搜档网
当前位置:搜档网 › Radiative Neutrino Decay in Media

Radiative Neutrino Decay in Media

Radiative Neutrino Decay in Media
Radiative Neutrino Decay in Media

1995年诺贝尔物理学奖——中微子和重轻子的发现

1995年诺贝尔物理学奖——中微子和重轻子的发现 1995年诺贝尔物理学奖的一半授予美国加州斯坦福大学的佩尔(Martin L.Perl,1927—),奖励他发现了τ轻子①,另一半授予美国加利福尼亚州欧文(Lrvine)加州大学的莱因斯(Frederick Reines,1918—),奖励他检测到了中微子。 佩尔和莱因斯是对轻子物理学作出重大贡献的两位美国物理学家。这是继鲍威尔(1950年发现π介子),张伯伦与西格雷(1959年发现反质子),丁肇中与里克特(1976年发现J/ψ粒子),鲁比亚和范德米尔(1984年发现W±、z0粒子),莱德曼、施瓦茨和斯坦博格(1988年发现中微子有不同属性),夏帕克(1992年发明多丝正比室)等人之后,国际科学界又一次将诺贝尔物理学奖这一殊荣授予实验高能粒子物理学领域的科学家,人数占本世纪后半叶的总领奖人数的12%。 从这一统计数字可以看出,50年代以来,实验高能粒子物理学的成就非常突出,是物理学界引以为豪的领域之一。 提到中微子的发现,应该先讲讲几件先驱的贡献。中微子的概念是1930年泡利首先提出的。当时摆在物理学家面前的疑难问题中有一个涉及β衰变。β衰变和α衰变及γ衰变不一样,放射性元素发出的β电子能量是连续分布的,不像α和γ射线具有明确的分立谱。而原子核的能态差是确定的,显然β衰变的连续谱是一种反常现象,不符合能量守恒定律的要求。是某种未知的过程在起作用,把能量带走了,还是能量守恒定律不适用于β衰变?在这个疑难问题面前,玻尔甚至都准备放弃能量守恒定律的普适性,他提出也许能量守恒定律只适用于统计性的过程。泡利是一位思想极为活跃的理论家,他在一封给同行的公开信中提出:“原子核中可能存在一种自旋为1/2,服从不相容原理的电中性粒子”。β衰变中失踪的能量也许就是这一察觉不到的中性粒子——中微子带走的。 费米支持泡利的设想,他在1934年正式提出β衰变理论,很好地解释了β能谱的连续性问题,不久这一理论得到了正电子衰变实验的肯定。然而,由于这种微小的中性粒子既不荷电,又不参与强相互作用,质量微不足道,它的存在一直未能得到实验验证。人们只能从能量和角动量的分析,论证这一幽灵式的基本粒子的存在和所起的作用。 在众多的探讨中微子的实验方案中,中国物理学家王淦昌提出的方案格外引人注意。他在40年代初从中国的抗战大后方向美国《物理评论》杂志提交了一篇简短的论文,建议把普通β衰变末态的三体,变为K俘获的二体,就有可能间接观测到中微子的存在。他还特别指出,可取Be→Li作为实验对象。这一建议立即受到实验物理学家的重视。1952年美国的戴维斯果然用这一方法取得了与理论预期值相符的实验结果,初步肯定了中微子的客观存在。 就在这个时候,直接捕捉中微子的工作也开始了。1953年美国洛斯阿拉莫斯(Los Alamos)科学实验室的莱因斯和考恩(ClydeL.Cowan,Jr)领导的实验小组按下列方案探测到反中微子:

