搜档网
当前位置:搜档网 › 基于属性特性算法的商品推荐系统模型

基于属性特性算法的商品推荐系统模型

基于属性特性算法的商品推荐系统模型
基于属性特性算法的商品推荐系统模型

文|邱京伟

推荐系统是根据用户的兴趣爱好推荐符合用户兴趣的对象,也称为个性化推荐系统。商品推荐系统依据收集到的顾客的信息和交易记录等有关数据,查找具有某些特性的顾客与他们购买的商品间存在的关联规则,大致确定顾客喜欢的商品的种类范围,向客户推荐与客户购买的商品存在一定关联的其他商品,既为客户购买商品提供了方便,又可提高网站的销售量。近年来,随着人民生活水平的提高和网络购物的发展,各购物网站中商品的数量和种类都大大增加,为了方便顾客在海量的商品中尽快寻找到所需要的商品,可靠高效的商品推荐系统必不可少。

在粗糙集相关理论中,知识被定义为对论域的划分模式,知识具有颗粒性,称为信息粒度或知识粒度,简称粒度。由于每个粒度都带有一定的属性,这使粒度间存在相互包含的关系,而粒度存在的关联规则在其包含粒度中也同样存在,例如,当存在所有男人都喜欢篮球的时候,就可以推导出中国男人都喜欢篮球。依据粒度间属性的特性编写的算法称为属性特性算法,该算法通过组织相关包含数组等方法,避免在某个粒度的包含粒度上挖掘相同的粒关联规则,达到节省时间,提高挖掘效率的目的。

将属性特性算法应用到商品推荐系统中,其优点有:

一般顾客在超市购物时,往往不会只购买一种商品,这种现象在网络购物平台也同样存在。但是,现有推荐系统大多根据顾客搜索的关键字提供同一类型的商品。由于单个顾客面对不同商家的同一类商品时往往只会选择其中一家的商品,这样对购物网站的交易量提高幅度有限。属性特性算法基于粒计算,关注的重点是带有相同属性的粒度间存在的关联规则,因此不限制推荐商品的种类,其挖掘结果涉及多种商品,这样在给顾客更多选择的同时,有利于提高购物网站的交易数量和交易额。

传统算法虽然可以较准确地推测出某位客户感兴趣的商品,但是在大数据背景下,当数据的规模增大后,传统算法所需的时间消耗随之增加,这大大影响了系统的运行速度。属性特性算法利用某粒度存在的关联规则在其包含粒度中同样存在的特性,通过减少判断关联规则的次数的方法,提高每次比较中输出关联规则的数量,从而减少系统在运行中的时间消耗。在有关数据集的实验表明,在同等要求下,属性特性算法可以有效提高挖掘效率,有利于在数据量增加的情况下,降低系统反应时间,提升系统性能。

一、属性特性算法基本原理

在实际应用中,往往根据具体要求将信息按照所含属性的多少划分为不同的粒度,这使各个粒度间由于所含属性的多少而相互包含,例如粒度<种类:酒>就包含<种类:酒>∧<颜色:红>等粒度。

源覆盖度、目标覆盖度、源置信度和目标置信度是衡量粒关联规则强度的4个度量标准。在粒计算中,每个大小不一的粒度都带有一定数量的属性和属性值,这些属性和属性值使部分粒度存在着一定的包含关系。当源覆盖度为100%,而目标覆盖度也为100%的时候,称为完全匹配。在完全匹配的情况下,一个粒度与其他粒度间存在的所有关联规则,在它的所有的包含项中同样存在,例如,当100%的美国人(粒度<国籍:美国>)喜欢100%的白色商品(粒度<颜色:白>)的时候,可以得出100%的美国已婚人士(粒度<婚姻:已婚>∧<国籍:美国>)喜欢100%的白色美国产商品(粒度<颜色:白>∧<产地:美国>。

利用粒度属性的特性设计属性特性算法,将粒度的包含项放入该粒度的包含数组中,当挖掘到粒度A和粒度B建存在粒关联规则时,采用遍历的方法直接输出粒度A 的包含粒度粒度与粒度B的包含粒度间存在同样的粒关联规则,这样就节省了在其包含粒度上判断是否存在粒关联规则的时间,提高了挖掘的时间效率,具体做法如下:

