搜档网
当前位置:搜档网 › 基于MATLAB的2FSK数字通信系统仿真

基于MATLAB的2FSK数字通信系统仿真

基于MATLAB的2FSK数字通信系统仿真
基于MATLAB的2FSK数字通信系统仿真

基于MATLAB的2FSK数字通信系统仿真

一、2FSK的基本原理和实现

二进制频率调制是用二进制数字信号控制正弦波的频率随二进制数字信号的变化而变化。由于二进制数字信息只有两个不同的符号,所以调制后的已调信号有两个不同的频率f1和f2,f1对应数字信息“1”,f2对应数字信息“0”。二进制数字信息及已调载波如图3-1所示。

图3-1 2FSK信号

1、2FSK的产生

在2FSK信号中,当载波频率发生变化时,载波的相位一般来说是不连续的,这种信号称为不连续2FSK信号。相位不连续的2FSK通常用频率选择法产生,如图3-2所示:

图3-2 2FSK信号调制器

两个独立的振荡器作为两个频率发生器,他们受控于输入的二进制信号。二进制信号通过两个与门电路,控制其中的一个载波通过。调制器各点波形如图3-3所示:

图3-3 2FSK调制器各点波形

由图3-3可知,波形g是波形e和f的叠加。所以,二进制频率调制信号

2FSK可以看成是两个载波频率分别为f1和f2的2ASK信号的和。由于“1”、“0”统计独立,因此,2FSK信号功率谱密度等于这两个2ASK信号功率谱密度之和,即(3-1)2FSK信号的功率谱如图3-4所示:

图3-4 2FSK信号的功率谱

由图3-4看出,2FSK信号的功率谱既有连续谱又有离散谱,离散谱位于两个载波频率f1和f2处,连续谱分布在f1和f2附近,若取功率谱第一个零点以内的成分计算带宽,显然2FSK信号的带宽为(3-2)为了节约频带,同时也能区分f1和f2,通常取|f1-f2|=2fs,因此2FSK信号的带宽为(3-3)当|f1-f2|=fs时,图3-4中2FSK的功率谱由双峰变成单峰,此时带宽为

(3-4)对于功率谱是单峰的2FSK信号,可采用动态滤波器来解调。此处介绍功率谱为双峰的2FSK信号的解调。

2、2FSK滤波器的调解及抗噪声性能

2FSK信号的解调也有相干解调和包络解调两种。由于2FSK信号可看做是两个2ASK信号之和,所以2FSK解调器由两个并联的2ASK解调器组成。图3-5为2FSK相干和包络解调。

图3-5 2FSK信号调解器

相干2FSK抗噪声性能的分析方法和相干2ASK很相似。现将收到的2FSK信号表示为(3-5)

波频率为f1,信号能通过上支路的带通滤波器。上支路带通滤波器的输出是信号和窄带噪声ni1(t)的叠加(噪声中的下标1表示上支路窄带高斯噪声),即

(3-6)此信号与同步载波cos2πf1t相乘,再经低通滤波器滤除其中的高频成分,送给取样判决器的信号为(3-7)上式中未计入系数1/2。与此同时,频率为f1的2FSK信号不能通过下支路中的带通滤波器,因为下支路中的带通滤波器的中心频率为f2,所以下支路带通滤波

器的输出只有窄带高斯噪声,即(3-8)此噪声与同步载波cos2πf2t相乘,再经低通滤波器滤波后输出为

(3-9)上式中未计入系数1/2。定义(3-10)取样判决器对x(t)取样,取样值为(3-11)其中,nI1、nI2都是均值为0、方差为的高斯随机变量,所以x是均值为a、方差为的高斯随机变量,x的概率密度函数为

(3-12)概率密度曲线如图3-6所示:

图3-6 判决值的函数示意图

判决器对x进行判决,当x>0时,判发送信息为“1”,此判决是正确的;当x<0时,判决发送信息为“0”,显然此判决是错误的。由此可见,x<0的概率就是发“1”错判成“0”的概率,即

(3-13)

当发送数字信号“0”时,下支路有信号,上支路没有信号。用与上面分析完全相同的方法,可得到发“0”码时错判成“1”码的概率P(1/0),容易发现,此概率与上式表示的P(0/1)相同,所以解调器的平均误码率为

P e=P(1)P(0/1)+P(0)P(1/0)=P(0/1)[P(1)+P(0)]=P(0/1) (3-14)

所以 (3-15)

式中注意,式中无需“1”、“0”等概这一条件。

由相关调制解调的原理图

输入的信号为:S (t )=[∑аn*g(t-nTs)]cos ω1t+[ān*g(t-nTs)]cos ω1t (ān 是аn 的反码)来设计仿真 3、仿真思路

(1)首先要确定采样频率fs 和两个载波f 1,f 2的值。

(2)先产生一个随机的信号,写出输入已调信号的表达式是s(t)。由于s(t)中有反码的存在,则需要将信号先反转后在原信号和反转信号中进行抽样。写出已调信号的表达式s(t)。

