度、7度抗震时,按本地区设防烈度提高一级后,按乙类、丙类建筑采用 8度抗震时,应专门研究 ◆结构的最大高宽比: A级高度——非抗震、6度、7度、8度、9度抗震时,分别为6、6、6、5、4 B级高度——非抗震、6度、7度、8度抗震时,分别为8、7、7、6 ◆质量与刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响; 其他情况,应计算单向水平地震作用的扭转影响

◆考虑非承重墙的刚度影响,结构自振周期折减系数取值0.9~1.0 ◆平面规则检查,需满足: 扭转:A级高度—— B级高度、混合结构高层、复杂高层—— 楼板:有效楼板宽≥该层楼板典型宽度的50% 开洞面积≤该层楼面面积的30% 无较大的楼层错层 凹凸:平面凹进的一侧尺寸≤相应投影方向总尺寸的30% ◆竖向规则检查,需满足: 侧向刚度: 除顶层外,局部收进的水平向尺寸≤相邻下一层的25% 楼层承载力:A级高度——抗侧力结构的层间受剪承载力(宜)≥相邻上一层的80% 薄弱层抗侧力结构的受剪承载力(应)≥相邻上一层的65% B级高度——抗侧力结构的层间受剪承载力(应)≥相邻上一层的75% (说明:楼层层间抗侧力结构受剪承载力指在所考虑的水平地震作用方向,该层全部柱及剪力墙的受剪承载力之和) 竖向连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力不得由水平转换构件(梁等)向下传递 ◆水平位移验算: 多遇地震作用下的最大层间位移角≤ 罕遇地震作用下的薄弱层层间弹塑性位移角≤1/120 ◆舒适度要求: 高度超过150m的高层建筑,按10年一遇的风荷载取值计算的顺风向与横风向结构顶点的最

部分框支剪力墙结构

部分框支剪力墙结构 一、结构布置 1. 底部转换层的设置高度 研究得出,底部转换层位置越高,转换层上、下刚度突变越大,转换层上、下内力传递途径的突变越加剧,落地剪力墙或筒体易出现受弯裂缝,而使框支柱内力增大,转换层上部附近墙体易破坏,因此,转换层越高,对抗震越不利,因此规定9度区不应采用此结构。 “高规”第10.2.2条规定:对部分框支剪力墙结构,转换层设置高度8度时不宜超过3层,7度时不宜超过5层,6度时可适当提高。 对于底部带核心筒的转换层框架核心筒结构和外框为密柱框架的筒中筒结构,由于其转换层上、下的刚度突变不明显,转换层上、下层内力传递途径突变的程度也小于框支剪力墙结构,转换层的高度对这两种结构影响不如框支剪力墙结构严重,因此,对这两种结构的转换层位置,可比框支剪力墙结构适当提高。但当底部带转换层的筒中筒结构外筒由剪力墙组成的壁式框架时,其转换层上、下层的刚度突变及内力传递途径程度与框支剪力墙结构相近,因此,其设置高度限制同框支剪力墙结构。 2. 转换层上、下刚度突变的控制 带转换层结构应使转换层下部结构的抗侧刚度接近转换层上部邻近结构的抗侧刚度,不发生明显的刚度突变,不应使转换层下部结构成为柔软层,因底部柔软层房屋在大地震中的倒塌十分普遍。 转换层上部结构的侧向刚度与下部结构的侧向刚度比应符合下列规定: 1) 底部大空间为1层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2,γ可按下列公式计算 2 11122h h A G A G ?=γ……………………………………(1) ci i wi i A C A A += (i=1.2)……………………(2) 2)(5.2i ci i h h C = (i=1.2)……………………(3) 式中:1G 、2G ——底层和转换层上层的混凝土剪变模量 1A 、2A ——底层和转换层上层的折算抗剪截面面积,可按(2)式计算。

