搜档网
当前位置:搜档网 › 导数及其应用同步练习题(教师版)

导数及其应用同步练习题(教师版)

导数及其应用同步练习题(教师版)
导数及其应用同步练习题(教师版)

、选择题

6x

1 .函数y 一6笃的极大值为(

) 1 x

A. 3

B. 4

C. 2

D. 5

2

答案】A 【解析】

6(1 x ) 6x 2x

2

6(1 x )

2

、2 ,

(1 x )

x-i 1,x 2 1,当x=1时,y 取得极大值,极

(1

2

、2

x )

大值为y 3.

2 .函数y x lnx 的单调递减区间是

( )

A.( ,e ))

B. ( e ,))

C.

(e,

)D. 1 \

(0, e )

【答案】D 【解析】试题分析:函数定义域

0,

, Q y xlnx y ln x 1,令y 0得0 x e 1,所以

减区间为 0‘e 1考点:函数单调性点评:判定函数单调性先求定义域,然后由导数小于零求得减区间,由导数 大于零求得增区间

3 .函数y x 2(2 x 2)取得最大值时x 的值是( )

A .

1 B . 1 C . 1 D . 2

2

2

3

【答案】C 【解析】解:因为 y x (2 x ) y' 4x 4x 4x(1 x)(1 x),可知当y ' >0时,和y ' <0时 的解集,进而得到极值,从而得到最值,可知在 x= 1时,取得最大值。选 C

4.已知函数y

f(x),其导函数y f'(x)的图象如下图,则对于函数 y f (x)的描述正确的是(

)

【答案】C 【解析】由y

f'(x)的图象可知f(x)在x=2处取得极小值,在x=0,x=4处取得极大值,在(4,)

上为减函数.

3

5?函数f(x) x 3bx 3b 在(0,1)内有极小值,则(

)

1

A . 0 b 1

B . b 1

C . b 0

D . b -

2

【答案】A 【解析】试题分析:先对函数 f (x )进行求导,然后令导函数等于

0,由题意知在(0, 1)内必有根,

从而得到b 的范围。解:因为函数在(0, 1)内有极小值,所以极值点在(0, 1) 上.令f (x ) =3x 2-3b=0,得 x 2=b ,显然 b > 0,二 x=±

,又T x €( 0, 1), A 0v

v 1.「. 0v b v 1,故选 A .

导数及其应用同步练习题

)上为减函数D.在x 2处取得最小值

0处取得最大值C.在(4,

8 ?函数f (x ) (x 3)e x 的单调递减区间是(

【答案】D

考点:导数的运用点评:本题主要考查应用导数解决有关极值与参数的范围问题

3

6.函数f (x ) x ax 2在区间[1,)内是增函数,则实数 a 的取值范围是( A . [3,

) B ? [ 3, ) C . ( 3, ) D . ( , 3)

【答案】B 【解析】

试题分析:根据题意,由于f (x ) x 3 ax 2在区间[1,)内是增函数,则说明

f '(x) 3x 2 a 0

a 3x 2区间[1,)内是恒成立,则只要 a 大于函数的 最大值即可,结合二次函数的性

质可知当x=1时,函数取得最大值-3,因此可知实数 a 的取值范围是[3,),选B.考点:函数的单调性 点评:解决的关键是能够利用导数恒大于等于零来说明函数的单调性, 于基础题。 从而利用分离参数的思想来得到结论,

7.函数 f(x) x 3 ax 2 3x 9,已知 f (x)在

x 3时取得极值,则a =()

A.2

B.3

【答案】D 【解析】解:

故答案为:选

D

C.4

对函数求导可得,

(x) D.5

2

=3x+2ax+3: f (x ) 在 x=-3 时取得极值f '( -3) =0? a=5

A.(

,2) B. (0,3) C. (1,4)

D.