中微子的发现

中微子的发现 背景 从运动学理论可以知道,当一个粒子衰变为两个粒子时,动量和动能守恒,末态粒子的能量应为确定值。而1914年,查德威克在实验中发现β衰变中放出的电子的能谱为连续谱,这意味着电子有各种不同的能量。这是什么原因呢? 对查德威克发现的现象,梅特纳认为:原子发射的电子能量都具有观察到的最大值,最终观察到的是电子经过别的过程损失一定能量后的次级电子。艾利斯(C.D.Ellis)和伍斯特(W.A.Wooster)设计了一个实验,运用一个量能器把所有产生的粒子收集起来,即使初级电子的能量被次级过程重新分配,也能从收集到的总能量算出每次β衰变放出的平均能量,它应当等于观察到的电子能谱极大值。可是,1927年他们的实验结果表明,量能器得到的只是最后射出的电子能量,其平均值与连续谱相符,而看不到次级发射的其它能量。由此可见并没有什么次级过程起作用的迹象。 面对这种困惑形势,玻尔对能量守恒理论提出了质疑。玻尔的主张遭到激烈的反对,狄拉克表示:“我宁可不惜任何代价来保持能量的严格守恒。”泡利也不同意玻尔的观点,1930年,他提出:β衰变中,可能存在一种电中性的粒子带走了电子一部分能量。他把这一电中性的粒子称为中微子。泡利的这一建议是很大胆的,因为这样的粒子是很难直接探测出来的,但这一假设可以使人们摆脱有关核结构理论及β衰变所遇到的困境。 1933年10月的索尔维会议对中微子概念的发展具有重大意义。泡利在会上再次介绍了他对这个新粒子的看法。尽管海森伯还持有怀疑态度,费米却对它做了肯定,并且已经认识到它与中子的区别。那届索尔维会议后仅两个月,费米即在核的质子-中子模型的基础上,发表了有关β衰变的理论。他用相对论量子力学描述费米子,又利用狄拉克辐射理论的产生与湮灭算符及遵从二次量子化的方法导出了寿命公式和β衰变的连续能谱公式,成功的完成了他的β衰变理论。费米的β衰变理论,不仅圆满地解释了整个β衰变过程,澄清了有关β衰变的疑难,同时也确立了有关核结构的理论。按照费米的理论,在β衰变里,中微

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

步进电动机的工作原理与特点

步进电动机的工作原理及特点随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 1 步进电机概述 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率围通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2国外的研究概况 步进电机是国外发明的。中国在文化大革命中已经生产和应用,例如、、、、都生产,而且都在各行业使用,驱动电路所有半导体器件都是完全国产化的,当时是全分立元器件构成的逻辑运算电路,还有电容耦合输入的计数器,触发器,环形分配器。国外在大功率的工业设备驱动上,目前基本不使用大扭矩步进电动机,因为从驱动电路的成本,效率,噪音,加速度,绝对速度,系统惯量与最大扭矩比来比较,比较不划算,还是用直流电动机,加电动机编码器整体技术和经济指标高。一些少数高级的应用,就用空心转杯电机,交流电机。国外在小功率的场合,还使用步进电机,例如一些工业器材,工业生产装备,打印机,复印件,速印机,银行自动柜员机。国外用许多现代的手段将步进电机排挤出驱动应用,除了前面提到的旋转编码器,打印机还使用光电编码带或感应编码带配合直流电动机,实现闭环直线位移控制。国过去是用大力矩步进电动机实现机床数控,有实力的公司现在也采用交流电动机驱动数控机床,在驱动设备的主要差距,是国外对交流电动机的控制理论与工程分析和应用能力强,先进的控制理论作为软件,写在控制器部。 总的来说,步进电机是一种简易的开环控制,对运用者的要求低,不适合在大功率的场合使用。 在卫星、雷达等应用场合,中国在文化大革命后期,就生产了力矩电机,就生产了环形

第六章 地球的演化与形成(习题)

第六章地球的演化与形成 一填空题 1. 节肢动物的三叶虫在(寒武)纪和(奥陶)纪繁盛,到(二叠)纪末期全部绝灭。 2. 早古生代是海生(无脊椎)动物和低等(植物)繁盛的时代。 3. 早古生代是海生无脊椎动物大发展的时期,其中主要类别包括(三叶虫)、(头足类)、(笔石)及(腕足类)。 4. 新生代因(哺乳)动物繁盛而被称为(哺乳)动物的时代 5. 劳亚大陆和冈瓦纳之间的古大洋为(古特提斯)洋。 6. 陆生脊椎动物最早出现在(泥盆)纪 7. 爬行动物最早出现在(石炭)纪 8. 晚古生代海生无脊椎动物以(腕足)类、(珊瑚)类、(有孔虫)和(菊石)最为繁盛。 9. 志留纪的标准化石有(笔石)、(珊瑚)和(腕足)类。 10. 地史上第一次形成广泛陆相沉积的时代是(志留)纪 11. 加里东运动发生在(志留)纪 12. 因(泥盆)纪裸蕨植物特别繁盛而被称为裸蕨植物的时代 13. 三叠纪初期,全球只有一个大陆,称为(联合大陆) 14. 地球上发现的最古老的岩石年龄为( 4200 )Ma 15. 早寒武世形成的地层称为(下)寒武(统)或早寒武世地层 16. 地质年代单位与年代地层单位的对应关系:宙(宇);代(界);纪(系);世(统) 二选择题 1. 裸子植物在()时代最为繁盛 泥盆纪 第四纪 中生代 寒武纪 2. 被子植物在()时代最为繁盛 早古生代 新生代