(3)在2FSK 的解调过程中,根据解调的原理图,信号先通过带通滤波器,设置带通滤波器的参数,后用一维数字滤波函数filter 对信号s(t)的数据进行滤波处理。由于已调信号中有两个不同的载波,则经过两个不同频率的带通滤波器后输出两

带通滤波器

带通滤波器 相乘器

相乘器

低通滤波器

低通滤波器

抽样判决器

Cos ω1t

Cos ω2t

ω1 ω2

抽样脉冲

输出

输入

个不同的波形H1,H2。

(4)经过带通滤波器后的2FSK信号再分别经过相乘器,输出得到相乘后的两个不同的2FSK波形sw1,sw2。

(5)经过相乘器输出的波形再通过低通滤波器,设置低通滤波器的参数,用一维数字滤波函数filter对信号进行新的一轮的滤波处理。输出经过低通滤波器后的两个波形st1,st2。

(6)将信号st1和st2同时经过抽样判决器,其抽样判决器输出的波形为最后的输出波形st。对抽样判决器经定义一个时间变量长度i,当st1(i)>=st2(i)时,则st=1,否则st=0。

二、仿真程序

fs=2000; %采样频率

dt=1/fs; %采样间隔

f1=50;

f2=150; %两个载波信号的频率

a=round(rand(1,10)); %产生原始数字随机信号

g1=a;

g2=~a; %将原始数字信号反转与g1反向

g11=(ones(1,2000))'*g1; %进行抽样

g1a=g11(:)'; %将数字序列变成列向量

g21=(ones(1,2000))'*g2;

g2a=g21(:)';

t=0:dt:10-dt; %在0~10-dt之间取值,取值间隔为dt t1=length(t);

fsk1=g1a.*cos(2*pi*f1.*t); %得到频率为f1的fsk1已调信号

fsk2=g2a.*cos(2*pi*f2.*t); %得到频率为f2的fsk2已调信号

fsk=fsk1+fsk2; %已产生2FSK信号

figure(1)

no=0.01*randn(1,t1); %产生的随机噪声

sn=fsk+no;

subplot(3,1,1);

plot(t,no); %随机噪声的波形

title('噪声波形')

ylabel('幅度')

subplot(3,1,2);

plot(t,fsk); %2FSK信号的波形

title('2fsk信号波形')

ylabel('幅度')

subplot(3,1,3);

plot(t,sn);

title('经过信道后的2fsk波形')

ylabel('幅度')

xlabel('t')

figure(2) %fsk的解调

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

数字通信课程设计

吉林工程技术师范学院 信息工程学院 《数字通信系统》 课程设计报告 题目:基于MATLAB数字基带调制 专业:电子信息工程 班级:电子信息1041班 姓名:唐欢 学号: 25 号 指导教师:范珩王冬梅 时间: 2013/11/25----2013/12/13

目录 第一章绪论 (1) 1.1通信的发展史简介 (1) 1.2设计的目的及意义 (2) 第二章数字基带信号 (3) 2.1数字基带调制原理 (3) 2.2单极性不归零波形 (4) 2.3双极性不归零波形 (4) 2.4单极性归零波形 (5) 2.5双极性归零波形 (6) 第三章载波调制的数字传输 (7) 3.1载波调制的原理 (7) 3.2 二进制2ASK的调制与解调仿真 (8) 3.3二进制2FSK的调制与解调仿真 (15) 3.4二进制2PSK的调制与解调仿真 (20) 第四章总结 (25) 参考文献.............................................. I 附录:................................................ I

第一章绪论 1.1通信的发展史简介 随着数字通信技术和计算机技术的快速发展以及通信网与计算机网络的相互融合,信息科学技术已成为21世纪和世界的新的强大推动力。信息是一种资源,只有通过广泛的传播与交流,才能产生利用价值,而欣喜的传播与交流,是依靠各种通信方式与技术来实现的。学习和掌握现代通信原理与技术是信息社会每一位成员,尤其是未来通信工作者的迫切需求。 通信就是从一地向另一地传递消息。通信的目的是传递消息中所包含的信息。人们可以用语言、文字、数据、图片或活动图像等不同形式的消息来表达信息。信息是消息的内涵,即消息中所包含的人们原来不知而待知的内容于传输含有信息的消息,否则,就失去了通信的意义。实现通信的方式很多,如手势、语言、旌旗、消息树、烽火台、金鼓和译码传令,以及现代社会的电报、电话、广播、电视、遥控、遥测、因特网、数据和计算机通信等,这些都是消息传递方式和信息交流的手段。随着社会的进步和科学技术的发展,目前使用最广泛的通信方式是电通信。由于电通信迅速、准确、可靠且不受时间、地点、距离的限制,自然科学领域凡是涉及“通信”这一术语时,一般均值“电通信”。 通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者) ,它的一般模型如图1-1所示。