钢筋混凝土抗震墙设计的几个问题

钢筋混凝土抗震墙设计的几个问题 发表时间:2009-02-19T15:17:49.687Z 来源:《黑龙江科技信息》2008年9月上供稿作者:王青 [导读] 通过对多层和高层钢筋混凝土房屋的结构设计,概括出对钢筋混凝土抗震墙的设计要求。 摘要:通过对多层和高层钢筋混凝土房屋的结构设计,概括出对钢筋混凝土抗震墙的设计要求。 关键词:抗震墙;墙肢;连梁 抗震墙广泛用于多层和高层钢筋混凝土房屋,规范规定的现浇钢筋混凝土结构房屋中,除框架结构外,其余几种结构,如框架-剪力墙结构、剪力墙结构、筒体结构及板柱-剪力墙结构。均与剪力墙有关、因此有必要对剪力墙作一下研究。 在受力方面,因为剪力墙的刚度大,容易满足小震作用下结构,尤其是高层结构的位移限值。在地震作用下,其变形小,破坏程度低,可以设计成延性抗震墙,大震时通过连梁和墙肢底部的塑性铰范围内的塑性变形,耗散地震能量,在与其他结构共同工作的同时,能吸收大部分能量,降低其他结构的抗震要求,在设防较高的地区(8度地区及以上地区)优点更为突出。 抗震墙由墙肢和连梁两部分组成。设计时应遵循强墙弱梁、强剪弱弯的原则。与旧规范相比,新规范在剪力墙抗震设计特别是在抗震构造方面有比较大的变化。 1抗震墙的布置原则 作为主要的抗侧力构件,合理的布置是构建良好抗震性能的基础。应遵循“对称、均匀、周边、连续”外,还须注意。 1.1将长墙分成墙段 对于抗震墙结构和部分框支抗震墙结构,较长的抗震墙宜开设洞口,将一道抗震墙分成长度较均匀的若干墙段,使墙的高宽比大于2。规范规定洞口连梁跨高比宜大于6。的目的是:设置刚度和承载力较小的连梁,在地震作用下可能先破坏、屈服。使墙段成为抗侧力单元,且墙段以弯曲变形为主。 1.2避免墙肢长度突变 抗震墙和部分框支抗震墙结构的墙肢的截面长度,沿高度不宜有突变,当抗震墙的洞口比较大时,以及一、二级抗震墙的底部加强区,不宜有错洞布置的剪力墙。 2框支层墙体的布置 2.1对框支层刚度的要求 部分框支的抗震墙结构的框支层,抗震墙减少,侧向刚度降低,在地震作用时有可能变形集中在框支层。框支层是使结构具有良好抗震性能的关键部位。对于矩形平面的部分框支的抗震墙结构为避免框支层成为薄弱层或软弱层,规范规定:框支层的楼层侧向刚度不应小于上一层非框支层侧向刚度的50%。 2.2框支墙落地的间距不宜过大 框支层的水平地震剪力主要由落地剪力墙承担。作用在紧邻框支层的上一层非落地剪力墙的水平力亦通过框支层楼板传到落地墙,为保证楼板有足够大的平面内刚度(传递水平力),2001规范规定:落地墙的最大水平间距不宜大于24m。 部分落地墙宜设计成筒体,以增加抗扭刚度和抗侧刚度。 3框架-抗震墙结构的抗震墙的布置 3.1沿房屋高度,抗震墙宜连续布置,宜全长贯通,避免切断,且洞口宜上下对齐,避免墙肢长度的突变。 3.2不宜开大洞口,避免抗震墙承载力削弱和刚度突变。 3.3洞边距柱柱端(指距柱内侧)不小于300mm。以保证柱作为边缘构件的作用和约束边缘构件的长度。结构试验表明矩形截面剪力墙的延性比工字形或槽形截面剪力墙差;计算分析表明增加墙肢截面两端的翼缘能显著提高墙的延性;因此在矩形墙两端设约束边缘构件不但能较显著地提高墙体的延性,还能防止剪力墙发生水平剪切滑,提高抗剪能力。 3.4双向抗侧力的结构形式。纵横墙宜相连,使彼此成为有翼缘的剪力墙,不但可以增加刚度,同时还能有效地提高塑性变形的能力。 3.5对于较长的房屋,不宜在房屋的端部设剪力墙以避免温度应力对剪力墙的不利影响。 3.6对于一、二级抗震墙,其连梁的跨高比不宜大于5,且高度不小于400mm。连梁有较大的刚度,可保证墙体的整体性能良好并能增大耗能能力。 3.7柱中线与梁、墙中线偏心不宜大于柱宽的1/4以减少地震作用对柱的扭转效应。否则应通过加水平腋,加强柱内配箍率等方法加以弥补。 4抗震墙截面尺寸的有关规定 4.1最大剪压比限值 对剪跨比大于2的剪力墙和跨高比大于2.5的连梁,剪压比不应大于0.2剪跨比小于2的剪力墙和跨高比小于2.5的连梁,剪压比不大于0.15。原因是:剪跨比小的墙和跨高比小的连梁其剪切变形较大,甚至以剪切变形为主,故对剪压比的要求应更严格一些。实验表明:剪压比超过一定值时,将过早出现斜向裂缝,增加水平筋和箍筋的方法没有作用,在箍筋水平筋未屈服前混凝土即已在剪即已在剪压的共同作用下破碎。合理的方法是:加大混凝土强度等级,加厚墙、梁或加长墙的长度,但不宜加高梁的高度,在计算墙肢的剪跨比时弯矩和剪力均取地震作用下的效应组合的计算值。 4.2抗震墙的最小厚度 框架—剪力墙结构的底部加强区不小于200,且不小于层高的1/6;框架—剪力墙结构的其他部位不小于160,且不小于层高的1/20;框架-剪力墙结构的墙的周边应设置梁或暗梁、端柱组成边框。其他结构的一、二级不小于160mm,且不小于层高的1/20;其他结构的三、四级不小于140mm,且不小于层高的1/25;其他结构的一、二级底部加强区不小于200mm,且不小于层高的1/16(无端柱或翼墙时不小于层高的1/12)。 5剪力墙的计算 墙的设计计算是考虑水平和竖向作用下进行结构整体分析,求得内力后按偏压或偏拉进行正截面承载力和斜截面受剪承载力验算。当受较大集中荷载作用时,再增加对局部受压承载力验算。在剪力墙承载力计算中,对带翼墙的计算宽度按以下情况取其小值。