56

信息化研究

个性化推荐知识汇总

一 基于协同过滤(collaborative filtering,CF)的推荐系统通过收集来自其他相似用户或项目的评价信息,自动预测当前用户的兴趣偏好。协同过滤的基本假设是用户会更喜欢那些相似用户偏爱的商品,已被广泛应用在一些大型的商业系统,如亚马逊和阿里巴巴等。 目前,协同过滤算法主要包括基于内存的、基于模型的以及二者相混合的推荐技术”。使用最多的模型是k最近邻(k-nearest neighbor,kNN)协同过滤技术,包括基于用户推荐和基于项目推荐两种技术。 一般说来,本体描述了某个应用领域的概念和概念之间的关系,使得它们具有唯一确定的含义,获得该领域的相关知识,提供对该领域知识的共同理解,便于用户和计算机之间进行交流。 OntoECRec推荐模型 二 1995年,卡内基·梅隆大学的A.RDben等人在美国人工智能协会上提出了个性化导航系统we-watcher,真正标志着个性化服务的开始;1997年3月,(communications of the AcM)。组织了个性化推荐系统的专题报道,标志着个性化服务已经被技术界高度重视;1999年,德国Dresden技术大学的J.Tania 实现了个性化电子商务原型系统TELLIM,标志着个性化服务开始向全球发展;2000年,NEc研究院的D.B.Kurt等人为搜索引擎atesecr增加了个性化推荐功能,实现citeseer的个性化。2001年,纽约大学的GediminaS Adomavicius 和Alexander Tuzhilin实现了个性化电子商务网站的用户建模系统1:1Pro。 个性化推荐服务体系结构中,信息收集模块是个性化服务系统的基础模块。用户的信息包括了用户的个人基本资料、购买的历史记录及浏览记录等。个人基本资料可以从用户注册表单中获得;购买的历史记录主要存放于电子商务网站的后台交易数据库中,包含了每位用户以前历次购物的详细情况记录,如购物时间、商品清单、价格、折扣等,同时也可以收集用户放入购物篮而未购买的商品记录,以及用户过去浏览过的商品信息等。当然要搜集用户的行为信息,日志文件是必不可少的,如要收集服务器日志,则要在服务器端获取,抽取出特定用户的访问记录;如要收集用户浏览的页面和浏览行为,则既可以在用户端获得,也可以在服务器端从用户记录中获得。

对于个性化推荐新闻的思考

对于个性化推荐新闻的思考 作者:王慧 来源:《传媒论坛》2019年第01期 摘要:个性化推送作为新兴媒体背景下一种新的新闻分发形式,对受众有着正反两方面的意义,无论是新闻定制,还是算法分发,其困境背后实际上是技术不断发展过程中工具理性与人文理性的永恒博弈。媒体应该对聚合类信息内容的把关,个性化推荐与人性化推荐相融合,推送未曾关注的领域,增加新闻偶遇的机会。以算法为主进行分发的新兴媒体同专业媒体应该共同满足受众对于信息的需求,其中既包括个性化,也包括公共性,只有这样才能形成唐纳德肖所提出的专业媒体与大众媒体纵横交错的“纸草社会”,在算法时代守望人的价值。 关键词:算法;人文理性;工具理性 中图分类号:G210 文献标识码:A 文章编号:2096-5079 (2019) 01-00-02 个性化推荐新闻即根据用户的性别、年龄、自定义、访问信息类别需求倾向等特征来给用户推荐特定的信息内容,具有个性化、定制化、移动化、互动性等特点。正如“今日头条”APP 所说:“投其所好,送其需要”。个性化推荐新闻对受众有积极消极两方面的影响,新闻媒体仍应提供必要的社会公共信息,担任社会协调与整合的职责。而在CEO张一鸣看来,《今日头条》与传统媒体最本质的区别就是算法。这款兴趣推荐搜索引擎应用的核心是算法,今日头条之所以能够洞察用户喜好,精准分发用户感兴趣的新闻,很大程度上与算法是分不开的。 本文将从以下几个角度,探索有关这个算法王国的几个问题:媒体人的老帝国与算法技术新帝国的融合的前景(代价)是什么?对于受众有何影响,可能的误区在哪里?以下将以今日头条APP为例来探讨个性化推荐新闻对受众的影响。 一、算法于人之利 (一)满足分众化信息需求,精准分发,提高用户黏性 个性化推荐新闻基于计算机程序运作,提高了精准程度的新闻分发使得不同类型的内容信息被机器识别,推送给有着不同需求的受众,根据使用与满足理论,受众面对大众传媒绝不是完全被动的,事实上受众总是自主地选择自己所好奇的和所需要的媒介内容和信息。受众信息消费的选择范围也随着网络技术的普及不断扩大,受众的个性化需求成为了媒体始终绕不开的话题。今日头条的slogan“你关心的,才是头条”这也充分体现了互联网思维的极致发挥。分配逻辑的首位是观众的需求,同时媒体的市场覆盖面也得到了显著的提高,更是获得了受众认可,创始短短几年就对“腾讯新闻”等老牌新闻客户端产生了极大的威胁。