基于MATLAB的MIMO通信系统仿真(DOC)

目录 (一)基于MATLAB的MIMO通信系统仿真………………………… 一、基本原理……………………………………………………… 二、仿真…………………………………………………………… 三、仿真结果……………………………………………………… 四、仿真结果分析…………………………………………………(二)自选习题部分…………………………………………………(三)总结与体会……………………………………………………(四)参考文献…………………………………………………… 实训报告 (一)基于MATLAB的MIMO通信系统仿真 一、基本原理 二、仿真 三、仿真结果 四、仿真结果分析 OFDM技术通过将频率选择性多径衰落信道在频域内转换为平坦信道,减小了多径衰落的影响。OFDM技术如果要提高传输速率,则要增加带宽、发送功率、子载波数目,这对于频谱资源紧张的无线通信时不现实的。 MIMO能够在空间中产生独立并行信道同时传输多路数据流,即传输速率很高。这些增加的信道容量可以用来提高信息传输速率,也可以通过增加信息冗余来提高通信系统的传输可靠性。但是MIMO却不能够克服频率选择性深衰落。 所以OFDM和MIMO这一对互补的技术自然走到了一起,现在是3G,未来也是4G,以及新一代WLAN技术的核心。总之,是核心物理层技术之一。 1、MIMO系统理论:

核心思想:时间上空时信号处理同空间上分集结合。 时间上空时通过在发送端采用空时码实现: 空时分组、空时格码,分层空时码。 空间上分集通过增加空间上天线分布实现。此举可以把原来对用户来说是有害的无线电波多径传播转变为对用户有利。 2、MIMO 系统模型: 11h 12 h 21 h 22 h r n h 1r n h 21 R n h 2 R n h 1 n n R h 可以看到,MIMO 模型中有一个空时编码器,有多根天线,其系统模型和上述MIMO 系统理论一致。为什么说nt>nr ,因为一般来说,移动终端所支持的天线数目总是比基站端要少。 接收矢量为:y Hx n =+,即接收信号为信道衰落系数X 发射信号+接收端噪声 3、MIMO 系统容量分析: (附MIMO 系统容量分析程序) 香农公式的信道容量(即信息传送速率)为: 2log (1/)C B S N =+ 4、在MIMO 中计算信道容量分两种情况: 未知CSI 和已知CSI (CSI 即为信道状态信息),其公式推导较为复杂,推导结果为信道容量是信噪比与接收、发射天线的函数。 在推导已知CSI 中,常用的有waterfilling ,即著名的注水原理。但是,根据相关文献资料,通常情况下CSI 可以当做已知,因为发送,接收端会根据具体信道情况估算CSI 的相关参数。 在这里对注水原理做一个简单介绍:之所以成为注水原理是因为理想的注水原理是在噪声大的时候少分配功率,噪声小时多分配功率,最后噪声+功率=定值,这如果用图形来表示,则类似于给水池注水的时候,水池低的地方就多注水,也就是噪声小分配的功率就多,故称这种达到容量的功率分配方式叫做注水原理。通过给各个天线分配不同的发射功率,增加系统容量。核心思想就是上面所阐述的,信道条件好,则分配更多功率;信道条件差,则分配较少的功率。 在MIMO 的信道容量当中要注意几个问题:(下面说已知CSI 都是加入了估计CSI 的算法,并且采用了注水原理。) 1. 已知CSI 的情况下的信道容量要比发送端未知CSI 的情况下的信道容量高,这是 由于当发送端已知CSI 的时候,发送端可以优化发送信号的协方差矩阵。也就是

数字通信系统设计实验报告

实验1:用 Verilog HDL 程序实现乘法器 1实验要求: (1) 编写乘法器的 Veirlog HDL 程序. (2) 编写配套的测试基准. (3) 通过 QuartusII 编译下载到目标 FPGA器件中进行验证 (4) 注意乘法逻辑电路的设计. 2 试验程序: Module multiplier(input rst,input clk,input [3:0]multiplicand, input [3:0]multiplier,input start_sig,output done_sig,output [7:0]result); reg [3:0]i; reg [7:0]r_result; reg r_done_sig; reg [7:0]intermediate; always @ ( posedge clk or negedge rst ) if( !rst ) begin i<=4'b0; r_result<=8'b0; end else if(start_sig) begin case(i) 0: begin intermediate<={4'b0,multiplicand}; r_result<=8'b0; i<=i+1; end 1,2,3,4: begin if(multiplier[i-1]) begin r_result<=r_result+intermediate; end intermediate<={intermediate[6:0],1'b0}; i<=i+1; end 5: begin r_done_sig<=1'b1;