剪力墙结构设计要点分析

剪力墙结构设计要点分析 发表时间:2018-06-29T15:17:32.500Z 来源:《建筑学研究前沿》2018年第3期作者:郭凌波 [导读] 随着我国城市土地的日益紧张,为有效利用土地使用率,缓解土地紧张状况,高层建筑如雨后春笋般的涌现出来。 深圳华森建筑与工程设计顾问有限公司 摘要:剪力墙结构抗侧刚度大及整体性强,能够承受各种荷载并控制结构的水平力等优点,被广泛应用。合理、科学的设计及布置剪力墙结构,对于整体建筑结构的设计可靠性具有重要意义。本文通过某高层建筑剪力墙设计的要点进行分析。 关键词:高层建筑;剪力墙;结构设计;要点 引言 随着我国城市土地的日益紧张,为有效利用土地使用率,缓解土地紧张状况,高层建筑如雨后春笋般的涌现出来。由于剪力墙具有独特的优势,被高层建筑广泛应用。而剪力墙的稳定性影响着整个建筑结构的安全性,所以要严格的按照剪力墙设计原则,结合建筑设计要求和主要特点,对剪力墙结构进行设计,使其发挥出最优的作用和效果,这也保障了整个高层建筑的可靠性和安全性,使得最终能够获得较好的经济利益。 一、剪力墙的特点 (一)优点 剪力墙结构由于自身具有较强的刚度,性能较强,可以承受荷载力大,特别是水平方向的承载力较强。将剪力墙结构融和到高层建筑建设中,可以把高层建筑内部的承重墙与分隔墙进行有效结合,这对于建筑结构的美观性与安全性具有重要意义。 (二)缺点 虽然剪力墙结构在高层建筑应用有很多优势,但实际运用过程中存在一些不足。如抗震性能减弱、增加建筑整体重量。虽然合理运用剪力墙结构可以降低钢筋的应用率,但对建筑结构的延展性带来一定影响。由于剪力墙的自身承载力受到一定阻碍,这便造成剪力墙的价值无法充分发挥出,虽然剪力墙的刚度可以有效的抵抗侧向变形,但在实际运用中,需要提高高层建筑整体结构的强硬度,进而致使建设成本增多。 二、某高层建筑工程的结构设计概况 某高层建筑共16层,地上15层,地下一层,层高3.8m。采用剪力墙结构承受建筑自身具有的水平荷载力和垂直荷载力,其自身的刚性结构体系具备高抗侧强度,用来进行抵抗水平侧力。 三、剪力墙结构设计的原则 (一)剪力墙的厚度一般比较小,而高和宽的尺寸却比较大,受力形态接近于柱体。但是它与柱体还是存在一定的区别,主要表现在剪力墙肢长与厚度之间的比值,在比值小于等于3时,可以按照柱体来设计,当比值在3~5之间时,被视为异形柱,需要按照双向受压构件设计。 (二)剪力墙的主要特点:在同一平面内荷载力和刚度比较大,而在平面外的荷载力和刚度就相对较小。因此,需要注意不要在平面外接搭,如果实在避免不了时就要按照相关规定采取相对应的措施,确保剪力墙平面外的安全。 (三)在剪力墙的结构设计中,墙属于一个平面构件,在承受着沿着平面作用的水平剪力和弯矩之外,还需要承担竖向压力。由于在多力结合状态下工作,除了要满足刚度的要求之外,还需要满足非弹性变形下的延性。 (四)墙体的设计主要是计算水平和竖向作用下的结构整体的内力,在求得内力后,根据偏拉或者偏压来进行斜截面受剪荷载力和正截面荷载力的计算。 四、关于剪力墙结构存在的主要问题 因剪力墙具有较高的刚度性、整体性以及抗侧力性,现代高层建筑施工中对于剪力墙结构的应用较为广泛。但是其自身也存在着一定的问题:因为剪力墙具有很高的刚度和较强的抗侧力,在地震效应较高的情况下,就会提高建筑基础以及上部结构的建筑成本;在建筑的过程中,如果混凝土使用较多,就会对建筑物自身的重量以及对具有的平面功能造成影响;剪力墙墙肢结构本身的轴压力不高,就不能充分发挥自身承载压力的作用;剪力墙结构都有相应的配筋标准,如果配筋率太低就会影响其延性。所以,将剪力墙结构运用在高层建筑的结构设计中时,不但要考虑到剪力墙结构的抗侧能力,还要对建筑工程的成本进行考量。 五、高层建筑剪力墙结构设计需要重视的要点 (一)布置剪力墙结构 钢筋混凝土剪力墙能够承担风荷载力、水平地震作用力以及竖向荷载力,所以在设计剪力墙时,要考虑建筑物的基本要求,布置剪力墙时尽量形成连续的完整框架,尽可能进行规则的对称布置,防止出现扭转效应。 1.关于短肢剪力墙结构的选择 使用短肢剪力墙结构可以对建筑进行灵活设计,能够减少建筑结构的重量,但是这种结构的抗震性能不高,无法很好的保证建筑的安全性,所以要慎重选择短肢剪力墙结构。 2.关于独立的小墙肢 高层建筑结构中如果出现独立墙肢,会给施工增加难度。在工程设计中,可以通过合并洞口,科学布置剪力墙的方式来消除独立墙肢,施工难度可以降低。 3.关于剪力墙结构整体刚度 剪力墙结构刚度很大,一般来说周期较短,相应地震力较大,如果剪力墙结构刚度过大,不仅材料消耗多不经济,而且因为地震效应比较高,连梁超筋、墙肢以及截面无法满足抗剪力的标准,会增大截面设计的难度,所以,对剪力墙结构的整体刚度需要通过合理计算和

框架、框剪、框支的区别

框架-剪力墙结构也称框剪结构,这种结构是在框架结构中布置一定数量的剪力墙,构成灵活自由的使用空间,满足不同建筑功能的要求,同样又有足够的剪力墙,有相当大的刚度,框剪结构的受力特点,是由框架和剪力墙结构两种不同的抗侧力结构组成的新的受力形式,所以它的框架不同于纯框架结构中的框架,剪力墙在框剪结构中也不同于剪力墙结构中的剪力墙。因为,在下部楼层,剪力墙的位移较小,它拉着框架按弯曲型曲线变形,剪力墙承受大部分水平力,上部楼层则相反,剪力墙位移越来越大,有外侧的趋势,而框架则有内收的趋势,框架拉剪力墙按剪切型曲线变形,框架除了负担外荷载产生的水平力外,还额外负担了把剪力拉回来的附加水平力,剪力墙不但不承受荷载产生的水平力,还因为给框架一个附加水平力而承受负剪力,所以,上部楼层即使外荷载产生的楼层剪力很小,框架中也出现相当大的剪力。 框支剪力墙是指在框架剪力墙结构(在转换层的位置)上部布置剪力墙体系.部分剪力墙应落地. 一般多用于下部要求大开间,上部住宅、酒店且房间内不能出现柱角的综合高层房屋。 框支-剪力墙结构抗震性能差,造价高,应尽量避免采用。但它能满足现代建筑不同功能组合的需要,有时结构设计又不可避免此种结构型式,对此应采取措施积极改善其抗震性能,尽可能减少材料消耗,以降低工程造价。 剪力墙结构

目录 编辑本段 剪力墙结构(shearwall structure)是用钢筋混凝土墙板来代替框架结构中的梁柱,能承担各类荷载引起的内力,并能有效控制结构的水平力,这种用钢筋混凝土墙板来承受竖向和水平力的结构称为剪力墙结构。这种结构在高层房屋中被大量运用,所以,购房户大可不必为其专业术语所蒙蔽。 编辑本段 原理 剪力墙结构。钢筋混凝土的墙体构成的承重体系。剪力墙结构指的是竖向的钢筋凝土墙板,水平方向仍然是钢筋混凝土的大楼板搭载墙上,这样构成的一个体系,叫剪力墙结构。为什么叫剪力墙结构,其实楼越高,风荷载对它的推动越大,那么风的推动叫水平方向的推动,如房子,下面的是有约束的,上面的风一