晚古生代 3. 地球上最原始的生命出现在() 1600Ma 3200Ma 2300Ma 1900Ma 4. 裸蕨植物的特点是() 无根茎叶的分化 根茎叶已完全分化 已有明显的根部,但茎叶尚未分化 只有根和茎,没有真正的叶部 5. 地球上首次出现大规模出现森林的时代为() 白垩纪 石炭纪 新第三纪 泥盆纪 6. 世界最早的成煤期为() 侏罗纪 石炭纪 寒武纪

说明文阅读专项训练110:《中微子,关乎宇宙起源之谜》

中微子,关乎宇宙起源之谜 ①日本“顶级神冈”中微子探测器项目已正式启动,计划于2027年开始收集数据。该项目由日本主导、英国和加拿大等国参与,目的是阐明物质的起源及基本粒子的“大统一理论”,揭开宇宙起源之谜。 ②中微子是宇宙中数量最多的基本粒子之一。基本粒子是已知的最小粒子,它们不能像原子那样被分成更小的粒子,是构造宇宙中一切的基本元素。而中微子又是最轻的物质粒子,迄今还未能测出它的确切质量,但至少比电子还要轻100万倍。它们无处不在,如太阳发光、核反应堆发电、岩石的天然放射性衰变等核物理过程中都会产生,就连我们每个人也会因体内的钾-40衰变而每天发射约4亿个中微子。 ③中微子的最大特点就是几乎不与任何物质反应。不管是人体还是地球,在它看来,都是极为空旷、可以自由穿梭的空间。我们感觉不到它的存在,科学上探测也极为困难。因此,中微子的发现和研究过程,饱含着几代科研人员的心血。 ④1930年,奥地利科学家泡利为了解释原子核衰变中能量似乎不守恒的现象,预言了中微子的存在,认为就是这种“永远找不到的粒子”偷偷带走了能量。经过20多年的寻找,美国科学家科万和莱因斯终于在核反应堆旁探测到中微子,证明了它的存在。莱因斯因此获得了1995年诺贝尔物理学奖。 ⑤1968年,美国科学家戴维斯在地下1500米深的废弃金矿中进行实验,首次探测到了来自太阳的中微子,证实太阳无穷无尽的能量来自氢核聚变。1987年,日本科学家小柴昌俊在第一代神冈实验中,探测到了来自超新星的中微子。他们二人因此都获得了2002年诺贝尔物理学奖。此后,戴维斯进一步提高测量精度,却发现太阳中微子的数量比理论预言的要少得多,被称为“太阳中微子失踪之谜”。此后,小柴昌俊的学生梶田隆章发现,宇宙射线在大气层中产生的中微子也比预期少,称为“大气中微子丢失之谜”。 ⑥中微子为什么比预计的少?1998年,梶田隆章在升级后的第二代神冈实验中发现,大气中微子比预期少,是因为在飞行过程中自发变成了其他种类的中微子,这一现象就是中微子振荡。他也因此获得了2015年诺贝尔物理学奖。 ⑦中微子振荡现象证明了中微子有质量,尽管质量极其小,但会影响宇宙的起源和演化。根据已知的物理规律,在宇宙早期,正反物质应该成对产生,数量是一样的。但在现在的宇宙中,并没有发现大量反物质存在的迹象。为什么宇宙只由正物质构成?反物质到哪里去了?这是宇宙起源必须回答的关键问题。中微子振荡会带来一个意外的结果,即正反粒子的行为可以不一样,很有可能造成反物质消失。因此,全面了解中微子振荡,是破解“反物质消失之谜”的重要一环。 ⑧由于中微子难以探测,解决这些谜团需要巨大的探测器,获取更精确的数据。日本前两代神冈实验坚持自己的优势方向,掌握核心技术,持之以恒地探索,取得了巨大突破。此次启动的第三代实验“顶级神冈”将建造一个26万吨的水探测器,造价约8亿美元。此前,中国的江门中微子实验和美国的深层地下中微子实验也已开始建设。三个实验间既竞争又互补,联合分析能显著提高发现能力。新一代的中微子实验,也许有一天可以揭开宇宙起源的谜题。 11.(3分)①-③段,概括中微子的三个特点。 12.(3分)判断下列句子使用的说明方法,每空只填一项。 (1)但至少比电子还要轻100万倍。()()(2)它们无处不在,如太阳发光、核反应堆发电、岩石的天然放射性衰变等。() 13.(3分)莱因斯、戴维斯和小柴昌俊获得诺贝尔物理学奖的原因分别是什么? 14.(2分)中微子和揭开宇宙起源谜题有何关系?根据文章内容概括提炼。