(2,)

【答案】A 【解析】 解:因为

f (x) (x 3)e x

f'(x)

f'(x)

2

e x (x 3)e x e x (x 2)

因此递减区间为 ,2),选 9.函数f(x)

3

ax

)上既有极大值又有极小值,则 a 的取值范围为(

(A) a 0

(B) 0

(C)

(D)

【解析】解: 因为函数 f(x) 3

ax x 2+x )上既有极大值又有极小值

所以f'(x) 2

3ax 2x+1

4 12a

10?函数f (x )的定义域为开区间(a, b ),导函数 f (x )在(a,b )内的图象如图所示,则函数 f (x )在开区间(a,b )

内极值点有(

【答案】C 【解析】解:由导函数图像可知,图像穿过 x 轴3次,说明有3个极值点,选

0)的极大值为6,极小值为2,则f (x)的减区间(

以 a<3 或 a>6。 二、填空题

11 .函数 f(x) x 3 3ax b(a A. (-1 , 1) B.

(0, 1)

C. (-1 , 0)

D. (-2 , -1 )

【答案】:A 【解析】:函数f (x)

3

x 3ax b(a 0)的极大值为 6,极小值为2,则有 f '(x) 3x 2 3a 0,

x a ,可以得到f (x)在(

a),(、. a,),为增函数,在(

..a^.a)上为减函数,

因此x 、. a 取极大

值,x -. a 取极小值,解得b 4,a 1,减区间为(-1,1)

12.已知函数f (x) 3

2

x ax

(3a 6)x 5有极大值和极小值,则

a 的取值范围是(

A . 3

.1

C . a<3 或 a>6

D . a<1 或 a>3

【答案】C 【解析】 f(x)有极大值和极小值,f (x) 3x 2 2ax 3a 6则

4a 2 4 3 (3a 6)

0,所

13. f (x)

x 3 3x 1在[-2,2]上的最大值是

?【答案】3

【解析】 f (x) 3x 2 3

0, x 1,x 1 ,Q f( 1)

3, f(1) 1,f( 2)

1,f(2)

3.所以最大值为3.

14.当 x

[1,1]时,函数 f(x)

2

x

x 的值域是

e

【答案】[0,e ]

【解析】Q f (x) 空或

2 x

x e 2x

e

2x x 2 x

e

f (x)在区间(1,0)上是减函数,

f(x)在区间(1,2)上是增函数,

所以当x=0,f(x)取得最小值0.因为f(-1)=e,f(1)=

1

1

,显然最大值为e,所以f(x) e

的值域为[0,e ].

15.函数y = 1 x 3— ax 2 + x — 2a 在R 上不是单调函数,

3

,则a 的取值范围是

【答案】(— 1) U (1 ,+^)【解析】试题分析:

2

函数导数 y x 2ax 1,因为函数在R 上不是单调函

数,所以导数值有正有负,即导函数

y

2ax 1与x 轴有两个交点

考点:函数单调性

点评:本题通过函数导数判定函数单调性,在 的情况 R 上不是单调函数,则存在极值点,即存在导数值大于零和小于零

16.已知函数 3 2

x ax

bx 27 在 x 1处有极大值,在x 3处有极小值,则a

【答案】 3

9【解析】

17 ?若函数f (x)

ax 4在区间

1,1恰有一个极值点,则实数 a 的取值范围为

【答案】[1,5)【解析】解:因为函数 f (x)

ax 4在区间 1,1恰有一个极值点,则说明了

f'(x) 3x 2 2x a =0 在区间 1,1 只有

个实数根, 借助于二次函数图像可知实数

a 的

取值范围为[1,5)

3

2

18?函数f(x) x x mx 1是R 上的单调函数,则 m 的取值范围是: ___________________

1

【答案】[-,)【解析】略

3

19?若函数g(x) x 3 ax 2 1在区间1,2上单调递减,则实数 a 的取值范围是 __________________________ .

g(x) x 3 ax 2 1 在 1,2 上单减,则 g ?(x) 3x 2 2ax 0恒成立, 【答案】 a 3

【解析】

2a 3x 恒成立,即 2a (3x) max 6 a 3

20? 若a > 0, b > 0,且函数f(x) = 4x — ax — 2bx + 2在x = 1处有极值,则 ab 的最大值为 _____________________________________________________________________________________________________ ,

【答案】9【解析】解:T f '( x ) =12x 2-2ax-2b ,又因为在x=1处有极值

??? a+b=6: a >0, b >0,二ab < (a+b 2 )2=9 ,当且仅当a=b=3时取等号,所以 ab 的最大值等于 9 三、解答题 (n)求

f(x)