高层建筑工程的框支剪力墙结构设计

高层建筑工程的框支剪力墙结构设计 发表时间:2019-06-26T10:49:24.790Z 来源:《防护工程》2019年第6期作者:樊越 [导读] 本文对高层建筑工程的框支剪力墙结构进行设计上的解析,采用分析建筑实例的方式增加结构设计的论述合理性。 方舟国际设计有限公司 摘要:本文对高层建筑工程的框支剪力墙结构进行设计上的解析,采用分析建筑实例的方式增加结构设计的论述合理性。其次对框支剪力墙的设计以及措施要点进行重点论述,主要集中在各项设计指标的规格确定上。最后解析了结构上的措施落实方法与相关要求,仅供专业人士的参考与借鉴。 关键词:高层建筑;框支剪力墙;结构设计 我国经济社会的不断发展,让建筑行业的建设水平要求不断增长。因此为了让这些要求得到更为良好的满足,建筑结构上设计方法应得到更为实际的优化,或是依据建设工程的实际情况对采用的设计方式进行甄选。当前建筑行业中经常出现现象是上下空间布置上的转换,与常规的建筑结构设计存在较大不同,因此延伸出了结构转换层的设计。 1 工程概况介绍 某高层建筑工程的建筑面积大概为 25000m2,建筑高度为 93m 左右,共 30 层,其中地下 2 层,地上 28 层。地下每层 4m,地上 1~3层是作为商业建筑,高度为 4.1m,其余为住宅建筑,高度为每层 3m。为能够同时商业区和住宅区的要求,采用的是部分框支剪力墙结构,在三层的顶部使用的是梁板式转换构件来进行非落地式剪力墙内力的传递。此处的抗震设防烈度是Ⅵ度第一组,拟建Ⅱ类场地,特征周期是 0.35s,基本地震加速度 0.05g。根据相关规定的要求:框支梁抗震等级一级,框支柱的抗震等级为一级,非底部加强区剪力墙的抗震等级三级,底部加强区剪力墙抗震等级一级。其中,底部加强区的范围是地下室的地板到转换层上两层。 2 结构的概念设计以及布置 2.1确定结构相关指数规格 在此项工程中,地下室的顶板的厚度是 200mm,使用的是双层双向的配筋,对于每层每个方向的配筋率控制在 0.25%以上。因为此工程中地下室整体的刚度在相邻的上部楼层刚度的两倍以上,达到了其作为上部结构的嵌固位置的要求。另外,为加强地下室顶板的刚度,所采用的是现浇梁板的结构,转换层使用梁板式结构,厚度为 200mm,每层每方向的配筋率在 0.25%以上。在楼板里的钢筋需要锚固在墙体活着边梁里。筒体外围的楼板和落地式的剪力墙应该减少开洞数量,在比较大的洞口和楼板的边缘都应该设置边梁,此处边梁的截面应该至少为板厚的两倍,全截面的纵向的钢筋的配筋率应该在 1.0%以上。除此之外,以转换层为标准,其上下两层的楼板也都应该进行加强处理,大概板厚 150mm,且为双层双向配筋。 2.2 确定转换层的措施力度 带转换层的结构比较复杂,因此在此采用的是梁板式的转换构件,其传力途径和受力都比较明确。转换层的楼板厚度取 200mm。每层每方向的配筋率在 0.25%以上以提高达到非落地式剪力墙的内力传递的可靠性的目的和效果。相关规定显示,楼层的侧向刚度和等效侧向刚度二者共同决定了转换层的上下刚度比。其楼层的侧向刚度应比相邻的上部楼层的此项数值的 60% 还要大。此数值若是太小,那么转换层的上层的墙体比较容易被破坏;若是太大,则转换层形成薄弱层的概率就会增大很多。其等效侧向刚度最好无限的趋向于1。 3建筑工程之中设计剪力墙结构中应该关注的重点 3.1合理设计剪重比 在抗震设计比中,剪重比是一个非常重要的参数,在高层建筑框支剪力墙结构的设计中更是如此。剪重比是否合理、规范,对剪力墙来说具有十分重要的意义。如果剪力墙结构的设计周期比较长,它将会受到地面位移及加速度变化的破坏,而传统的振型分解法又难以作出准确的计算。由于地震影响系数往往波动很大而且下降较快,在长期的作用下给选值增加了难度,由此计算出来的结构效应可能不符合实际情况。因此,在建筑框支剪力墙结构设计中,必须要与各楼层水平地震力确定其最小值,满足了该最小值才能符合安全方面的要求。如果满足不了,则应进行及时的调整。 3.2刚重比设计 刚重比设计与剪力墙结构的整体稳定性息息相关,刚重比是结构刚度与重力荷载之比,也是重力二阶效的主要参数。在建筑框支剪力墙结构设计中必须要重视刚重比的设计,使其满足建筑结构设计的相关要求。如果出现设计不合格的情况,有可能会引起结构失稳甚至倒塌。此外,在计算建筑框支剪力墙结构的时候应符合相关规定,结合工程实际对每层刚重比进行设计。 4结构计算和分析 计算环节开始之前,应对框支剪力墙结构设计上的相关指数要求进行了解,然后再依据建筑的实际状况对部分框支剪力墙的机构内力进行设计,首先是将一级框的支柱地震作用产生乘以1.5倍系数,然后将一级框支柱的上部与底层柱的剪力与弯矩设计值乘1.1倍系数;与转换层相连接的一级框支柱上部与底层柱的下截面弯矩组合数值乘1.5倍系数;框支和框架的地震倾覆力矩应设置应低于总构造承受的二分之一。 为了保障楼层之间的稳定性,应在每个楼层都设置10根或是10根以上的楼层框支柱,转换层数量超过2层时,每一层的框支柱剪力应为结构基底与剪力的30%,一级落地的剪力墙底部加强区弯矩设计数值应得到专业人士的注意,应是墙底截面地震作用组合的弯矩数值的1.5倍。 此次工程的结构分析软件使用的是PMSAP2 和 SATWE,先计算建筑的整体内力位移,然后对受力情况较为复杂的转换梁进行无限元应力进行分析,校正核算配筋的使用数量。其次是进行一系列的计算与校验,让结构中的弹性时程结果得到分析,发现楼层的位移曲线平缓且没有发现突变问题,也就是说整体结构较为稳固,不存在薄弱的地方。此工程对于抗侧移的刚度方法使用正确,并且较为有效。 5加强结构抗震措施 高层建筑中的转换层构成都较为复杂,因此为了加强转换层的稳定性,针对关键部位,专业技术人士都会采用一些技术措施进行加强处理。底部的加强层与相邻的上层设约束边缘的构件等部位应得到严格的箍筋、拉筋、纵筋控制,同时让这些节点的最小配筋率可以达到

