搜档网
当前位置:搜档网 › 省考行测排列组合解题技巧

省考行测排列组合解题技巧

省考行测排列组合解题技巧
省考行测排列组合解题技巧

2014年省考行测排列组合解题技巧

华图教育中心杜志英

排列组合一直是各类公务员考试、事业单位考的热点、难点,近年的考题也是变化多端,那么针对排列组合的复习就变得尤为重要,华图教研中心就排列组合考生常出现的错误进行研究发现,考生容易混淆排列组合的概念,本讲就排列组合的概念进行小小的总结,希望可以帮助到广大考生判别排列组合题型。

排列:与顺序有关,如果在题目中发现题干的情况是与顺序有关的,那么这类题目肯定是排列问题,比如:从5个人里面选取2个人进行排队,那么前面是高的,后面是矮的,与前面是矮的,后面是高的是两组不同的站队方式。

组合:与顺序是无关,如果题目中发现不同的情况之中有两种或者是多种讲的或者是做的是同一件

事情,此时它与顺序时候无关的,属于组合问题。比如:从5个人里面选出2个人去干活,这个时候选出的是AB 两人,那么先选出A ,在选出B ;与先选出B ,在选出A ,这两种情况是完全一样的,要看成一种情况,这就是组合问题。

【例1】甲、乙、丙三个人到旅店住店,旅店里只有三个房间,恰好每个房间住一个人,问一共有( )

住法。

A.5

B.6

C.7

D.8 【解析】旅店的房间是有编号的,是三间不同的房间,需要甲乙丙三个人入住,这时好比排队一样,因为甲在第一间与乙在第一间是完全不相同的两种住法,所以住房子是与顺序有关的问题,属于排列问题,那么3个人进行排队633A 种,选择 B

【例2】某铁路线上有

25个大小车站,那么应该为这条路线准备( )种不同的车票。A.625

B.600

C.300

D.450

【解析】任意的两个车站就可以组成

1张票是本题的前提,需要注意的是如果是AB 两地,从A 地到B 地是一张车票,那么从

B 地到A 地是另一张车票,车票是与顺序有关,那么是排列问题,所以由600225A ,选择 B

【例3】参加会议的人两两都彼此握手,有人统计共握手

36次,到会共有( )人。A.9 B.10

C.11

D.12

【解析】看两次情况一不一样,甲乙握与乙甲握是完全一样的,都属于

36次里面的,是与顺序完全无关,属于组合问题,所以

362n C ,直接代入选择 A 【例4】在一条线段中间另有

6个点,则这8个点可以构成多少条线段?( ) A.15

B.21

C.28

D.36

【解析】线段是有两个顶点,这两个顶点不管谁在前谁在后都是这条线段,那么与顺序是无关的,所以由2828C ,选择 C

总结:对于排列组合问题,要判定是否与顺序有关,判定的方式是:看两次发生的情况是否完全一致,一致的就是组合,不一致就是组合。

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

公务员行测答题技巧大全(省考必看)

[经验]公务员行测答题技巧大全(省考必看) 公务员考试中做行测题没有行测答题技巧是不行的,那么短的时间内把每一道完完整整进行思考很难行得通,掌握一定技巧就很关键,相信通过一段时间的积累,在公务员考试中,你就是王者。 今天为大家总结了公务员行测试卷中可能用到的常用答题技巧,期望为考生备考提速。公务员行测答题技巧之数学运算 1. 分析选项整体性,三奇一偶选其偶,三偶一奇选其奇。 2. 选项有升降,最大最小不必看,答案多为中间项;答案排序处在中间的两个中的一个往往是正确的选项。 3. 选项中如果有明显的整百整千的数字,先代入验证,多为正解。 4. 看到题目中存在比例关系,在选项中选择满足该比例中数字整除特性的选项为正解。 5. 一个复杂的数学计算问题,答案中尾数不同,直接应用尾数法解题即可。 6. 极值问题中,问最小在选项中多为第二小的,问最大在选项中多为第二大的(先代入验证)。 公务员行测答题技巧之选词填空 1. 注意找语境中与所填写词语相呼应的词、短语或句子。 2. 重点落在语境与所选词语的逻辑关系上,而不是选项的词语上。 3. 选项中近义词辨析方向是从范围不同角度辨析的,选择范围大的。 4. 从语意轻重角度辨析的,选项要么选最重的,要么选最轻的。 5. 成语辨析题选择晦涩难懂的成语。 公务员行测答题技巧之片段阅读 1. 选项要选积极向上的。 2. 选项是文中原话不选。 3. 选项如违反客观常识不选。 4. 选项如违反国家大政方针不选。 5. 启示、告诉、道理材料的片段阅读,不选文字内容层面的选项。 6. 启示、告诉、道理材料的片段阅读,选择激励人的选项或在精神上有触动的选项。 7. 提问方式是选标题的,选择短小精悍的选项。 8. 提问方式是“错误的”“不正确的”,要通读材料在选择选项,不能断章取义。 公务员行测答题技巧之逻辑推理 1. 数字比例与题干接近的选项要注意。 2. 定义判断题注意提问方式是属于还是不属于。 3. 定义判断若出现多定义,不提问的定义不用看。 4. 削弱型和加强型推理题题干中未提信息若出现一般为无关选项。 5. 评价型推理题正确答案一般兼顾双方。 6. 结论型推理题正确答案一般为语气较弱的选项。 7. 排除弱化项、主观项、论题偏离项,剩下往往是答案。 公务员行测答题技巧之图形推理 1. 图形本身变化不大考虑对称、旋转、平移、翻转等。 2. 图形本身变化较大考虑元素数量、叠加等。 3. 若图形复杂多变且出现怪图,重点考虑共性,如共同元素数量、位置关系等。 4. 空间型图形推理注意合理利用橡皮、小刀等工具模拟题干。 公务员行测答题技巧之数列问题