推荐系统的架构

本文从互联网收集并整理了推荐系统的架构,其中包括一些大公司的推荐系统框架(数据流存储、计算、模型应用),可以参考这些资料,取长补短,最后根据自己的业务需求,技术选型来设计相应的框架。后续持续更新并收集。。。 图1 界面UI那一块包含3块东西:1) 通过一定方式展示推荐物品(物品标题、缩略图、简介等);2) 给的推荐理由;3) 数据反馈改进个性化推荐;关于用户数据的存放地方:1)数据库/缓存用来实时取数据;2) hdfs文件上面; 抽象出来的三种推荐方式 图2

图3 图3中,推荐引擎的构建来源于不同的数据源(也就是用户的特征有很多种类,例如统计的、行为的、主题的)+不同的推荐模型算法,推荐引擎的架构可以试多样化的(实时推荐的+离线推荐的),然后融合推荐结果(人工规则+模型结果),融合方式多样的,有线性加权的或者切换式的等 图4 图4中,A模块负责用户各类型特征的收集,B模块的相关表是根据图3中的推荐引擎来生成的,B模块的输出推荐结果用来C模块的输入,中间经过过滤模块(用户已经产生行为的物品,非候选物品,业务方提供的物品黑名单等),排名模块也根据预设定的推荐目标来制定,最后推荐解释的生成(这是可能是最容易忽视,但很关键的一环,微信的好友推荐游戏,这一解释已经胜过后台的算法作用了) HULU的推荐系统

总结:这个也就跟图3有点类似了,葫芦的推荐系统,至少在他blog中写的比较简单。更多的是对推荐系统在线部分的一种描述,离线部分我猜想也是通过分布式计算或者不同的计算方式将算法产生的数据存储进入一种介质中,供推荐系统在线部分调用。系统的整个流程是这样的,首先获取用户的行为,包括(watch、subscribe、vote),这样行为会到后台获取show-show对应的推荐数据。同时这些行为也会产生对应的topic,系统也会根据topic 到后台获取topic-show对应的推荐数据。两种数据进行混合,然后经过fliter、explanation、ranking这一系列过程,最后生成用户看到的推荐数据。 淘宝的推荐系统(详细跟简单版)

数学建模中常见的十大模型

数学建模中常见的十大 模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。

蚁群算法

蚁群算法报告及代码 一、狼群算法 狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。 算法采用基于人工狼主体的自下而上的设计方法和基 于职责分工的协作式搜索路径结构。如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。 二、布谷鸟算法 布谷鸟算法 布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS 算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS 也采用相关的Levy 飞行搜索机制 蚁群算法介绍及其源代码。 具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。 应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能 三、差分算法 差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。 算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体

的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。 四、免疫算法 免疫算法是一种具有生成+检测的迭代过程的搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。 五、人工蜂群算法 人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。为了解决多变量函数优化问题,科学家提出了人工蜂群算法ABC模型。 六、万有引力算法 万有引力算法是一种基于万有引力定律和牛顿第二定律的种群优化算法。该算法通过种群的粒子位置移动来寻找最优解,即随着算法的循环,粒子靠它们之间的万有引力在搜索空间内不断运动,当粒子移动到最优位置时,最优解便找到了。 GSA即引力搜索算法,是一种优化算法的基础上的重力和质量相互作用的算法。GSA 的机制是基于宇宙万有引力定律中两个质量的相互作用。 七、萤火虫算法 萤火虫算法源于模拟自然界萤火虫在晚上的群聚活动的自然现象而提出的,在萤火虫的群聚活动中,每只萤火虫通过散发荧光素与同伴进行寻觅食物以及求偶等信息交流。一般来说,荧光素越亮的萤火虫其号召力也就越强,最终会出现很多萤火虫聚集在一些荧光素较亮的萤火虫周围。人工萤火虫算法就是根据这种现象而提出的一种新型的仿生群智能优化算法。在人工萤火虫群优化算法中,每只萤火虫被视为解空间的一个解,萤火虫种群作为初始解随机的分布在搜索空间中,然后根据自然界萤火虫的移动方式进行解空间中每只萤火虫的移动。通过每一代的移动,最终使的萤火虫聚集到较好的萤火虫周围,也即是找到多个极值