i<=i+1; end 6: begin r_done_sig<=1'b0; i<=1'b0; end endcase end assign result=r_done_sig?r_result:8'bz; assign done_sig=r_done_sig; endmodule3 测试基准: `timescale 1 ps/ 1 ps module multiplier_simulation(); reg clk; reg rst; reg [3:0]multiplicand; reg [3:0]multiplier; reg start_sig; wire done_sig; wire [7:0]result; /***********************************/ initial begin rst = 0; #10; rst = 1; clk = 1; forever #10 clk = ~clk; end /***********************************/ multiplier U1 ( .clk(clk), .rst(rst), .multiplicand(multiplicand), .multiplier(multiplier), .result(result), .done_sig(done_sig), .start_sig(start_sig) ); reg [3:0]i; always @ ( posedge clk or negedge rst ) if( !rst )

matlab通信仿真常用函数

信源函数 randerr 产生比特误差样本 randint 产生均匀分布的随机整数矩阵 randsrc 根据给定的数字表产生随机矩阵 wgn 产生高斯白噪声 信号分析函数 biterr 计算比特误差数和比特误差率 eyediagram 绘制眼图 scatterplot 绘制分布图 symerr 计算符号误差数和符号误差率 信源编码 compand mu律/A律压缩/扩张 dpcmdeco DPCM(差分脉冲编码调制)解码dpcmenco DPCM编码 dpcmopt 优化DPCM参数 lloyds Lloyd法则优化量化器参数 quantiz 给出量化后的级和输出值 误差控制编码 bchpoly 给出二进制BCH码的性能参数和产生多项式convenc 产生卷积码 cyclgen 产生循环码的奇偶校验阵和生成矩阵cyclpoly 产生循环码的生成多项式 decode 分组码解码器 encode 分组码编码器 gen2par 将奇偶校验阵和生成矩阵互相转换gfweight 计算线性分组码的最小距离 hammgen 产生汉明码的奇偶校验阵和生成矩阵rsdecof 对Reed-Solomon编码的ASCII文件解码rsencof 用Reed-Solomon码对ASCII文件编码rspoly 给出Reed-Solomon码的生成多项式

syndtable 产生伴随解码表 vitdec 用Viterbi法则解卷积码 (误差控制编码的低级函数) bchdeco BCH解码器 bchenco BCH编码器 rsdeco Reed-Solomon解码器 rsdecode 用指数形式进行Reed-Solomon解码 rsenco Reed-Solomon编码器 rsencode 用指数形式进行Reed-Solomon编码 调制与解调 ademod 模拟通带解调器 ademodce 模拟基带解调器 amod 模拟通带调制器 amodce 模拟基带调制器 apkconst 绘制圆形的复合ASK-PSK星座图 ddemod 数字通带解调器 ddemodce 数字基带解调器 demodmap 解调后的模拟信号星座图反映射到数字信号dmod 数字通带调制器 dmodce 数字基带调制器 modmap 把数字信号映射到模拟信号星座图(以供调制)qaskdeco 从方形的QASK星座图反映射到数字信号qaskenco 把数字信号映射到方形的QASK星座图 专用滤波器 hank2sys 把一个Hankel矩阵转换成一个线性系统模型hilbiir 设计一个希尔伯特变换IIR滤波器 rcosflt 升余弦滤波器 rcosine 设计一个升余弦滤波器 (专用滤波器的低级函数) rcosfir 设计一个升余弦FIR滤波器 rcosiir 设计一个升余弦IIR滤波器 信道函数

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

MATLAB通信系统仿真心得体会

MATLAB通信系统仿真心得体会 课程名称(中文) MATLAB通信系统仿真成绩姓名班级学号日期 学习MATLAB通信系统仿真心得体会 经过一学期的MATLAB通信系统仿真的学习,使我对通信原 理及仿真实践有了更深层次的理解。在学习过程当中,了解到了MATLAB的语言基础以及应用的界面环境,基本操作和语法,通信仿真工具箱的应用,simulink 仿真基础,信号系统分析等一系列的内容。我明白学好这门课程是非常的重要。 在学习当中,我首先明白了通信系统仿真的现实意义,系统模型是对实际系统的一种抽象,是对系统本质(或是系统的某种特性)的一种描述。模型可视为对真实世界中物体或过程的信息进行形式化的结果。模型具有与系统相似的特性,可以以各种形式给出我们所感兴趣的信息。知道了通信系统仿真的必要性,利用系统建模和软件仿真技术,我们几乎可以对所有的设计细节进行分层次的建模和评估。通过仿真技术和方法,我们可以有效地将数学分析模型和经验模型结合起来。利用系统仿真方法,可以迅速构建一个通信系统模型,提供一个便捷,高效和精确的评估平台。明白了MATLAB通信系统仿真课程重点就是系统仿真软件 Matlab / Simulink 在通信系统建模仿真和性能评估方面的应用原理,通信系统仿真的一般原理和方法。 MATLAB集成度高,使用方便,输入简捷,运算高效,内容丰富,并且很容易由用户自行扩展,与其它计算机语言相比, MATLAB有以下显著特点:1.MATLAB是一种解释性语言;2(变量的“多功能性”;3.运算符号的“多功能性”;4(人机界面适合科技人员;5(强大而简易的作图功能;6(智能化程度高;7(功能丰富,可扩展性强。在MATLAB的Communication Toolbox(通 信工具箱)中提供了许多仿真函数和模块,用于对通信系统进行仿真和分析。