步进电机习题

一、名词解释 矩角特性:步距角:运行矩频特性:失调角: 二、不定项选择题 1、正常情况下步进电机的转速取决于( ) A.控制绕组通电频率 B.绕组通电方式 C.负载大小 D.绕组的电流 2、某三相反应式步进电机的转子齿数为50,其齿距角为( ) ° °电角度 °电角度 3、某四相反应式步进电机的转子齿数为60,其步距角为( ) °电角度 °电角度 4、某三相反应式步进电机的初始通电顺序为C B A →→,下列可使电机反转的通电顺序为( ) A.A B C →→ B.A C B →→ C.B C A →→ D.C A B →→ 5、下列关于步进电机的描述正确的是() A.抗干扰能力强 B.带负载能力强 C.功能是将电脉冲转化成角位移 D.误差不会积累 三、填空题 1、步进电机的工作原理是 。 2、矩角特性的数学表达式为 。 3、三相反应式步进电机的通电状态包括 、 和 。 4、五相反应式步进电机多相通电时,其最大静转矩为 。 5、提高步进电机的带负载能力的方法有 和 。 四、简答题 1、如何控制步进电机的角位移和转速步进电机有哪些优点 2、步进电机的转速和负载大小有关系吗怎样改变步进电机的转向 3、为什么转子的一个齿距角可以看作是360°的电角度 4、反应式步进电机的步距角和那些因素有关 5、步进电机的负载转矩小于最大静转矩时,电机能否正常步进运行 6、为什么随着通电频率的增加,步进电机的带负载能力会下降 五、计算题 1、有一台四相反应式步进电机,其步距角为°/°,试求: (1)转子齿数是多少(2)写出四相八拍的一个通电顺序;(3)A 相绕组的电流频率为400Hz 时,电机转速为多少