框支梁 框支柱 框支剪力墙 关于楼活荷载值

框支梁 因为建筑功能的要求,下部大空间,上部部分竖向构件不能直接连续贯通落地,而通过水平转换结构与下部竖向构件连接。当布置的转换梁支撑上部的结构为剪力墙的时候,转换梁叫框支梁。 框支柱 框支柱的由来:因为建筑功能要求,下部大空间,上部部分竖向构件不能直接连续贯通落地,而通过水平转换结构与下部竖向构件连接,当布置的转换梁支撑上部的剪力墙的时候,转换梁叫框支梁,框支柱就是支撑框支梁的. 框支剪力墙结构 框支剪力墙是指在框架剪力墙结构(在转换层的位置)上部布置剪力墙体系.部分剪力墙应落地. 一般多用于下部要求大开间,上部住宅、酒店且房间内不能出现柱角的综合高层房屋。 框支-剪力墙结构抗震性能差,造价高,应尽量避免采用。但它能满足现代建筑不同功能组合的需要,有时结构设计又不可避免此种结构型式,对此应采取措施积极改善其抗震性能,尽可能减少材料消耗,以降低工程造价。 框支结构,是指结构中较多的竖向抗侧力构件(如砼墙、柱等),因为建筑方面的要求,不能落地,或者在竖向不连续,这就需要通过转换构件来把竖向力转换为水平力并向下传递。转换构件较多的是采用转换梁,上部的柱、墙直接落于转换梁上,从而形成底部的大空间。这种结构就是框支结构,这种梁就是框支梁。框支梁两端支撑于下部的柱上,下部的柱就叫框支柱。 框支剪力墙指的是结构中的局部,部分剪力墙因建筑要求不能落地,直接落在下层框架梁上,再由框架梁将荷载传至框架柱上,这样的梁就叫框支梁,柱就叫框支柱,上面的墙就叫框支剪力墙。这是一个局部的概念,因为结构中一般只有部分剪力墙会是框支剪力墙,大部分剪力墙一般都会落地的。 向阳律师回复:剪力墙结构是用钢筋混凝土墙板来代替框架结构中的梁柱,能承担各类荷载引起的内力,并能有效控制结构的水平力,这种用钢筋混凝土墙板来承受竖向和水平力的结构称为剪力墙结构。框架结构住宅是指以钢筋混凝土浇捣成承重梁柱,再用预制的加气混凝土、膨胀珍珠岩、浮石、蛭石等轻质板材隔墙分户装配而成的住宅。 当布置的转换梁支撑上部的结构为剪力墙的时候,转换梁叫框支梁,支撑框支梁的就是框支柱。一般来讲,当上部结构中有些墙(柱)不能落地时,需要用一定的结构构件来支承上部的墙(柱),如果这个构件用的是“梁”,那么这根梁就是框支梁(有些书上将支承上部柱的梁称为转换梁,道理是一样的);而支承这些转换构件的柱就是框支柱。这种结构体系就称为部分框支剪力墙结构。至于怎么算的话,和一般的梁的算法应该没有区别,就是根据荷载

高层剪力墙结构优化设计分析 (2)

高层剪力墙结构优化设计分析 摘要:只有科学合理的剪力墙结构体系才可以有效保证高层建筑的经济性能与结构安全性能,因此结构设计人员应当根据相关规范的要求和建设单位的需要,来对其高层结构体系进行合理的选择与优化。从结构上来说,高层剪力墙结构钢筋用量较少,整体性较强,结构刚度也较大,经济性也较好。而在高层剪力墙结构优化设计过程中,其整个剪力墙结构体系布置以及调整的过程归根到底就是一个逐渐优化的过程,因为只有当遵循周边均匀对称的设计原则将高层剪力墙结构体系的刚度及位移控制在最为合理的范围内,才能使其整个结构体系发挥出最大的功效。本文针对高层剪力墙结构的优化设计进行了一定的分析和探讨。 关键词: 高层建筑;剪力墙结构;优化设计 一、引言: 随着近年来我国国民经济的显著进步以及城市化建设的飞速发展,特别是高层建筑结构设计的技术发展及其对抗震要求的日趋关注,高层剪力墙结构在高层建筑中的应用已经越来越广泛、越来越普及。与传统的框架结构相比较而言,高层剪力墙结构显得更为通透、宽敞,其不但能够有效提高使用面积,而且使得建筑的使用功能得到优化,同时也可以给业主的装修与自行改造提供一定的灵活性。而从结构上来说,高层剪力墙结构钢筋用量较少,整体性较强,结构刚度也较大,另外还可以在宾馆与住宅等居住型的高层建筑中,通过设计分隔墙来将客房与居室分为小间,从而使得部分承重墙与分隔墙能够在优化配置过程中合二为一,所以相对而言经济性也比较高。本文针对高层剪力墙结构的优化设计进行了一定的分析和探讨。 二、高层剪力墙结构优化设计分析 1、高层剪力墙结构的抗震优化设计 根据相关机构对我国历史上的地震记录进行分析研究后表明,之所以高层剪力墙结构会在地震中出现严重的破坏,究其根本原因就在于高层剪力墙结构的底层刚度与上部刚度之间的差距往往太过于悬殊,一旦当地震作用集中在其底层时,就会导致底层出现极其突出而明显的弹塑性集中变形。因此对于高层剪力墙结构而言,底层刚度与上部刚度之比必须要进行严格的控制,这是最为关键的一点。另外,由于不同地区的抗震设防烈度也不尽相同,因此在高层剪力墙结构设