数字通信课程设计

目录 一、课程设计目的 (1) 二、设计任务书 (1) 三、进度安排 (1) 四、具体要求 (2) 五、课程设计内容 (2) 5.1数字频带传输系统 (2) 5.2二进制振幅键控(2ASK) (3) 5.2.1调制实验原理框图: (3) 5.2.2 调制实验步骤 (4) 5.2.3 解调的原理框图 (7) 5.3二进制频移键控(2FSK) (8) 5.3.1 2FSK调制原理 (8) 5.3.2 调制实验步骤 (8) 5.3.3 2FSK解调的原理框图: (12) 5.4二进制移相键控(2PSK) (12) 5.4.1 2PSK调制原理 (12) 5.4.2 2PSK调制的实验步骤 (13) 5.4.3 2PSK解调的原理框图 (16) 5.5二进制差分相位键控(2DPSK) (17) 5.5.1 2DPSK调制原理 (17) 5.5.2 2DPSK调制的实验步骤 (17) 5.5.3 2DPSK的解调原理框图 (21) 5.6 二进制数字信号的功率谱密度 (21) 5.6.1.2ASK 信号的功率谱密度 (21) 5.6.2 2FSK 信号的功率谱密度 (22) 5.6.3 2PSK 及 2DPSK信号的功率谱密度 (22) 六、运行程序过程中产生的问题及采取的措施 (23) 七、总结和展望 (23) 八、参考文献 (24)

一、课程设计目的 本课程是为通信工程专业本科生开设的专业必修课,结合学生的专业方向的理论课程,充分发挥学生的主动性,使学生掌握应用MATLAB或者SYSTEMVIEW 等仿真软件建立通信系统,巩固理论课程内容,规范文档的建立,培养学生的创新能力,并能够运用其所学知识进行综合的设计。 通信系统原理的课程设计是对通信系统仿真软件、课程学习的综合检验,配合理论课的教学,让学生亲自参加设计、仿真、验证通信系统的一般原理、调制解调原理、信号传输及受噪声影响等方面的知识点。 二、设计任务书 设计选题:数字频带传输系统的设计 a.利用所学的《通信原理及应用》的基础知识,分别设计2ASK、2FSK、2PSK、2DPSK数字调制器。完成对各种二进制数字已调信号的的调制器与解调器的电路设计与程序仿真,并对其仿真结果进行分析。要求理解2ASK信号的产生,掌握2ASK 信号的调制原理和实现方法并画出实现框图。 b.利用MATLAB、SystemView、C等语言进行,软件不限。要求给出2ASK、2FSK、2PSK、2DPSK 各种已调信号的调制、解调的原理框图、仿真电路图,给出信号的频谱图、调制前与解调后数据波形比较覆盖图,加噪前后相关波形。 三、进度安排

MATLAB 2psk通信系统仿真报告

实验一 2PSK调制数字通信系统 一实验题目 设计一个采用2PSK调制的数字通信系统 设计系统整体框图及数学模型; 产生离散二进制信源,进行信道编码(汉明码),产生BPSK信号; 加入信道噪声(高斯白噪声); BPSK信号相干解调,信道解码; 系统性能分析(信号波形、频谱,白噪声的波形、频谱,信道编解 二实验基本原理 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。 数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。 图1 相应的信号波形的示例 1 0 1 调制原理 数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。一般把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,我们说两个波的

相位差180度,也就是反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。载波的初始相位就有了移动,也就带上了信息。 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。因此,2PSK信号的时域表达式为(t)=Acos t+) 其中,表示第n个符号的绝对相位: = 因此,上式可以改写为 图2 2PSK信号波形 解调原理 2PSK信号的解调方法是相干解调法。由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。下图2-3中给出了一种2PSK信号相干接收设备的原理框图。图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0. 2PSK信号相干解调各点时间波形如图 3 所示. 当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错.

通信系统课程设计

课程设计任务书 学生姓名:周全专业班级:信息sy0901 指导教师:刘新华工作单位:信息工程学院 题目:通信系统课群综合训练与设计 初始条件:MA TLAB 软件,电脑,通信原理知识 要求完成的主要任务: 1、利用仿真软件(如Matlab或SystemView),或硬件实验系统平台上设计 完成一个典型的通信系统 2、学生要完成整个系统各环节以及整个系统的仿真,最终在接收端或者精 确或者近似地再现输入(信源),计算失真度,并且分析原因。 时间安排: 指导教师签名: 2013 年 1 月 1 1日 系主任(或责任教师)签名: 2013 年 1 月 11 日