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

步进电机的性能指标

步进电机的性能指标 (1)步距角θs 每输入一个电脉冲信号转子转过的角度称为步距角。步距角的大小会直接影响步进电机的起动和运行频率,步距角小的往往起动、运行频率较高。 (2) 最大步距误差:是指步进电机旋转一转内相邻两步之间最大步距和理想步距角的差值,用理想步距的百分数表示。 最大步距累积误差:是指任意位置开始,经过任意步之后,角位移误差的最大值。 静态步距角误差:是指实际的步距角与理论的步距角之间的差值,通常用理论步距角的百分数或绝对值大小来衡量。静态步距角误差小,表示电机精度高。 (3)转矩T 保持转矩(定位转矩):是指步进电机绕组不通电时电磁转矩的最大值,或转角不超过一定值时的转矩值。 静转矩:是指步进电机不改变控制绕组通电状态,即转子不转情况下的电磁转矩。 最大静转矩Tjmax:是指步进电机在规定的通电相数下矩角特性的转矩最大值。一般说来,最大静转矩较大的电机可以带动较大的负载转矩。 负载转矩TL :负载转矩和最大静转矩的比值通常取为0.3~0.5左右 动转矩:是指步进电机转子转动情况下的最大输出转矩值。它与运行频率有关。 (4)响应频率 响应频率:是指在某一频率范围,步进电机可以任意运行而不丢失一步的最大频率。通常用起动频率来作为衡量指标。 (5)起动频率fq和起动矩频特性 起动频率(突跳频率):是指步进电机能够不失步起动的最高脉冲频率。产品目录上一般都有空载起动频率的数据,但在实际使用时,步进电机大都要在带负载的情况下起动,这时负载起动频率是一个重要指标。 起动矩频特性:是指步进电机在一定的负载惯量下,起动频率随负载转矩变化的特性称为起动矩频特性,通常以表格或曲线形式给出。 (6)运行频率fq和运行矩频特性 运行频率:步进电机起动后,当控制脉冲频率连续上升时能不失步的最高频率称为运行频率。通常给出的也是空载下的运行频率。 运行矩频特性:当电机带着一定负载运行时,运行频率与负载转矩大小有关,两者的关系称为运行矩频特性。 必须注意:步进电机的起动频率、运行频率及其矩频特性都与电源型式有密切关系,使用者必须了解技术数据给出的性能指标是在怎样型式的电源下测定的。一般来说,高低压切换型电源其性能指标较高,如使用时改为单一电压型电源,则性能指标要相应降低。 (7)额定电流 电机不动时每一相绕组容许通过的电流定为额定电流。当电机运转时,每相绕组通过的是脉冲电流,电流表指示的读数为脉冲电流平均值。绕组电流太大,电机温升会超过容许值。(8)额定电压 步进电机额定电压指的是驱动电源应供给的电压,一般不等于加在绕组两端的电压。

中微子的振荡实验和理论

中微子的振荡实验和理论 华南师范大学物理与电信工程学院物理学勷勤创新班 作者:黄慧敏蔡莹邱小欢麦展风 摘要:,本文主要通过对中微子振荡实验及其理论的阐述,加深对中微子以及中微子振荡的认识,以及阐述对中微子振动实验发展的展望 关键词:中微子振荡 MSN效应质量差 Abstract:This article states the theory and the experiment of neutrino oscillation for illustrating the current situation and expectation of development of the nertrino oscillation’s experiment . Key word:neutrino oscillation .MSN reaction.mess diffirence. 1、引言 大亚湾中微子实验宣布发现了一种新的中微子振荡,并测量到其振荡几率,这一实验结果不仅使我们更深入了解了中微子的基本特性,更为未来进行中微子实验破解“反物质消失之谜”奠定科学基础。 1998年在日本Takayama召开的的世界中微子大会上,日本物理学家宣布他们的超神冈国际合作组发现了大气中微子震荡,成为了物理学界的头号新闻。 粒子物理学经典模型认为,中微子的质量为零,在相互作用中轻子数守恒,中微子不会从一种类型转变成另外一种类型。现在超神冈实验组发现了中微子振荡,这表明了中微子具有质量,中微子可以从μ中微子转变成其他类型的中微子,轻子数也随之不守恒,这推动了物理学的进一步发展。 1930年,为了解释核的β衰变中电子的能力是一个连续谱,泡利引入了中微子这种新型粒子,但人们一直没能从实验中验证中微子的存在。1941年,我国著名物理学家王淦昌先生建议利用原子核的K电子俘获测原子核的反冲能量来证明中微子的存在。历经10年,于1952年此实验获得成功,证明了中微子是一个客观存在的粒子。 中微子,顾名思义,是固有质量极其微小的中性粒子。由于难以探测,我们对中微子的了解非常有限,至今还存在大量未解之谜。中微子有3种类型:电子中微子、μ子中微子、τ子中微子,这三种中微子两两之间转换,可以有三种振荡模式。其中太阳中微子振荡称之为theta12振荡,大气中微子为theta23振荡。

步进电机常识与矩频曲线

步进常识 1.什么是步进电机? 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2.步进电机分哪几种? 步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB)永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。 这种步进电机的应用最为广泛。 3.什么是保持转矩(HOLDING TORQUE)? 保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进

电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m 的步进电机。 4.什么是DETENT TORQUE?(起动转扭) DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。 5.步进电机精度为多少?是否累积? 一般步进电机的精度为步进角的3-5%,且不累积。 6.步进电机的外表温度允许达到多少? 步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。 7.为什么步进电机的力矩会随转速的升高而下降?