框支剪力墙优缺点分析

某高层建筑结构优缺点分析 摘要:针对某项目的一栋框支剪力墙结构的单体建筑进行结构分析,主要通过对结构层转换和提高结构的抗扭承载力及采用空间有限元法和时程分析计算手段的描述,阐述了框支剪力墙这样一种结构的适用范围和优缺点。 关键词:框支剪力墙;刚度变化;结构转换;扭转效应 1.工程概况 我所选择的工程项目位于长沙市雨花区,由7栋高层组成,地下有两个相互连通的一层地下室。其中1号栋地上27层,地下1层,由A、B、C三个单体组成,单体之间设260mm宽的缝彼此脱开。针对其中的B座的结构进行具体的分析。 2.上部结构设计 该工程上部结构具体设计指标如下: 工程抗震设防烈度为6度,设计基本地震加速度值为0.05g,设计地震分组为第一组,场地土的类型为中硬场地土,建筑场地类别为(类,设计地震特征周期值为0.35S。B座为框支剪力墙结构。框支框架抗震等级为二级,底部加强部位剪力墙抗震等级为二级,非底部加强部位剪力墙抗震等级为三级。 B座上部剪力墙不允许落地,为实现底层用作商店或停车场而需要的大空间,因而采用底层为框架的剪力墙结构,即框支剪力墙体系。这种体系刚度比全剪力墙体系差,比框架-剪力墙墙体系好。 这种体系既有框架结构布置灵活、使用方便的特点,又有较好的抗侧能力,在实际工程中应用较为广泛。在整个体系中,框-剪同时存在,剪力墙负担大部分的水平荷载,而框架则以负担竖向荷载为主,两者共同受力、合理分工,各尽所能。 由于框支剪力墙体系结构中的局部,部分剪力墙因建筑要求不能落地,直接落在下层框架梁上,再由框架梁将荷载传至框支梁、框支柱上。这样的做法通常是通过设置转换层来实现的。

2.1结构转换 由于该类型结构由于竖向构件不连续,结构竖向刚度会产生变化。转换层上部的刚度大于下部的刚度,转换层上下楼层构件内力、位移容易发生突变,转换层位置较高时,内力和位移的突变更剧烈,并易形成薄弱层。有核心筒的框支短肢剪力墙结构由于上部墙肢较短,侧向刚度较小,上部结构较柔,使转换层上、下的刚度比较普通的框支剪力墙结构更容易控制,只要适当加大落地剪力墙厚度和提高下部大空间层的混凝土强度等级,上下层刚度比就很接近1了,因而这种结构体系的抗震性能优于普通的框支。 该工程层3以上为剪力墙小户型住宅,层1、2为商业、娱乐用房,需要较大开间及空间,上部的短肢剪力墙无法落地,因此存在结构转换问题。针对工程实际情况,并考虑到造价的因素,在转换层设置转换大梁,以承托上部短肢剪力墙。由于转换梁承托着上部24层的剪力墙,受力很大,因此需要很大的截面和配筋,即需要转换层下层有较大的层高。 按照抗震规范表3.4.2-2对于侧向刚度不规则的定义,尽量使层2与层3的侧向刚度比大于70%。经与建筑专业人员协商,在转换层以下部分山墙两端及房间开间两侧设置剪力墙,加大房屋的整体刚度及抗扭刚度。同时转换层以下不设管道层,在3米标高处设置管道通廊,将设备管道由此引出室外,从而将转换层下层的层高由5.4米降到4.8米。经过计算,满足了侧向刚度规则的要求,该转换层结构方案传力途径明确,受力状况相对简单,对框支构件另采用平面有限元的程序进行单独分析,并与总体计算结果对比,以保证关键构体的抗震安全。值得注意的是,转换层大梁不是框支梁。框支梁上部承托完整的剪力墙需满足高规规定的条件,框支梁整截面受拉。转换梁和普通梁一样单面受压或受拉,在构造要求上与框支梁不同。高规对框支梁的构造有非常详细的要求,对转换梁的规定很少。结合以往的工程经验,转换梁在满足框支梁混凝土强度等级、开洞构造要求、纵向钢筋、箍筋构造要求以外,还需要满足已下两点。 (1)转换梁断面宜由剪压比控制计算确定,以避免脆性破坏和具有合适的含箍率,适宜剪压比限值在有地震作用组合时,不大于0.15。 (2)转换梁腰筋构造以梁高中点为分界,下部腰筋间距100,上部腰筋间距200,直径不小于18。

剪力墙设计的几个问题(二)

剪力墙设计的几个问题(二) 剪力墙设计的几个问题(二) (续接) 4.规范标准之间矛盾问题举例 ①.GB50011-2001第6.4.7条规定暗柱截面长度仅需满足bw及≥400mm,不要求满足lc/2,在翼墙(柱)中只要求满足壁柱≥300mm,不受墙厚bw的限制,而与“砼规”的要求矛盾。笔者认为“抗规”GN50011的规定比较合理;实际工程中按现行规范要求需要设暗柱之处绝大部位为对门窗洞口边缘的加强,其墙肢属于联肢墙,非一字型矩形墙体,联肢墙连梁起耗散地震能量作用,受力状况和延性较好,在整体受力时当洞口较小时,往往墙体显槽形截面,因此在剪力墙结构中除设置角窗处外,暗柱截面尺寸不必过大;而翼墙(柱)处实际上只是建筑横墙肢的端边缘,不属纵墙肢的端边缘,在纵向水平力作用下,纵向墙法向应力呈线性分布,纵墙肢受力似同偏压柱;横纵交点处刚度,约束性能好,因此对于翼墙(柱)的截面取值也没必要过大;截面过大的暗柱和翼柱往往还容易形成连在一起,造成纵墙竖向配筋增加过多。但转角墙

(柱)则是剪力墙很重要的部位,必须严格遵守规范的规定。 ②.构造边缘构件虽然“抗规”、“砼规”和“高规”都规定了配筋要求,但比较三本标准所给出的配筋要求的表格中的内容则是矛盾的,是不协调的;笔者认为“砼规”GB50010-2002表11.7.16的要求比较合理。而“抗规”和“高规”表中的配筋要求是不够合理或是不够严密的。还应指出三本规范中所给出的纵向构造筋的数量4根或6根是不实际的;例如对于转角墙(柱)的纵向筋数量,由于墙纵向筋的间距不宜大于300,又受墙厚限制,角柱的最小的纵向筋应为8根,当墙厚≥300时则最少需要12根,不会出现4根或6根的情况。 三.剪力墙结构的厚度和配筋问题 1.根据抗震规范6.1.2条规定,8度地震区剪力墙结构的抗震等级至少应为二级;按6.4.1条要求剪力墙底部加强部位墙厚一、二级抗震等级时不宜小于200mm,且不小于层高的1/16,其他部位不小于160mm,当墙端头无翼墙或暗柱时不应小于层高的1/12。以上规定目的是为防止因墙体平面外刚度过小,稳定性差,容易在偏心荷载作用下压屈失稳,但这些规定对于八度地震区的多层及低高层剪力墙结构显得不够合理。例如5~15层的剪力墙结构,一般墙肢在重力荷载代表值作用下轴压比都小于0. 2,电算结果墙体往往只需要构造配筋,但只因底部功能要求3.9m层高,墙厚就得2 40mm,若业主要求室内视野开阔,不设外纵墙,横墙朝外端头不允许带翼墙或端柱时,当层高3>5~4.2m时,则墙厚需要320~350mm,显然不合理。所以像这样的特殊情况的低多层建筑不应要求死扣规范,而通过采用概念设计分析,控制墙肢轴压比,进行墙体截面条件、强度和稳定性验算并在构造上适当加强暗柱或配筋,保证其整体性连接等措施,是可以使墙厚减小的。 2.墙体的配筋率,目前在“砼规”11.7.11条文强制规定在一、二、三级抗震等级