面向移动APP的个性化推荐算法

龙源期刊网 https://www.sodocs.net/doc/8315376539.html, 面向移动APP的个性化推荐算法 作者:尚燕飞陈德运杨海陆 来源:《哈尔滨理工大学学报》2018年第06期 摘;要:针对移动互联网移动端的推荐系统推荐满意度和精度较低问题,在分析应用信息系统推荐方法的基础上,提出了一种基于用户相似度和主题相似度个性化的移动APP信息推荐方法,该方法采用用户相似度和个性化加权组合的方式生成信息推荐,使推荐信息更为个性化,提高了推荐精度。同时针对多用户公用账号和兴趣发生变化的推荐问题,提出了一种基于复杂兴趣的推荐算法,该方法通过挖掘用户间的相似度、用户的行为操作及兴趣取向,使推荐信息更为准确。同时,相比于性能较好的Popular推荐算法,本算法在准确率上提高了 3.91%,召回率提高了3.45%,覆盖率提高了 4.84%,性能明显提高。因此,文中所提出方法 用于移动APP的个性化推荐,为移动APP的个性化推荐提供了一种新方法。 关键词:移动APP;推荐算法;推荐精度;个性化信息 DOI:10.15938/j.jhust.2018.06.021 中图分类号: TP393.08 文献标志码: A 文章编号: 1007-2683(2018)06-0116-08 Abstract:For the problem of low precision to both experience satisfaction and personalized requirement of Internet mobile terminal;based on the recommendation method of analyzing information system;a method of mobile APP information recommendation based on user similarity and subject similarity is proposed;which generated information recommendation by the weighted combination of user similarity and personalized;that the recommended information is more personalized;and the recommended accuracy is improved. At the same time;a recommendation algorithm based on complex interest is proposed;which makes the recommendation information more accurate by mining the similarity between users;the behavior of users and the orientation of interest for the recommendation problem of multi-user public account and interest change. Compared with the Popular which has better performance;the algorithm improves the accuracy rate by 3.91%;the recall rate is 3.45%;the coverage rate is improved by 4.84%;and the performance is improved obviously. Therefore;the method proposed in this paper is used to the personalized recommendation of APP;which provides a new method for mobile APP′s personalized recommendation. Keywords:mobile application;recommendation algorithm;the accuracy of recommending;personalized information 0;引;言

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

蚁群算法的数学模型

蚁群算法的数学模型 蚂蚁),2,1(k m k ???=在运动过程中,运动转移的方向由各条路径上的信息量浓度决定。为方便记录可用),,2,1(t m k abu k ???=来记录第 k 只蚂蚁当前已走过的所有节点,这里可以称存放节点的表为禁忌表;这个存放节点的集合会随着蚂蚁的运动动态的调整。在算法的搜索过程中,蚂蚁会智能地选择下一步所要走的路径。 设 m 表示蚂蚁总数量,用)1,,1,0,(d -???=n j i ij 表示节点 i 和节点 j 之间的距离,)(ij t τ表示在 t 时刻ij 连线上的信息素浓度。 在初始时刻,m 只蚂蚁会被随机地放置,各路径上的初始信息素浓度是相同的。在 t 时刻,蚂蚁 k 从节点i 转移到节点 j 的状态转移概率为 ??? ????=∈=∑∈other p allowed t t t t k ij k allowed k ij ij ij ij k ij ,0j ,) ()()()(p k βαβαητητ ()1-2 其中,{}k k tabu c allowed -=表示蚂蚁 k 下一步可以选择的所有节 点,C 为全部节点集合;α为信息启发式因子,在算法中代表轨迹相对重要程度,反映路径上的信息量对蚂蚁选择路径所起的影响程度,该值越大,蚂蚁间的协作性就越强;β可称为期望启发式因子,在算法中代表能见度的相对重要性。ij η是启发函数,在算法中表示由节点i 转移到节点 j 的期望程度,通常可取ij ij d /1=η。在算法运行时每只蚂蚁将根据(2-1)式进行搜索前进。 在蚂蚁运动过程中,为了避免在路上残留过多的信息素而使启发