中微子通信技术及应用

题目:核地球物理新技术之中微子通信技术与应用展望

引言 (4) 第一章中微子的发现及特点 (5) 1.1 中微子的发现 (5) 1.2 宇宙的信使 (7) 1.3 中微子种类 (10) 第二章中微子通信的理论基础 (11) 2.1 现行光通信的局限性 (11) 2.1.1 光纤通信的局限性 (11) 2.1.2 无线光通信的局限性 (11) 2.2 中微子通信技术概况 (12) 2.2.1 中微子通信简介 (12) 2.2.2 中微子通信工作原理 (14) 2.2.3 中微子通信分类 (15) 2.3 中微子通信的发展简史 (17) 第三章中微子通信的系统组成及主要性能 (19) 3.2 中微子通信系统的组成与原理框图 (19) 3.3 中微子通信系统的实际实现实例 (20) 第四章中微子通信系统采用的关键技术 (22) 4.1 中微子通信系统采用的中微子波束的产生方法与设施 (22) 4.1.1 中微子通信系统采用的中微子波束的调制/解调技术23 4.1.2 中微子通信系统采用的中微子波束接收 (24) 第五章中微子通信系统的优越性 (24)

5.1 频带宽,容量大可以高速率工作 (25) 5.2 有足够强的穿透能力 (26) 5.3 抗干扰性强,不受无线电频段电磁波等的干扰 (26) 5.4 安全可靠,有良好的传输保密性能 (27) 5.5 有极高的有效性,可全天候工作 (28) 5.6 特别适于宇宙空间的通信 (28) 第六章中微子通信技术在地球范围内外的应用 (29) 6.1 中微子通信技术在地球范围之外的应用 (29) 6.2 中微子通信技术在地球范围内的应用 (31) 6.2.1 各类陆地中微子通信网络 (31) 6.2.2 在上空、水下和地下岩层中间的中微子通信网络 .. 31 参考文献 (32)

南极发现极高能中微子动能相当于一枚秒速一米的樱花瓣

南极发现极高能中微子,动能相当于一枚秒速一米的樱花瓣 如何解读NSF 公布IceCube 中微子观测站首次定位 宇宙中的高能中微子源?有何重大意义?刘博洋,天体物理学博士生 先上结论 去年8 月,双中子星并合的时候,我们说人类全面进入了多信使天文学时代。 而本次IceCube 和其他望远镜联手发现一颗极高能中微子 的来源,则标志了多信使天文学时代中又一个重要的里程碑。 发生了什么? 简单版本: 2017 年9 月22 日,建设在南极冰层里的中微子探测器“冰立方”(IceCube)探测到了一次比较罕见的极高能中微子事件:这是一个能量为~290 TeV 的中微子,相当于具有一枚秒速一米的樱花瓣的动能。巧合的是,这颗中微子的来源方向上,在几十亿光年开外,刚好有一个已知的特殊天体。而且,在此事件前后约两周事件内,用于监测高能光子的费米卫星发现,这个天体发出的高能光子的亮度比平时强了 6

倍——所以说,它很可能就是这颗高能中微子的源头。 高能中微子的形成和高能质子具有密切的联系,而高能质子是所谓“宇宙线”(宇宙来的射线,Cosmic Ray)的主要成分,所以本次发现同时首次确认了宇宙中高能中微子和高能宇 宙线的(一种)来源。 正如2017 年8 月,美国激光干涉引力波天文台(LIGO)和费米卫星先后探测到双中子星并合事件发出的引力波和 高能光子,随后全球各个波段的望远镜对事件源天体展开了一大波观测,本次冰立方和费米卫星联手确认这颗高能中微子源的来源之后,也引起了一大波各种波段望远镜对该事件源天体的追捧。这两次全球天文学家的联手狂欢,前后相隔仅仅一个月的时间,可以说代表了当代观测天文学一种“新常态”的到来。 到底发生了什么? 有点复杂,一样一样说,慢慢看。 0、用一句话说说中微子是啥? 1、以前真的从来没有定位过中微子源吗? 2、极高能中微子从哪来的? 3、为什么要跑南极探测中微子? 开始咯~ 0、用一句话说说中微子是啥? 一种质量非常小的基本粒子,比电子还要轻大约两百万倍。