目录 摘要 (2) Abstract (3) 1设计任务 (4) 2实验原理分析 (5) 2.1 PCM原理介绍 (5) 2.1.1 抽样(Sampling) (5) 2.1.2 量化(quantizing) (5) 3. 基带传输HDB3码 (12) 4.信道传输码汉明码 (14) 5.PSK调制解调原理 (15) 6. AWGN(加性高斯白噪声) (18) 7.仿真结果 (19) 8.心得体会 (23) 9.参考文献 (24) 附录 (25)

摘要 通信系统是一个十分复杂的系统,在具体实现上有多种多样的方法,但总的过程却是具有共性的。对于一个模拟信号数字化传输,过程可分为数字化,信源编解码,信道编解码,调制解调,加扰等。本实验利用MATLAB实现了PCM编码,HDB3码,汉明码,psk调制,AWGN及对应的解调过程,完整实现了一个通信系统的全部过程。MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 关键字:通信系统,调制,解调,matlab

(完整版)基于matlab的通信系统仿真毕业论文

创新实践报告
报 告 题 目: 学 院 名 称: 姓 名:
基于 matlab 的通信系统仿真 信息工程学院 余盛泽
班 级 学 号: 指 导 老 师: 温 靖

二 O 一四年十月十五日
目录
一、引言........................................................................................................................ 3 二、仿真分析与测试 ................................................................................................... 4
2.1 随机信号的生成 ............................................................................................................... 4 2.2 信道编译码 ........................................................................................................................ 4 2.2.1 卷积码的原理 ........................................................................................................ 4 2.2.2 译码原理 ................................................................................................................ 5 2.3 调制与解调 ....................................................................................................................... 5 2.3.1 BPSK 的调制原理 .................................................................................................. 5 2.3.2 BPSK 解调原理 ...................................................................................................... 6 2.3.3 QPSK 调制与解调 ................................................................................................. 7 2.4 信道 .................................................................................................................................... 8

数字通信课程设计报告

课程设计报告 课程设计名称:《数字通信》 系别: 学生姓名: 班级: 学号: 成绩: 指导教师: 开课时间:2011-2012 学年第2学期

目录 一.设计题目 (4) 二.具体要求 (4) 三.主要内容 (4) 第一节:基本原理 (4) 第二节:流程图 (13) 四.进度安排 (13) 五.成绩评定 (13) 第一节:课程设计报告要求 (14) 第二节:正文 (14) 六.心得体会 (18) 七.参考资料 (19)

一.设计题目:模拟信号数字化PCM 编码设计 二.具体要求: 1.模拟信号数字化的处理步骤:抽样、量化、编码 2.PCM 编码的压缩和扩张原理; 3.用MATLAB 或其它EDA 工具软件对PCM 编码进行使用A 律和μ律的压缩和扩张进行软件仿真; 4.对仿真进行分析比较。 5.PCM 的8位编码C 1C 2C 3C 4C 5C 6C 7C 8 三.主要内容 第一节:基本原理 下图是模拟信号数字传输的过程原理图: 1. 抽样 (1)定义: 所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有的信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。 (2)抽样定理 设一个频带限制的(0,fH )Hz 内的时间连续信号m (t )如果它不少于2fH 次每秒的速率进行抽样,则m(t)可以由抽样值完全确定。 抽样定理指出,由样值序列无失真恢复原信号的条件是f S≥2 f h ,为了满足抽样定理,要求模拟信号的频谱限制在0~f h 之内(fh 为模拟信号的最高频率)。为此,在抽样之前,先设置一个前置低通滤波器,将模拟信号的带宽限制在fh 以下,如果前置低通滤波器特性不良或者抽样频率过低都会产生折叠噪声。抽样频率小于2倍频谱最高频率时,信号的频谱有混叠。抽样频率大于2倍频谱最高频率时,信号的频谱无混叠。 另外要注意的是,采样间隔的 周期要足够的小,采样率要做够的大,要不 ) (s t f D /A ) (n f ) (n g A /D ) (t g )(t p ) (t f 量化编码 数字 滤波器

Matlab通信系统建模与仿真例题源代码-第三章

% ch3example1A.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=buttord(f_p,f_s,R_p,R_s, 's'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=butter(n, Wn, 's'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example1B.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=ellipord(f_p,f_s,R_p,R_s,'s'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=ellip(n,R_p,R_s,Wn,'s'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example2A.m f_N=8000; % 采样率 f_p=2100; f_s=2500; R_p=3; R_s=25; % 设计要求指标 Ws=f_s/(f_N/2); Wp=f_p/(f_N/2); % 计算归一化频率 [n, Wn]=buttord(Wp,Ws,R_p,R_s); % 计算阶数和截止频率 [b,a]=butter(n, Wn); % 计算H(z) figure(1); freqz(b,a, 1000, 8000) % 作出H(z)的幅频相频图, freqz(b,a, 计算点数, 采样率)