多模型融合推荐算法——从原理到实践

1 研发背景 互联网时代也是信息爆炸的时代,内容太多,而用户的时间太少,如何选择成了难题。电商平台里的商品、媒体网站里的新闻、小说网站里的作品、招聘网站里的职位……当数量超过用户可以遍历的上限时,用户就无所适从了。 对海量信息进行筛选、过滤,将用户最关注最感兴趣的信息展现在用户面前,能大大增加这些内容的转化率,对各类应用系统都有非常巨大的价值。 搜索引擎的出现在一定程度上解决了信息筛选问题,但还远远不够,其存在的两个主要弊端是:第一搜索引擎需要用户主动提供关键词来对海量信息进行筛选。当用户无法准确描述自己的需求时,搜索引擎的筛选效果将大打折扣,而用户将自己的需求和意图转化成关键词的过程有时非常困难(例如“找家附近步行不太远就可以到的餐厅,别太辣的”)。更何况用户是懒惰的,很多时候都不愿意打字。第二是搜索结果往往会照顾大多数用户的点击习惯,以热门结果为主,很难充分体现出个性化需求。 解决这个问题的最好工具就是——推荐系统(Recommendation System)。 推荐系统的效果好坏,体现在推荐结果的用户满意度上,按不同的应用场景,其量化的评价指标包括点击率、成交转化率、停留时间增幅等。为了实现优秀的推荐效果,众多的推荐算法被提出,并在业界使用。但是其中一类方法非常特殊,我们称为多模型融合算法。融合算法的意思是,将多个推荐算法通过特定的方式组合的方法。融合在推荐系统中扮演着极为重要的作用,本文结合达观数据的实践经验为大家进行系统性的介绍。 为什么需要融合推荐算法 推荐系统需要面对的应用场景往往存在非常大的差异,例如热门/冷门的内容、新/老用户,时效性强/弱的结果等,这些不同的上下文环境中,不同推荐算法往往都存在不同的适用场景。不存在一个推荐算法,在所有情况下都胜过其他的算法。而融合方法的思想就自然而然出现了,就是充分运用不同分类算法各种的优势,取长补短,组合形成一个强大的推荐框架。俗话说就叫“三个臭皮匠顶个诸葛亮”。 在介绍融合方法前,先简单介绍几类常见推荐算法的优缺点 基于物品的协同过滤(Item-based Collaborative Filtering)是推荐系统中知名度最高的方法,由亚马逊(Amazon)公司最早提出并在电商行业内被广泛使用。

蚁群算法

蚁群算法的改进与应用 摘要:蚁群算法是一种仿生优化算法,其本质是一个复杂的智能系统,它具有较强的鲁棒性、优良的分布式计算机制和易于与其他方法结合等优点。但是现在蚁群算法还是存在着缺点和不足,需要我们进一歩改进,如:搜索时间长、容易出现搜索停滞现象、数学基础还不完整。本文首先说明蚁群算法的基本思想,阐述了蚁群算法的原始模型及其特点,其次讨论如何利用遗传算法选取蚁群算法的参数,然后结合对边缘检测的蚁群算法具体实现过程进行研究分析,最后对本论文所做的工作进行全面总结,提出不足之处,并展望了今后要继续研究学习的工作内容。 关键词:蚁群算法;边缘检测;阈值;信息素;遗传算法; 1 前言 蚁群算法是近年来提出的一种群体智能仿生优化算法,是受到自然界中真实的蚂蚁群寻觅食物过程的启发而发现的。蚂蚁之所以能够找到蚁穴到食物之间的最短路径是因为它们的个体之间通过一种化学物质来传递信息,蚁群算法正是利用了真实蚁群的这种行为特征,解决了在离散系统中存在的一些寻优问题。该算法起源于意大利学者 Dorigo M 等人于 1991 年首先提出的一种基于种群寻优的启发式搜索算法,经观察发现,蚂蚁在寻找食物的过程中其自身能够将一种化学物质遗留在它们所经过的路径上,这种化学物质被学者们称为信息素。这种信息素能够沉积在路径表面,并且可以随着时间慢慢的挥发。在蚂蚁寻觅食物的过程中,蚂蚁会向着积累信息素多的方向移动,这样下去最终所有蚂蚁都会选择最短路径。该算法首先用于求解著名的旅行商问题(Traveling Salesman Problem,简称 TSP)并获得了较好的效果,随后该算法被用于求解组合优化、函数优化、系统辨识、机器人路径规划、数据挖掘、网络路由等问题。 尽管目前对 ACO 的研究刚刚起步,一些思想尚处于萌芽时期,但人们已隐隐约约认识到,人类诞生于大自然,解决问题的灵感似乎也应该来自大自然,因此越来越多人开始关注和研究 ACO,初步的研究结果已显示出该算法在求解复杂优化问题(特别是离散优化问题)方面的优越性。虽然 ACO 的严格理论基础尚未奠定,国内外的有关研究仍停留在实验探索阶段,但从当前的应用效果来看,这种自然生物的新型系统寻优思想无疑具有十分光明的前景。但该算法存在收敛速度慢且容易出现停滞现象的缺点,这是因为并不是所有的候选解都是最优解,而候选解却影响了蚂蚁的判断以及在蚂蚁群体中,单个蚂蚁的运动没有固定的规则,是随机的,蚂蚁与蚂蚁之间通过信息素来交换信息,但是对于较大规模的优化问题,这个信息传递和搜索过程比较繁琐,难以在较短的时间内找到一个最优的解。 由于依靠经验来选择蚁群参数存在复杂性和随机性,因此本文最后讨论如何利用遗传算法选取蚁群算法的参数。遗传算法得到的蚁群参数减少了人工选参的不确定性以及盲目性。 2 基本蚁群算法 2.1 蚁群算法基本原理 根据仿生学家的研究结果表明,单只蚂蚁不能找到从巢穴到食物源的最短路 径,而大量蚂蚁之间通过相互适应与协作组成的群体则可以,蚂蚁是没有视觉的,但是是通过蚂蚁在它经过的路径上留下一种彼此可以识别的物质,叫信息素,来相互传递信息,达到协作的。蚂蚁在搜索食物源的过程中,在所经过的路径上留下信息素,同时又可以感知并根据信息素的浓度来选择下一条路径,一条路径上的浓度越浓,蚂蚁选择该条路径的概率越大,并留下信息素使这条路径上的浓度加强,这样会有更多的蚂蚁选择次路径。相反,信息素浓度少的路