中微子的质量问题

中微子的质量问题《自然杂志》19卷4期的‘探索物理学难题的科学意义'的97个悬而未决的难题:65.中微子有无静止质量?66.有无中微子振荡? 在微观世界中,中微子一直是一个无所不在、而又不可捉摸的过客.中微子产生的途径很多, 如恒星内部的核反应,超新星的爆发,宇宙射线与地球大气层的撞击,以至于地球上岩石等各种物质的衰变等.尽管大多数科学家承认它可能是构成我们所在宇宙中最常见的粒子之一,但由于它穿透力极强,而且几乎不与其它物质发生相互作用,因此它是基本粒子中人类所知最少的一种.被誉为中微子之父的泡利与费密曾假设它没有静止质量.根据物理学的传统理论,稳定、不带电的基本粒子中微子的静止质量应为零,然而美国科学家的研究从另一个角度有可能推翻这一结论. 据俄《知识就是力量》月刊报道,美国斯坦福大学的科研人员对最近24年来人类探测中微子所获数据进行分析后发现,从太阳飞向地球的中微子流运动具有某种周期性,每28天为一个循环,这几乎与太阳绕自己的轴心自转的周期相重合.美国科学家认为,这种周期性是由于太阳不均等的磁场作用造成的.磁场强度的变化,使部分中微子流严重偏移,致使探测器难以捕捉到.对此似可得出结论:中微子流有着自己的磁矩,既然有磁矩,就应有静止质量.在上世纪90年代以前,国际主流科学家们也认为中微子是没有质量的,因为这是标准模型的需要.然而近年包括我国在内的世界上的中微子振荡实验、观察,都探知到中微子有质量.令人惊讶的是,1938年意大利理论物理学家埃托雷·马约拉纳(Ettore Majorana)早就认为微中子有质量,并提出马约拉纳方程式. 1998年6月12日,东京大学的一个国际研究小组在美国《科学》杂志上发表报告说,他们利用一个巨大的地下水槽,证实了中微子有静止质量.这一论断在世界科学界引起广泛关注.由日、美、韩三国科学家组成的科研小组日前在此间宣布,他们在实验中观测到了250公里远处的质子加速器发出的中微子.这是人类首次在如此远的距离内观测到人造粒子. 日本文部省的高能加速器机构位于筑波科学城,东京大学宇宙射线研究所设在岐阜县的神冈,两地相距250公里.6月19日下午,科学家在高能加速器研究机构使用质子加速器向宇宙射线研究所的神冈地下检测槽发射中微子,并通过检测槽检测到了中微子.由于这批中微子来自筑波科学城方向,并且是在发射之后大约0.00083秒时检测到的,科学家因而断定,它们就是质子加速器发出的那批中微子. 这项实验是为了证实中微子有静止质量而设计的.1998年6月,日、美两国科学家宣布探测到中微子有静止质量.如果这一点被证实,现有的理论物理体系将受到巨大冲击.为了验

步进电机工作原理特点及应用

步进电机工作原理,特点及应用 - 步进电机工作原理,特点及应用 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B

与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩: 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比 S