在区间[5,0]上的最大值与最小值。

21 ?设函数

f

(X )

x 3 2x 2

4x 8

。(I)求

f(x)

的极大值点与极小值点;

3

【答案】解:(I)

2

f (x) 3x 4x 4。令

f(x) 0,解得

?/ f

(x)的单调递增区间

,2),弓

2

f(x)的极大值点

x 3 , 极小值点x

2

。3分

(n)列表

x

5

(5, 2)

2

(2,0)

f (x) 一

0 +

f(x)

极小值

/

当 x 0时,f (0)

8

,当 x

2 时,f ( 2)

,当 x 5 时,f ( 5)

63

在区间[

5,0]上的最大值为63,最小值为0。7分

【解析】本试题主要是考查了函数的极值和最值问题的运用。

(1) 先求解导数,然后判定函数的单调性,利用极值的概念可知道饿到第一问的结论。

(2) 在第一问的基础上,进一步比较端点值的函数值域极值的大小关系得到最值。 22 ?已知函数y ax 3 bx 2,当x 1时,有极大值3

(2,3)

,单调递减区间(

5

(3)求此函数在[-2 , 2]上的最大值和最小值。

3

2

【答案】(1) f(x) 6x 9x ; (2)增区间为(0,1),减区间为(,0),(1,);

⑶ f (X )max f( 2) 84, f(x )min

12

【解析】本试题主要是考查了导数在研究函数中极值和最值的问题的运用。 解: (1) f '(x) 3ax 2 2bx ,由题意知 f '(1)

0, f (1) 3 ........ ( 2 分)

39 2b 0

,解得

9

6

, f (x) 6x 3 9x 2 ............... ( 3 分)

a b 3

b 9

(2) f (x) 18x 2 18x

18x(x 1)

当0 x 1 时,f '(x) 0,

f (x)的单调递增区间为(0,1)

当x

0或x 1 时,f '(x)

0 ,

f (x)的单调递减区间为(,0),(1, )

??…

……(7分)

(3) 当x 0时,f(x)极小值 f(0) 0,当 x 1 时,f(x)极大值 f(1) 3

又f( 2) 84, f (2)

12, f (X )max f ( 2)

84,

f (X )min

12

??…

? ( 10

分)

3

23.已知函数f(x) ax bx c 在x 1处取得极值c 4.

(1)求a,b ; (2)设函数y f(x)为R 上的奇函数,求函数f(x)在区间(2,0)上的极值.

考点:本题主要考查应用导数研究函数的单调性、极值。

点评:中档题,本题属于导数应用中的基本问题,通过研究导数的正负,明确函数的单调性。判断函数的驻点是 何种类型的极值点。

24.已知函数 f (x) x 3 ax 2 bx c 在 x

f(1) c 4 a b c c 4

a 2 (1) ?-

f (1) 0

3a b 0

b 6

(2 )因为其为奇函数? f(x)

2x 3

6x

? f (x) 2

6x 6

6(x 令 f (x)

0 ? x 1 或 1 T x (2,0)

? x

1

???当 x ( 2, 1), f (x)

x ( 1,0), f (x) 0

【解析】试题分析:

T

f (x)

b

1处有极大值

? ?? f (x)在 x

f( 1)(x 1)

c 2

3ax 1)

2 6

4无极小值.

【答案】⑴

(2) f (x)在 x

6

1处有极大值

f( 1) 2 6

4无极小值.

-与x 1

时都取得极值

⑴求a,b的值;(2)求函数f(x)的单调区间

1

【答案】解:(1)a=- , b=-—.

—(—)递增区间是(,-)与(1,

3

),递减区间是(一,1)

3

【解析】第一问,禾U用函数f(X)x3 ax— bx c 在x-与x

3

1时都取得极值.得到两个导数值为零,然

后利用求解后的解析式,代入原式中,研究函数的单调性。令f'(x)

0,得x 或x 1

3

当f'(x) 0时,x —或x 1 .