个性化推荐算法概述与展望

Hans Journal of Data Mining 数据挖掘, 2019, 9(3), 81-87 Published Online July 2019 in Hans. https://www.sodocs.net/doc/8315376539.html,/journal/hjdm https://https://www.sodocs.net/doc/8315376539.html,/10.12677/hjdm.2019.93010 Overview and Prospect of Personalized Recommendation Algorithm Xinxin Li Dalian University of Foreign Languages, Dalian Liaoning Received: Jun. 19th, 2019; accepted: Jul. 2nd, 2019; published: Jul. 9th, 2019 Abstract In recent years, the word “information overload” frequently appears in people’s vision, it has be-come a hot word in the field of computer, and it is also an important problem that researchers ur-gently need to solve. In order to solve the problem of information overload, researchers in the field of computer constantly optimize the personalized recommendation algorithm, strive to re-duce the difficulty of information retrieval for users, to provide users with the best personalized recommendation results. This paper gives a brief overview of the personalized recommendation methods which are widely used and common. Combined with the experience of using personalized recommendation algorithm to generate results in daily life, the author puts forward expectations for the development of personalized recommendation algorithm in the future. Keywords Personalized Recommendation, Collaborative Filtering, Hybrid Recommendation 个性化推荐算法概述与展望 李鑫欣 大连外国语大学,辽宁大连 收稿日期:2019年6月19日;录用日期:2019年7月2日;发布日期:2019年7月9日 摘要 近年来,“信息过载”一词频繁出现在人们的视野中,它成为了计算机相关领域中的热门词汇,同时它也是研究人员急待解决的重要问题。为解决信息超载的问题,计算机领域研究人员不断优化个性化推荐

完整的推荐系统架构设计(精)

完整的推荐系统架构设计推荐系统是移动互联网时代非常成功的人工智能技术落地场景之一。 本文我们将从架构设计的角度回顾和讨论推荐系统的一些核心算法模块,重点从离线层、近线层和在线层三个架构层面讨论这些算法。 1 架构设计概述 架构设计是一个很大的话题,本文这里只讨论和推荐系统相关的部分。更具体地说,我们主要关注的是算法以及其他相关逻辑在时间和空间上的关系——这样一种逻辑上的架构关系。 下面介绍的是一些经过实践检验的架构层面的最佳实践,以及对这些最佳实践在不同应用场景下的分析。除此之外,还希望能够通过把各种推荐算法放在架构的视角和场景下重新审视,让读者大家对算法间的关系有更深入的理解,从全局的角度看待推荐系统,而不是只看到一个个孤立的算法。 架构设计的本质之一是平衡和妥协。一个推荐系统在不同的时期、不同的数据环境、不同的应用场景下会选择不同的架构,在选择时本质上是在平衡一些重要的点。下面介绍几个常用的平衡点。 ▊个性化 vs 复杂度