数字通信理论课程设计

数字通信理论课程设计 实验目的: 1、加深对AWGN 信道下数字通信系统的理解。 2、掌握数字通信系统蒙特卡洛仿真的基本方法。 实验内容: 在AWGN 信道下,完成QPSK/16QAM/2FSK 系统的误比特率性能仿真,绘制系统的BER 曲线,并与理论计算的结果进行对比。具体包括如下内容: 1、编写程序生成随机的二元比特序列,该序列由{0,1}构成。 2、根据所选择的调制方式,将比特序列映射为星座图上的点。 3、将所生成的信号通过AWGN 信道进行传输,编写程序实现随机的加性高斯白噪声过程,并完成对信号的加噪。 4、 实现接收机的解调、检测与判决算法。要求使用相干接收机,最大似然检测。 5、 在不同的比特信噪比(0/b E N )的条件下统计系统的比特错误概率(BER ), 画出BER 随0/b E N 变化的曲线。0/b E N 的变化范围选为0~10dB 。 6、 在同一幅图中画出理论曲线,并将两者进行对比。 注意: 1)采用信号的等效复基带形式完成仿真。 2)为了使BER 的统计结果具有充分的置信度,需要足够多的仿真次数。具体如何设置请查阅有关蒙特卡洛仿真的资料。 实验要求: 1、利用计算机仿真完成上述实验。可以使用Matlab 、C 、C++或任何一种编程语

言,但不允许使用已有的通信系统仿真模块,例如SIMULINK中已有的模块。 2、完成实验之前首先复习相关的理论知识,并对数字通信系统的仿真方法进行 必要的学习。对于后者可参阅如下书籍: W. H. Tranter, K. S. Shanmugan, T. S. Rappaport, and K. L. Kosbar, “Principles of Communication Systems Simulation with Wireless Applications”, Pearson Education Inc., 2004. (也可参考其中文翻译版) 3、撰写实验报告,要求画出系统框图,说明仿真流程,给出仿真结果,提供理 论的误码率结果及推导过程,进行必要的分析和讨论,并在附录中提供程序源代码,列出参考文献。纸质版提交至西一楼446室,同时将电子版发送至lisun@https://www.sodocs.net/doc/813859938.html,。 4、各班完成的内容具体安排为:信息91-92:QPSK;信息93-94:16QAM;信 息95-96,学硕:2FSK。

基于matlab的通信系统仿真

创新实践报告 报告题目: 基于matlab的通信系统仿真学院名称: 信息工程学院 姓名: 班级学号: 指导老师: 二O一四年十月十五日

一、引言 现代社会发展要求通信系统功能越来越强,性能越来越高,构成越来越复杂;另一方面,要求通信系统技术研究与产品开发缩短周期,降低成本,提高水平。这样尖锐对立的两个方面的要求,只有通过使用强大的计算机辅助分析设计技术与工具才能实现。在这种迫切的需求之下,MA TLAB应运而生。它使得通信系统仿真的设计与分析过程变得相对直观与便捷,由此也使得通信系统仿真技术得到了更快的发展。通信系统仿真贯穿着通信系统工程设计的全过程,对通信系统的发展起着举足轻重的作用。通信系统仿真具有广泛的适应性与极好的灵活性,有助于我们更好地研究通信系统性能。通信系统仿真的基本步骤如下图所示: 二、仿真分析与测试 (1)随机信号的生成 利用Matlab中自带的函数randsrc来产生0、1等概分布的随机信号。源代码如下所示: global N N=300; global p

p=0、5; source=randsrc(1,N,[1,0;p,1-p]); (2)信道编译码 1、卷积码的原理 卷积码(convolutional code)就是由伊利亚斯(p 、Elias)发明的一种非分组码。在前向纠错系统中,卷积码在实际应用中的性能优于分组码,并且运算较简单。 卷积码在编码时将k 比特的信息段编成n 个比特的码组,监督码元不仅与当前的k 比特信息段有关,而且还同前面m=(N-1)个信息段有关。 通常将N 称为编码约束长度,将nN 称为编码约束长度。一般来说,卷积码中k 与n 的值就是比较小的整数。将卷积码记作(n,k,N)。卷积码的编码流程如下所示。 可以瞧出:输出的数据位V1,V2与寄存器D0,D1,D2,D3之间的关系。根据模2加运算特点可以得知奇数个1模2运算后结果仍就是1,偶数个1模2运算后结果就是0。 2、译码原理 卷积码译码方法主要有两类:代数译码与概率译码。代数译码主要根据码本身的代数特性进行译码,而信道的统计特性并没有考虑在内。目前,代数译码的主要代表就是大数逻辑解码。该译码方法对于约束长度较短的卷积码有较好的效果,并且设备较简单。概率译码,又称最大似然译码,就是基于信道的统计特性与卷积 码的特点进行计算。在现代通信系统中,维特比译码就是目前使用最广泛的概率 译码方法。 02 1V D D =⊕01232V D D D D =⊕⊕⊕