3

解:(1)

,当f (x) 0时,一

3x 1

Q f (x) x3 ax— bx c f '(x)3x——ax b

2

Q f (x)在x=-—和x=1处取得极值,因此则有

3

—1— 4

f'(_ )=0= - a+b=O且f'(1)=0=3+—a+b=0

3 9 3

1

a ,

b —L L 6分

(—)f '(x) 3x—-x-2=(3x+2)(x-1) L L 8分

令f (x)0,得x —或x

3

1

当f'(x)0时,x—或x

3

1

当f'(x)0时—

,3x 1................. 10分

所以函数 f (x)的递增区间是(

,3)与(1,

),递减区间疋(,1); .........

3

................. 1—分

—5.已知函数f (x) x3 ax—bx c,曲线y f (x)在点x=1处的切线为l: 3x y 1 0, —

若x 时,y f (x)有极值。(1 )求a,b,c的值;(—)求y f (x)在[3,1]上的最大值和最小值。

3

【答案】函数f(x) x3 ax—bx c的导函数为f'(x) 3x——ax b,曲线y f (x)在点x=1处的切线为l: 3x y 1 0,则有f'(1) 3 —a b 3,f(1) 1 a b c 4,

又根据x —

时,y f(x)有极值,则有f'(

) 3 (-)——a

b 0,解得a=—,b=-4,c=5

3 3 3 3

——'

(—)f (x) 3x— 4x 4 (x —)(3x —) 0, x —-,当x ( 3, —) ( ,1)时,f (x) 0,

3 3

—' ——

当x (—,-)时,f (x) 0,函数f(x)在(3, —),(—,1)为增函数,在(—,一)为减函数,取f(—)与f⑴中

3 3 3

的最大值为最大值,f( 3)与f()中的最小值求得最小值,

3

最大值f(-—)=13, 最小值f(—/3)=95/—7

【解析】略

3

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足,则曲线y=f (x )在点 (2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D .y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为( ) A .3 B .3 C. 32 D .6 4. 设P 为曲线2 :23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范 围为0,4π?? ???? ,则点P 的横坐标的取值范围为( ) A . []0,1 B .[]1,0- C .11,2??--???? D .1,12?? ???? 5. 已知2 3 ()1(1)(1)(1)(1)n f x x x x x =+++++++++L ,则(0)f '=( ). A . n B .1n - C . (1)2 n n - D . 1 (1)2 n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2

7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为( ) A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5 9. 已知函数()x f x e mx =-的图像为曲线C ,若曲线C 不存在与直线1 2 y x =垂直的切线,则实数m 的取值范围是( ) A. 12m ≤- B. 1 2 m >- C. 2m ≤ D. 2m > 10. 函数y=f (x )的图象如图所示,则导函数 y=f'(x )的图象可能是( ) A . B . C . D . 11..设()f x 是定义在R 上的奇函数,且(2)0f =,当0x >时,有2 '()() 0xf x f x x -<恒成立,则不等式()0xf x >的解集为( ) A .(-2,0)∪(2,+∞) B . (-∞,-2)∪(0,2) C. (-∞,-2)∪(2,+∞) D. (-2,0)∪(0,2) 12.设f (x )=cosx ﹣sinx ,把f (x )的图象按向量=(m ,0)(m >0)平移后,图象恰好为函数y=﹣f′(x )的图象,则m 的值可以为( )