个性化是推荐系统作为一个智能信息过滤系统的安身立命之本,从最早的热榜,到后来的公式规则,再到著名的协同过滤算法,最后到今天的大量使用机器学习算法,其主线之一就是为用户提供个性化程度越来越高的体验,让每个人看到的东西都尽量差异化,并且符合个人的喜好。为了达到这一目的,系统的整体复杂度越来越高,具体表现为使用的算法越来越多、算法使用的数据量和数据维度越来越多、机器学习模型使用的特征越来越多,等等。同时,为了更好地支持这些高复杂度算法的开发、迭代和调试,又衍生出了一系列对应的配套系统,进一步增加了整个系统的复杂度。可以说整个推荐逻辑链条上的每一步都被不断地细化分析和优化,这些不同维度的优化横纵交织,构造出了一个整体复杂度非常高的系统。从机器学习理论的角度来类比,如果把推荐系统整体看作一个巨大的以区分用户为目标的机器学习模型,则可以认为复杂度的增加对应着模型中特征维度的增加,这使得模型的VC维不断升高,对应着可分的用户数不断增加,进而提高了整个空间中用户的个性化程度。这条通过不断提高系统复杂度来提升用户个性化体验的路线,也是近年来推荐系统发展的主线之一。 ▊时效性 vs 计算量 推荐系统中的时效性概念体现在实时服务的响应速度、实时数据的处理速度以及离线作业的运行速度等几个方面。这几个速度从时效性角度影响着推荐系统的效果,整体上讲,运行速度越快,耗时越少,

个性化推荐技术综述

个性化推荐技术综述 在互联网时代,各类信息层出不穷,用户往往面临着“信息过载”的困扰,难以在大量信息中找到有价值的信息。而个性化推荐则通过用户的兴趣特点和历史行为快速高效的为用户推荐用户感兴趣的信息或商品。通常情况下,根据推荐方式的不同,推荐技术大概可以分为以下几个类型: 1.协同过滤的推荐算法 协同过滤推荐算法由Goldberg、Nicols、Oki和Terry 在1992年提出,该算法应用在Tapestry系统。Breese 等人将协同过滤推荐技术分为两种类型,一种是基于内存的协同过滤方法,另一种是基于模型的协同过滤方法,各自常用的算法如图1所示。基于内存的协同推荐( memory-based collaborative filtering) 也称为启发式的协同推荐,主要直接利用用户的历史数据来提供预测结果。根据相似性度量的对象的不同,基于内存的协同过滤又分为User-based 协同过滤和Item-based协同过滤。User-based 协同过滤的基本原理是如果一些用户对一些物品评价的分数比较接近,那么通常情况下他们评价其它物品的分数也会很接近。那么我们要得到某个用户对物品的评分时,就可用和该用户评分相似的其他用户对目标物品的评分去估计。Item-based协同过滤的基本原理是如果一些物品的典型特征具有相似性,那么同一个用户对他们的评分是接近的。基于上述原则,如果我们得到用户对和目标物品相似的其它物品的评分时,那么我们就可以通过这些分数来逼近用户对目标物品的评分。基于模型(Model-based)的推荐算法是首先通过用户-项目评分矩阵训练得到一个决策模型,在为目标用户进行推荐时,利用该离线模型为用户进行预测产生推荐结果。大致理念就是通过机器学习算法,在数据中找出模式,并将用户与物品间的互动方式模式化。

推荐系统总结

Xiaol v2009-Relevance is more significant than correlation: Information filtering on sparse data 本文提出了在针对数据稀疏时,使用相关性信息比关联性信息效果更好,因为在关联性信息中,会用到更多的数据, Recommendation System 推荐系统存在的主要挑战: 1.Data sparsity. 2.Scalability 解决该问题的一般方法(28-30) a)有必要考虑计算成本问题和需找推荐算法,这些算法要么是小点的要求 或易于并行化(或两者) b)使用基于增量的算法,随着数据的增加,不重新计算所有的数据,而是 微调的进行 3.Cold start 解决该问题的方法一般有 a)使用混合推荐技术,结合content和collaborative数据,或者需 要基础信息的使用比如用户年龄、位置、喜好genres(31、32) b)识别不同web服务上的单独用户。比如Baifendian开发了一个可以 跟踪到单独用户在几个电子商务网站上的活动,所以对于在网站A的一 个冷启动用户,我们可以根据他在B,C,D网站上的记录来解决其冷启 动问题。 4.Diversity vs. Accuracy(多样性和精确性) 将一些很受欢迎的且高评分的商品推荐给一个用户时,推荐非常高效,但是这种推荐不起多少作用,因为这些商品可以很容易的找到。因此一个好的推荐商