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

行测五大题型答题技巧

行测五大题型答题技巧 1、判断推理——快速定位,不纠结!(分值:约27分) 判断推理包含图形推理,定义判断,类比推理,逻辑判断四个部分。大概有40题,占题目总量的30%左右,因此重要性不言而喻。判断推理的难点在于阅读量信息量总体较大,我总结出来的解题技巧就是短时间内快速定位所考题目类型及考点,依据考察点解题思路筛选答案,不纠结于各个选项。 (1)图形推理 刚开始接触,会觉得有些图形推理杂乱无法,毫无头绪,其实梳理归类,基本考点无外乎四类: ①图形构成元素相同的,考元素平移、旋转或翻转; ②图形构成元素相似的,考叠加或遍历; ③图形构成元素看似凌乱的,考属性或数数; ④折纸盒和拆纸盒。 例题属于第一类,考查移动(位置变化)。图中只有两种元素,小圆圈和线段。小圆圈的移动规律很明显,每次都是逆时针移动两格。而线段的话,我们首先要想到它的旋转角度,但是这一题角度无规律,所以我们应该想到的是端点的移动,经过观察,线段端点(此题有两个端点,一个跟小圆相连,这里说的端点是指与小圆不想连的端点)是每次顺时针移动一格,故答案为D。 图形推理并不复杂,我们要牢记上面四个考察方向,分析规律,培养敏感 性。拿到题目的第一反应就是要分辨出它到底考察哪个方向,变化规律是怎样。 (2)定义判断 例题:瓿是古代的一种盛酒器和盛水器,亦可用于盛酱。流行于商代至战国。圆体,敛口无颈,广肩,大腹,圈足,带盖,亦有方形瓿。根据上述描述下列器具中哪一个是瓿?

例题是说明了瓿的定义,考查描述和图片的对应。我们抓住“圆体,敛口无颈,广肩,大腹,圈足,带盖”描述信息,并结合排除法。A、C均有颈,排除;D项不是广肩、大腹,排除,故答案为B。 做定义判断题,要找准关键词,对比选项,运用排除法,最优原则,选一个符合关键词最多的、相对最好的选项,无需过于纠结。 (3)类比推理 例题:左手:右手与()在内在逻辑关系上最为相似 A、黑色:白色 B、幸存者:遇难者 C、晴天:阴天 D、老人:孩子 例题中,正常人有两只手,除了左手就是右手,两个词是矛盾关系。A选项,除了黑色和白色还有黄色等等;C选项,除了阴天和晴天还有雨天等等;D选项,除了老人和孩子还有青年,这些都是反对关系。而B选项,事故中只有幸存者和遇难者,为矛盾关系,故答案为B. 做类比推理时,我们要知道它考察什么,是矛盾关系和反对关系,还是条件关系,或因果关系、成语结构、语义关系等,难点在于考察范围宽广,重点在于我们要快速定位考察要点,一击即中。 (4)逻辑判断 逻辑判断分为三种题,形式推理、分析推理和可能性推理。 形式推理考查基本的命题特点和推理规则,这种题的难点是理解这些推理规则。切莫死记硬背,因为很容易忘记、混淆,我觉得应该举生活中最常见的,自

行测排列组合例题

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)=4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。根据公式 P (3,3)=3!3216(33)!1 ??==- ( 计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r 变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P (3,2)=3!3216(32)!1 ??==- ( 计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法?