通信原理课程设计二进制振幅键控

广西科技大学计算机工程学院 通信原理 --课程设计说明书 设计题目: 二进制振幅键控(2ASK) 系统的设计 指导老师: 专业班级:通信061 学生姓名: 学号: 日期: 2008年12月30日

●目录 1.目录 (1) 2.摘要 (1) 3.关键词 (2) 4.正文 (2) 5.SystemView的基本介绍 (2) 6.二进制振幅键控(2ASK) 调制原理 (4) 7.二进制振幅键控(2ASK)系统的设计 (7) 8.调制系统 (7) 9.调制解调系统 (9) 10.系统仿真结果分析 (11) 11.实验总结 (11) 12.参考文献 (11) 13.附件 (12) ●摘要 数字信号的传输方式可以分为基带传输和带通传输。为了使信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道特性相匹配。在这个过程中就要用到数字调制。在通信系统中,利用数字信号的离散取值特点通过开关键控载波,来实现数字调制,这种方法通常称为键控法,主要对载波的振幅,频率,和相位进行键控。键控主要分为:振幅键控,频移键控,相移键控三种基本的数字调制方式。本次课程设计的目的是在学习振幅键控调制的基础上,通过Systemview仿真软件,实现对2ASK数字调制系统的仿真,同时这个系统有深入的了解。

●关键字:SystemView 通信系统二进制振幅键控 2ASK 调制解调 ●正文 一、SystemView的基本介绍: Systemview是美国ELANIX公司于1995年开始推出的软件工具,它为用户提供了一个完整的动态系统设计、仿真与分析的可视化软件环境,能进行模拟、数字、数模混合系统、线性和非线性系统的分析设计,可对线性系统进行拉氏变换和Z变换分析。 SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。SystemView的库资源十分丰富,主要包括:含若干图符库的主库(Main Library)、通信库(Communications Library)、信号处理库(DSP Library)、逻辑库(Logic Library)、射频/模拟库(RF Analog Library)和用户代码库(User Code Library)。 Systemview对系统的分析主要分为两大块,调制系统的分析和解调系统的分析。由于调制是解调的基础,没有调制就不可能有解调,为了表现解调系统往往需要很高的采样频率来减少滤波带来的解调失真,所以调制的已调信号通过波形模块观察起来不是很清楚,为了更好的弄清楚调制是怎么样的一个过程,在这里,我们把调制单独列出来,用较低的频率实现它,就能从单个周期上观察调制系统的运作模式,更深刻地表现调制系统的调制过程。 进入SystemView后,屏幕上首先出现该工具的系统视窗,系统视窗最上边一行为主菜单栏,包括:文件(File)、编辑(Edit)、参数优选(Preferences)、视窗观察(View)、便笺(NotePads)、连接(Connetions)、编译器(Compiler)、

基于matlab的通信系统仿真要点

创新实践报告 报告题目:基于matlab的通信系统仿真学院名称:信息工程学院 姓名: 班级学号: 指导老师: 二O一四年十月十五日

一、引言 现代社会发展要求通信系统功能越来越强,性能越来越高,构成越来越复杂;另一方面,要求通信系统技术研究和产品开发缩短周期,降低成本,提高水平。这样尖锐对立的两个方面的要求,只有通过使用强大的计算机辅助分析设计技术和工具才能实现。在这种迫切的需求之下,MATLAB应运而生。它使得通信系统仿真的设计和分析过程变得相对直观和便捷,由此也使得通信系统仿真技术得到了更快的发展。通信系统仿真贯穿着通信系统工程设计的全过程,对通信系统的发展起着举足轻重的作用。通信系统仿真具有广泛的适应性和极好的灵活性,有助于我们更好地研究通信系统性能。通信系统仿真的基本步骤如下图所示:

二、仿真分析与测试 (1)随机信号的生成 利用Matlab 中自带的函数randsrc 来产生0、1等概分布的随机信号。源代码如下所示: global N N=300; global p p=0.5; source=randsrc(1,N,[1,0;p,1-p]); (2)信道编译码 1、卷积码的原理 卷积码(convolutional code)是由伊利亚斯(p.Elias)发明的一种非分组码。在前向纠错系统中,卷积码在实际应用中的性能优于分组码,并且运算较简单。 卷积码在编码时将k 比特的信息段编成n 个比特的码组,监督码元不仅和当前的k 比特信息段有关,而且还同前面m=(N-1)个信息段有关。 通常将N 称为编码约束长度,将nN 称为编码约束长度。一般来说,卷积码中k 和n 的值是比较小的整数。将卷积码记作(n,k,N)。卷积码的编码流程如下所示。 可以看出:输出的数据位V1,V2和寄存器D0,D1,D2,D3之间的关系。根据模2 D0D2D1D3 + + M V1 V2 OUT 02 1V D D =⊕0123 2V D D D D =⊕⊕⊕

相关主题