剪力墙结构设计计算要点和实例

剪力墙计算 第5章剪力墙结构设计 本章主要内容: 5.1概述 结构布置 剪力墙的分类 剪力墙的分析方法 5.2整体剪力墙和整体小开口剪力墙的计算 整体剪力墙的计算 整体小开口剪力墙的计算 5.3联肢剪力墙的计算 双肢剪力墙的计算 多肢墙的计算 5.4壁式框架的计算 计算简图 内力计算 位移的计算 5.5剪力墙结构的分类 按整体参数分类 按剪力墙墙肢惯性矩的比值 剪力墙类别的判定 5.6剪力墙截面的设计 墙肢正截面抗弯承载力 墙肢斜截面抗剪承载力 施工缝的抗滑移验算 5.7剪力墙轴压比限制及边缘构建配筋要求 5.8短肢剪力墙的设计要求 5.9剪力墙设计构造要求 5.10连梁截面设计及配筋构造 连梁的配筋计算 连梁的配筋构造 5.1概述 一、概述 1、利用建筑物的墙体作为竖向承重和抵抗侧力的结构,称为剪力墙结构体系。墙体同时也作为维护及房间分隔构件。 2、剪力墙的间距受楼板构件跨度的限制,一般为3~8m。因而剪力墙结构适用于要求小房间的住宅、旅馆等建筑,此时可省去大量砌筑填充墙的工序及材料,如果采用滑升模板及大模板等先进的施工方法,施工速度很快。 3、剪力墙沿竖向应贯通建筑物全高,墙厚在高度方向可以逐步减少,但要注意

避免突然减少很多。剪力墙厚度不应小于楼层高度的1/25及160mm。 4、现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平力作用下侧向变形很小。墙体截面面积大,承载力要求也比较容易满足,剪力墙的抗震性能也较好。因此,它适宜于建造高层建筑,在10~50层范围内都适用,目前我国10~30 层的高层公寓式住宅大多采用这种体系。 5、剪力墙结构的缺点和局限性也是很明显的,主要是剪力墙间距太小,平面布置不灵活,不适应于建造公共建筑,结构自重较大。 6、为了减轻自重和充分利用剪力墙的承载力和刚度,剪力墙的间距要尽可能做大些,如做成6m左右。 7、剪力墙上常因开门开窗、穿越管线而需要开有洞口,这时应尽量使洞口上下对齐、布置规则,洞与洞之间、洞到墙边的距离不能太小。 8、因为地震对建筑物的作用方向是任意的,因此,在建筑物的从纵横两个方向都应布置剪力墙,且各榀剪力墙应尽量拉通对直。 9、在竖向,剪力墙应伸至基础,直至地下室底板,避免在竖向出现结构刚度突变。但有时,这一点往往与建筑要求相矛盾。例如在沿街布置的高层建筑中,一般要求在建筑物的底层或底部若干层布置商店,这就要求在建筑物底部取消部分隔墙以形成大空间,这时也可将部分剪力墙落地、部分剪力墙在底部改为框架,即成为框支剪力墙结构,也称为底部大空间剪力墙结构。 10、当把墙的底层做成框架柱时,称为框支剪力墙,底层柱的刚度小,形成上下刚度突变,在地震作用下底层柱会产生很大的内力和塑性变形,致使结构破坏。因此,在地震区不允许单独采用这种框支剪力墙结构。 11、剪力墙的开洞:在剪力墙上往往需要开门窗或设备所需的孔洞,当洞口沿竖向成列布置时,根据洞口的分布和大小的不同,在结构上就有实体剪力墙、整体小开口剪力墙、联肢剪力墙、壁式框架等。

高层建筑框支剪力墙结构设计

高层建筑框支剪力墙结构设计探讨摘要:剪力墙结构作为高层建筑中的主要结构形式,被广泛运用于现代高层建筑领域。本文作者结合工程实例,主要针对高层建筑框支剪力墙结构设计中的结构布置、计算调整、分析模型与设计计算等进行了分析。 关键词:高层建筑;框剪结构;抗震设计 abstract: the shear wall structure as the main structure form in tall buildings, is widely used in modern high-rise building fields. in this paper the author combined with engineering examples, and the major in high-rise building with frame shear wall structure design of the structural layout, calculation and adjustment, and model and design calculation is analyzed. keywords: high building; box shear structure; seismic design 中图分类号:tu97 文献标识码:a文章编号: 目前,一些框支剪力墙结构由于底部几层有较大的空间,能适用于各种建筑的使用功能要求。主要广泛应用于底层为商店、餐厅、车库、机房,上部为住宅、公寓、饭店、综合楼等高层建筑。但是,这种结构在受力上也有明显的缺点:传力不直接,结构竖向刚度变化很大,甚至是突变,地震作用下易形成结构薄弱层,加上构造复