高考排列组合典型例题

高考排列组合典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

排列组合典型例题 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千 位数是“0”排列数得:)(283914 A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439 =+=-?+A A A A 个.

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

行测排列组合例题

行测排列组合例题Last revision on 21 December 2020

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)= 4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法 解答:

假设我们已经找出了两种排列方法(黄、白、蓝)和(蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。根据公式 P(3,3)= 3!321 6 (33)!1 ?? == - (计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法解答 这仍然属于排列问题,只不过r变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P(3,2)= 3!321 6 (32)!1 ?? == - (计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4黄、白、蓝三个球,任意取出两个,有几种取法 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

行测排列组合例题整理

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 !()!r n n P n r =- r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)=4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中

取出3个进行排列,所以r=3。根据公式 P (3,3)=3!3216(33)!1 ??==- ( 计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r 变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P (3,2)=3!3216(32)!1 ??==- ( 计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法? 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下 ()!!!r n n C r n r =- r n C 也可写成C (n,r )其中n 表示总共的元素个数,r 表示进行组合的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 C (5,3)=5!54321302!(53)!(21)(21) ????==-??? 另外,为便于计算,还有个公式请记住 r n r n n C C -=

省考行测答题技巧

省考行测答题技巧 20天行测81分申论75分(经验) (适合:国家公务员,各省公务员,村官,事业单位,政法干警,警察,军转干,路转税,选调生,党政公选,法检等考 试) ———知识改变命运,励志照亮人生 我是2010年10月15号报的国家公务员考试,报名之后,买了教材开始学习,在一位大学同学的指导下,大约20天时间,行测考了83.2分,申论81分,进入面试,笔试第二,面试第一,总分第二,成功录取。在这里我没有炫耀的意思,因为比我考的分数高的人还很多,远的不说,就我这单位上一起进来的,85分以上的,90分以上的都有。只是给大家一些信心,分享一下我的经验,我只是普通大学毕业,智商和大家都一样,关键是找对方法,事半功倍。 指导我的大学同学是2009年考上的,他的行测、申论、面试都过了80分,学习时间仅用了20多天而已。我也是因为看到他的成功,才决定要考公务员的。“人脉就是实力”,这句话在我这位同学和我身上又一次得到验证,他父亲的一位朋友参加过国家公务员考试命题组,这

位命题组的老师告诉他一些非常重要的建议和详细的指导,在这些建议的指导下,我同学和我仅仅准备了20天左右的时间,行测申论就都达到了80分以上。这些命题组的老师是最了解公务员考试机密的人,只是因为他们的特殊身份,都不方便出来写书或是做培训班。下面我会把这些建议分享给你,希望能够对你有所帮助。 在新员工见面会上,我又认识了23位和我同时考进来的其他职位的同事,他们的行测申论几乎都在80分以上,或是接近80分,我和他们做了详细的考试经验交流,得出了一些通用的备考方案和方法,因为只有通用的方法,才能适合于每一个人。 2010年国考成功录取后,为了进一步完善这套公务员考试方案,我又通过那位命题组的老师联系上了其他的5位参加过命题的老师和4位申论阅卷老师,进一点了解更加详细的出题机密和阅卷规则。因为申论是人工阅卷,这4位申论阅卷老师最了解申论阅卷的打分规则,他们把申论快速提高到75到80分的建议写在纸上,可能也就50页纸而已,但是,他们的建议比任何培训机构和书籍效果都好(我是说申论)。这一点我是深有体会并非常认同的。 最终我根据自己和23位80分以上同事的经验,还有6位命题老师4位申论阅卷老师给出的建议,总结出了这套国考(中央级)省考(省市县乡村级)通用学习方案。 在2011年4月份的省考和2011年11月的国考中,有1200多位考生使用这套方案,其中400多位参加国考的考生中有190多位录取,录取率48%,800多位参加省考的考生中有530多位录取,录