品的列表应该包含一些不明显的不容易被该用户自己搜索到的商品。解决该问题 的方法主要是提高推荐列表的多样性,以及使用混合推荐方法。(34-37) 5.Vulnerability to attacks 6.The value of time. 7.Evaluation of recommendations 8.er interface. 除了这些问题外,还有其他的。随着相关学科分支的出现,特别是网络分析工具,科学家考虑网络结构对推荐的效果影响,以及如何有效使用已知的结构属性来提 高推荐。比如,(45)分析了消费者-商品网络并提出了一个基于喜好边(preferring edges)改进的推荐算法,该算法提高了局部聚类属性。(46)设计并提高了算法,该算法充分利用了社区结构(community structure)。随之而来的挑战主要有:带有GPS移动手机成为主流,并且可以访问网络,因此,基于位置的推荐更需要精确的推荐,其需要对人的移动有一个高效预测能力(47、48)并且高质量的定义位置和人之间的相似性的方法。(49、50)。智能推荐系统需考虑不同人的不同行为模式。比如新用户比较喜欢访问popular商品并且选择相似的商品,而老的用户有更不同的喜好(51,52)用户行为在低风险商品和高风险商品之间更加的不同。(53,54) 推荐系统的一些概念 网络 网络分析对于复杂系统的组织原则的发现是一个万能的工具(5-9)。网络是 由一些元素点和连接点的边组成的。点即为个人或者组织,边为他们之间的交互。 网络G可用(V,E)表示,V(vertice)为节点的集合,E为边(edge)的 集合。在无向网络中,边无方向。在有向网络中,边有向。我们假设网络中不存 在回路以及两个节点之间不存在多条边。G(V,E)图中,一些参数表示是指与节点x连接的节点(即x的邻居)的集合。 即为x节点的度。

matlab_蚁群算法_机器人路径优化问题

用ACO 算法求解机器人路径优化问题 4.1 问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 4.2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士在文献[30]中给出改进模型(ACS),文中 改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。 蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图 2-1 所示,AE 之间有

个性化推荐算法概述与展望

个性化推荐算法概述与展望 近年来,随着网络信息技术的不断发展与进步,网民数量激增,网络覆盖率日益增高。互联网行业发展迅速,购物、出行、医疗、教育等生产生活中的方方面面都有着“互联网+”的影子。在这个网络化、信息化的时代,网络技术已经在潜移默化地影响着、改变着人们的生活方式与思想观念。“信息过载”一词频繁出现在人们的视野中,它成为了计算机相关领域中的热门词汇,同时它也是研究人员急待解决的重要问题。 为解决信息超载的问题,计算机领域研究人员不断优化个性化推荐算法,力求降低用户的信息检索难度,为用户提供最优的个性化推荐结果。在汉斯出版社《数据挖掘》期刊中,有论文对于应用范围较广、较为常见的个性化推荐方法做出简要的概述,并结合日常生活中使用个性化推荐算法生成结果的经历,对未来个性化推荐算法的发展提出期望。 基于信息超载的情况,个性化推荐算法应运而生。个性化推荐系统通过挖掘用户在网络上留下的“信息足迹”,采集并分析用户的网络行为与消费偏好,根据不同的推荐算法将精准的、契合度高的内容推荐给用户。个性化推荐算法的产生与发展极大地便利了人们的生产与生活,对于用户而言,不用再为在海量的信息中检索需要的内容而苦恼,对于商家而言能够更好地分析用户行为,提高竞争力与实现经济效益的最大化增长。 个性化推荐方法分为协同过滤推荐、基于内容的推荐以及混合推荐。协同过滤推荐主要思想是通过现有的用户群以往的意见和行为,对当前用户最有可能感兴趣的物品进行预测。基于内容推荐是指通过掌握的物品特征的描述和描述了用户历史兴趣的记录,确定最能匹配用户喜爱的物品并推荐给用户。混合推荐算法来提高推荐结果的准确程度,是为克服协同过滤算法、基于内容算法等其他算法的局限性、提高个性化推荐结果的精准度,研究者将两种

相关主题