特一级框支剪力墙结构项目总结

第一次做抗震特一级的部分框支剪力墙结构,写些心得体会。 一,模型的建立 1 首先要做一个带墙、柱、梁板混凝土等级的层高表。思路要清晰。 2 标准层剪力墙的建立灰常重要,在前期一定要和框支层的链接结合好,避免在框支梁上建立较短的墙,形成集中力,和剪力墙落下靠近硬支座而形成连梁开洞的情况。避免不了这样的情况会出现框支层上层剪力墙轴压比超限和剪力墙超筋现象。主要是转换部位水平刚度突变,导致地震力突变,竖向刚度突变,剪力墙内力也突变。 3. 针对这一现象可以如下方法解决: 适当加大框支梁和框支柱的刚度。 尽量避免较近剪力墙一个落在硬支座,一个落在软支座(梁跨中)上,避免不了时加大两片墙的距离。 剪力墙尽量和梁柱中心线对齐 缩短剪力墙的长度,使其全部落在墙柱上或转换梁上,减少相对变形。 4.模型用剪弯刚度计算,当底部大空间层数大于1层时,其转换层上部与下部结构的等效侧向刚度比(见高规151页)宜接近于1,不应大于1.3. 二,计算与画图 1主要是特一级构造配筋率的问题: 框架柱应符合下列要求: 1)宜采用型钢混凝土柱或钢管混凝土柱; 2)柱端弯矩增大系数ηc、柱端剪力增大系数ηvc应增大20%; 3)钢筋混凝土柱柱端加密区最小配箍特征值λv应按本规程表6.4.7数值增大0.02采用;全部纵向钢筋最小构造配筋百分率,中、边柱取1.4%,角柱取1.6%。 2 框架梁应符合下列要求: 1)梁端剪力增大系数ηvb应增大20%; 2)梁端加密区箍筋构造最小配箍率应增大10%。 3 框支柱应符合下列要求: 1)宜采用型钢混凝土柱或钢管混凝土柱; 2)底层柱下端及与转换层相连的柱上端的弯矩增大系数取1.8,其余层柱端弯矩增大系数ηc应增大20%;柱端剪力增大系数ηvc应增大20%;地震作用产生的柱轴力增大系数取1.8,但计算柱轴压比时可不计该项增大; 3)钢筋混凝土柱柱端加密区最小配箍特征值λv应按本规程表6.4.7的数值增大0.03采用,且箍筋体积配箍率不应小于1.6%;全部纵向钢筋最小构造配筋百分率取1.6%。 2剪力墙:1)底部加强部位及其上一层的弯矩设计值应按墙底截面组合弯矩计算值的 1.1倍采用,其他部位可按墙肢组合弯矩计算值的1.3倍采用;底部加强部位的剪力设 计值,应按考虑地震作用组合的剪力计算值的1.9倍采用,其他部位的剪力设计值,应按考虑地震作用组合的剪力计算值的1.2倍采用; 2)一般部位的水平和竖向分布钢筋最小配筋率应取为0.35%,底部加强部位的水平

高层住宅剪力墙结构设计要点

高层住宅剪力墙结构设计要点 高层住宅剪力墙结构设计要点 摘要:本文简单介绍了高层剪力墙结构布置、短肢剪力墙、剪力墙约束边缘构件和连梁的设计,结合工程实践,总结出一些剪力墙结构的设计要点。 关键词:高层剪力墙结构布置短肢剪力墙设计要求 中图分类号:TU318文献标识码: A 引言 随着城市土地资源的紧缺,高层住宅正在大规模兴建。剪力墙结构具有室内空间合理、墙面平整、美观实用的特点,且剪力墙结构刚度大,整体性好,用钢量较省,能有效地减少侧移,具有较好的抗震性能,而被广泛使用。 剪力墙平面布置 在高层建筑中剪力墙布置是否合理,直接影响着房屋的抗震性能。所以在结构设计中剪力墙最好沿主轴方向或其他方向进行双向布置,尽量避免单向布置,增强房屋在两个方向上的抗侧刚度。剪力墙的平面布置应本着尽可能均匀、对称的原则,尽量使墙面结构的刚度中心和质量中心完全重合,从而减少扭矩。内外剪力墙应尽量拉通、对直。剪力墙肢截面宜简单、规则。剪力墙的抗侧力刚度不宜过大。为充分发挥剪力墙的抗侧力刚度和承载能力,增大剪力墙可利用空间,剪力墙的间距不宜太密,使结构具有适宜的侧向刚度。判断结构侧向刚度与剪力墙数量的适应程度,可以选用经验公式 T=(0.05~0.06)n,其中n为结构层数。公式计算出来的T1值与建模计算的周期T2相比较.TI>T2则表示剪力墙偏多,可适当减少剪力墙数或开些适合的大洞来减小墙的刚度,反之则需要增加剪力墙数量。 2.剪力墙竖向刚度应均匀 在竖向,剪力墙宜自下到上连续布置,避免刚度突变,对于建筑功能等原因造成的竖向不连续,导致了刚度突变等问题,可以通过加

厚墙体和提高砼等级的方法,使结构在竖向上刚度趋于均匀。 3.墙肢的高宽比例应合理 剪力墙的结构必须具备延展性,优化高宽比例能够使房屋在地震中的延性得到提升。剪力墙的高宽比例最好是大于2,如果剪力墙的长度太大影响了剪力墙在抗震中的延展性,则应当在合适的位置开设洞口使长度减小。同时,要注意墙体间是否形成均匀的独立墙段。 短肢剪力墙的合理使用 A短肢剪力墙的应用范围 高层结构设计时,全部采用短肢剪力墙的设计是不科学的,因为它的抗震性能很差,对高层建筑的安全性无法保障。所以,在设计时通常把一般剪力墙和短肢剪力墙进行结合,且其所占比例不能过多。即使设计有较多短肢剪力墙的情况下,也要对短肢剪力墙结构的高度进行适当的降低。对于不同高度和抗震级别的高层建筑,应当根据其高度和地震级别进行选择。 B加强短肢剪力墙的相关措施 (1)短肢剪力墙的优点在于有一定的延性,在抗震中起着很大的作用,但其承受力没有一般剪力墙和筒体强。所以,在设计时应当考虑到它的不足,从而在设计当中提高其抗震等级(比一般剪力墙或筒体高出一个等级)。 (2)普通剪力墙在重力荷载的作用下,产生的轴压比,当针对一、二、三级抗震能力设计时,其轴压比不能大于0.4至0.6。因此,对于短肢剪力墙的设计应当比一般剪力墙的轴压值至少降低0.05。 (3)对短肢剪力墙布置钢筋问题上,应该在纵向上对钢筋的分量进行提高,尤其在底部的钢筋数量不能低于1.2%,而在底部之外的部分则不低于1%。 (4)在剪力值的要求中,出于对短肢剪力墙性能的考虑,应当在其底部进行一定的加强,同时对底部以外的部分进行相应的调整,并增大抗震的系数。其目的在于增强短肢剪力墙的抗损坏性。 (5)在短肢剪力墙的厚度方面,一般情况下要求其厚度不能低于200毫米。在非抗震性房屋建造时,应当对房屋的高度进行控制,并且加大墙肢的厚度。

相关主题