行测排列组合习题

错位重排问题又称伯努利-欧拉错装信封问题,是组合数学史上的一个著名问题。此问题的模型为: 编号是1、2、…、n的n封信,装入编号为1、2、…、n的n个信封,要求每封信和信封的编号不同,问有多少种装法? 对这类问题有个固定的递推公式,记n封信的错位重排数为Dn,则D1=0,D2=1, Dn=(n-1)( Dn-1+ Dn-2)。这样,就能根据这个递推公式推出所有数的错位重排,解题时又快又准 1.张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个节目,有多少种安排方法? A,20 B.12 C,6 D,4 2. 某单位今年新近3个工作人员,可以分配到3个部门,但是每个部门之多只能接收2个人,问有几种不同分配方案 A.18 B.20 C.24 D28 3.班委改选,由8人竞选班长、学习委员、生活委员、文娱委员和体育委员五种职务。最后每种职务都有一个人担当,则共有多少种结果?( ) A.120 B.40320 C.840 D.6720 4. 乒乓球比赛共有14名选手参加,先分成两组参加单循环比赛,每组7人,然后根据积分由两组的前三名再进行单循环比赛,决出冠亚军,请问共需要多少场? A.54 B.56 C.57 D.60 5. 林辉在自助餐店就餐,他准备挑选三种肉类中的一种肉类,四种蔬菜中的二种不同蔬菜,以及四种点心中的一种点心。若不考虑食物的挑选次序,则他可以有多少不同选择方法? ( ) A. 4 B. 24 C. 72 D. 144 6.从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法 A.240 B.310 C.720 D.1080 7.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( ) A280种B240种C180种 D96种 8.五人排队甲在乙前面的排法有几种? A.60 B.120 C.150 D.180 9.若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?

公务员省考答题技巧

公务员省考答题技巧 公务员省考答题技巧20天,行测83分,申论81分 (适合:国家公务员,各省公务员,村官,事业单位,政法干警,警察,军转干,路转税,选调生,党政公选,法检等考试) ———知识改变命运,励志照亮人生 我是2010年10月15号报的国家公务员考试,职位是共青团中央国际联络部的青年外事工作科员,报名之后,买了教材开始学习,在一位大学同学的指导下,大约20天时间,行测考了83.2分,申论81分,进入面试,笔试第二,面试第一,总分第二,成功录取。在这里我没有炫耀的意思,因为比我考的分数高的人还很多,远的不说,就我这单位上一起进来的,85分以上的,90分以上的都有。只是给大家一些信心,分享一下我的经验,我只是普通大学毕业,智商和大家都一样,关键是找对方法,事半功倍。 指导我的大学同学是2009年考上的,他的行测、申论、面试都过了80分,学习时间仅用了20多天而已。我也是因为看到他的成功,才决定要考公务员的。“人脉就是实力”,这句话在我这位同学和我身上又一次得到验证,他父亲的一位朋友参加过国家公务员考试命题组,这位命题组的老师告诉他一些非常重要的建议和详细的指导,在这些建议的指导下,我同学和我仅仅准备了20天左右的时间,行测申论就都达到了80分以上。这些命题组的老师是最了解公务员考试机密的人,只是因为他们的特殊身份,都不方便出来写书或是做培训班。下面我会把这些建议分享给你,希望能够对你有所帮助。 在新员工见面会上,我又认识了23位和我同时考进来的其他职位的同事,他们的行测申论几乎

都在80分以上,或是接近80分,我和他们做了详细的考试经验交流,得出了一些通用的备考方案和方法,因为只有通用的方法,才能适合于每一个人。 2010年国考成功录取后,为了进一步完善这套公务员考试方案,我又通过那位命题组的老师联系上了其他的5位参加过命题的老师和4位申论阅卷老师,进一点了解更加详细的出题机密和阅卷规则。因为申论是人工阅卷,这4位申论阅卷老师最了解申论阅卷的打分规则,他们把申论快速提高到75到80分的建议写在纸上,可能也就50页纸而已,但是,他们的建议比任何培训机构和书籍效果都好(我是说申论)。这一点我是深有体会并非常认同的。 最终我根据自己和23位80分以上同事的经验,还有6位命题老师4位申论阅卷老师给出的建议,总结出了这套国考(中央级)省考(省市县乡村级)通用学习方案。 在2011年4月份的省考和2011年11月的国考中,有1200多位考生使用这套方案,其中400多位参加国考的考生中有190多位录取,录取率48%,800多位参加省考的考生中有530多位录取,录取率67%,这样的效果,是在我的意料之中的。 下面是20天行测申论突破80分的详细方案: 在讲方案之前,我需要先和你分享4个理念,否则这些方案根本不会帮助到你: 第1个理念:你要相信你可以考上。我在家里举办的每期10个人的公务员考试培训班,他们第一次来到我家时,我问他们:“你们想考上公务员的请举手。”10个人都举手了,我又问:“一定要考上公务员,相信自己能考上的,请举手。”结果都不举手了,他们说:“考上公务员哪是那么容易的事?”各位朋友,当你在做一件事情时,你如果认为很难,甚至根本办不到,也许做了也不会有结果时,你还会不会去做?会不会付出100%的努力去做?所以,我首先要帮你建立信心,只有这样你都会付出100%的努力去学习和考试。我以我自己的经验和在家里以及网上指导过的1200多考生的经验,肯定地告诉你一个好消息!考上公务员真的不难,你完全可以考上,特别是省考,比国考要竞争小得

相关主题