最新中图版地理选修1《第三章 地球的演化》教案

最新中图版地理选修1《第三章地球的演化》教案章地 球的演化 相关素材 中微子地球演化说 是一种关于地球演化的科学假说。 1996 年,由青年学者张国文提出。 地球演化的能源一直是一个悬而未解的问题。板块运动和我们所熟知的其他一些地球运动和现象,如地球磁场的形成和维持、钱德勒晃动以及地球自转的其他不均匀运动、地震和火山活动、地球内部的分层和热运动、地热流的释放等的能量来源都没有十分确切的答案。然而,在地球的形成和一系列演化过程中,能量的产生、迁移、转化和消化起着决定性的作用。可以说,找到了地球演化的能量来源就等于解决了地球科学的主要问题。该学说认为,地球演化的能源来源于太阳中微子。 中微子( neutr ino )是奥地利物理学家泡利( W.Pauli )预言的一种不带电、静止质量极小或为零的中性小粒子( 1930 )。 H.Bethe 和 R.Peierls 经过估算得 出中微子在原子核上浮获的截面约为 10 的负 43 次方厘米 / 核子( 1934 )。柯温和莱因斯通过核反应堆发出的反中微子与质子碰撞证明了中微子的存在( 1956 ),实验探测到的中微子的反应截面与 H.Bethe 和 R.Peierls 的估算基本吻合。据此,物理学家认为绝大多数中微子能够轻而易举地穿过地球以及其他任何行星和恒星。 太阳内部的热核反应在不断地产生大量中微子,向四周辐射。标准理论预言,在由四个质子( P )转变成一个氦原子核的过程中要释放两个中微子。据此可以推算,太阳中微子抵达地球表面时 , 每平方厘米每秒钟约为 660 亿个。 一年内到达地球的太阳中微子的能量为: 1790 万亿亿焦耳。这个能量是地球每 年以火山、地震和地表热流等形式消耗能量的 167 倍。所以,只要有百分之零点几的 中微子被地球吸收,就足以为地球的各种演化提供能量。 中微子地球演化说认为,太阳中微子进入地球后,将与地球物质发生一系列复杂作用,归纳起来可能有如下几种: 1. 康普顿散射 2. 中微子生电子效应 3. 中微子韧致辐射 4. 中微子对湮灭生成光子 5. 中微子对湮灭生成电子对 6. 电子俘获 快中微子或者说高频率的中微子反应截面较小(不易与物质作用),当中微子被减速,使其运动速度(或频率)慢到与原子核内的中微子相近时(此时中微子就变成了热 中微子),它便更容易参与反应(弱相互作用)

中微子的发现的过程及其在现代物理学中的意义

中微子的发现的过程及其在现代物理学中的意义 (1)中微子的提出 要追溯中微子发现的经过,还要从19世纪末20世纪初对放射性的研究谈起.当时科学家们发现,在量子世界中能量的吸收和发射是不连续的.不仅原子的光谱是不连续的,而且原子核中放出的阿尔法射线和伽马射线也是不连续的.这是由于原子核在不同能级间跃迁时释放的,是符合量子世界的规律的.奇怪的是,物质在β衰变过程中释放出的由电子组成的β射线的能谱却是连续的,而且电子只带走了它应该带走的能量的一部分,还有一部分能量失踪了. 瑞士物理学家泡利在1931年最先假设有种新粒子“窃走了”能量.在1931年,泡利在美国物理学会的一场讨论会中提出,这种粒子不是原来就存在于原子核中,而是衰变产生的.1932年真正的中子被发现后,意大利物理学家费米将泡利的“中子”正名为“中微子”. 1933年意大利物理学家费米提出了β衰变的定量理论,指出自然界中除了已知的引力和电磁力以外,还有第三种相互作用——弱相互作用.β衰变就是核内一个中子通过弱相互作用衰变成一个电子、一个质子和一个中微子.他的理论定量地描述了β射线能谱连续和β衰变半衰期的规律,β能谱连续之谜终于解开了.如果中微子有引力质量,那么根据Einstein 的质能方程,必须把能量E*的一部分用来产生中微子,这样留给电子的能量就比E*小.泡利推算出中微子是没有质量的观点是错误的,由于中微子的引力质量非常小,因此在埃利斯的实验中发现电子也偶尔确实会有能量为E*的情况.泡利的中微子假说和费米的β衰变理论虽然逐渐被人们接受,但终究还蒙上了一层迷雾:谁也没有见到中微子.就连泡利本人也曾说过,中微子是永远测不到的. (2)中微子的发现 在泡利提出中微子假说的时候,我国物理学家王淦昌正在德国柏林大学读研究生,直到回国,他还一直关心着β衰变和检验中微子的实验.1941年王淦昌写了一篇题为《关于探测中微子的一个建议》的文章,发表在次年美国的《物理评论》杂志上.1942年6月,该刊发表了美国物理学家艾伦根据王淦昌方案作的实验结果,证实了中微子的存在,这是当年世界物理学界的一件大事.但当时的实验不是非常成功,直到1952年艾伦与罗德巴克合作,才

步进电机的原理,分类,细分原理

步进电机原理及使用说明 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有0.1N?M~40N?M。 签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A…与齿5相对齐,(A…就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。

相关主题