《导数》基础训练题(1)答案

高考数学模拟卷基础题型训练(1)姓名: 导数概念公式 【笔记】 课堂练习 1、在曲线2 y x =上切线倾斜角为 4 π 的点是( D ) A .(0,0) B .(2,4) C .11(, )416 D .11 (,)24 【笔记】 2、曲线2 21y x =+在点(1,3)P -处的切线方程为( A ) A .41y x =-- B .47y x =-- C .41y x =- D .47y x =+ 【笔记】 3、函数在322y x x =-+在2x =处的切线的斜率为 10 【笔记】 4、函数1 y x x =+ 的导数是( A ) A .211x - B .11x - C .2 11x + D .1 1x + 【笔记】 5、函数cos x y x = 的导数是( C ) A .2sin x x - B .sin x - C .2sin cos x x x x +- D . 2 cos cos x x x x +- 【笔记】 6、函数sin (cos 1)y x x =+的导数是( C ) A .cos2cos x x - B .cos2sin x x + C .cos2cos x x + D .2 cos cos x x + 【笔记】 课后作业(1) 姓名: 1、3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值等于( D ) A .3 19 B .3 16 C .3 13 D .3 10 2、函数sin 4y x =在点(,0)M π处的切线方程为( D ) A .y x π=- B .0y = C . 4y x π=- D .44y x π=- 3、求下列函数的导数: (1)12 y x =; (2)41 y x = ; (3 )y 【答案】(1)11 ' 12x y =, (2)5 4--=x y ;(3)52 5 3- =x y 4、若3' 0(),()3f x x f x ==,则0x 的值为_________1±________ 5、函数sin x y x =的导数为___________2 ' sin cos x x x x y -=__________ 6、与曲线y =1 e x 2相切于P (e ,e)处的切线方程是(其中e 是自然对数的底) 高考数学模拟卷基础题型训练(2)姓名: 1、已知曲线3 :C y x =。求曲线C 上横坐标为1的点处的切线的方程为 【笔记】 2、已知3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值是( ) A . 193 B .163 C .133 D .10 3 【笔记】

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

导数及其应用测试题

导数及其应用测试题 一、选择题(本大题共12小题,第小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.) 1.下列各式正确的是( ) A .(sin a )′=cos a (a 为常数) B .(cos x )′=sin x C .(sin x )′=cos x D .(x -5 )′=-15 x -6 2.函数y =x 2 (x -3)的减区间是( ) A .(-∞,0) B .(2,+∞) C .(0,2) D .(-2,2) 3.曲线y =4x -x 3 在点(-1,-3)处的切线方程是( ) A .y =7x +4 B .y =7x +2 C .y =x -4 D .y =x -2 4.若函数f (x )=x 3 +ax 2 -9在x =-2处取得极值,则a =( ) A .2 B .3 C .4 D .5 5.函数y =13 x 3+x 2 -3x -4在[-4,2]上的最小值是( ) A .- 173 B.163 C .-643 D .-113 6.若曲线y =1 x 在点P 处的切线斜率为-4,则点P 的坐标是( ) A.????12,2 B.????-12,-2或????12,2 C.????-12,-2 D.????1 2,-2 7.已知函数y =f (x ),其导函数y =f ′(x )的图象如下图所示,则y =f (x )( ) A .在(-∞,0)上为减函数 B .在x =0处取极小值 C .在(4,+∞)上为减函数 D .在x =2处取极大值 8.若f (x )=-x 2 +2ax 与g (x )= a x +1 ,在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1) D .(0,1] 9.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱底面周长与高的比为( ) A .2∶1 B .1∶πC.1∶2 D .2∶π 10.已知对任意实数x ,有()()f x f x -=-,()()g x g x -=, 且0x >时,()0f x '>,()0g x '>,则0x <时( ) A.()0f x '>,()0g x '> B.()0f x '>,()0g x '< C. ()0f x '<,()0g x '> D. ()0f x '<,()0g x '< 11.已知f(2)=-2,f ′(2)=g(2)=1,g ′(2)=2,则函数()() g x f x 在x=2处的导数值为( ) A.- 54 B.5 4 C.- 5 D.5 12.对于R 上可导的任意函数f (x ),若满足(x -1)f x '() ≥0,则必有( ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1)

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

导数练习题带标准答案

导数练习题带答案

————————————————————————————————作者:————————————————————————————————日期:

导数及其应用 一、选择题 1.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( ) A 充分条件 B 必要条件 C 充要条件 D 必要非充分条件 2.已知点P(1,2)是曲线y=2x 2上一点,则P 处的瞬时变化率为 ( ) A .2 B .4 C .6 D . 2 13.设函数()f x =x 3 ﹣x 2 ,则)1(f '的值为( ) A .-1 B .0 C .1 D .5 4.已知函数???>+<+=) 0()0(1)(x a x x a x f x ,若)(lim 0 x f x →存在,则= -)2(' f A.2ln 4 B. 45 C.2- D.2ln 4 15.设球的半径为时间t 的函数()R t 。若球的体积以均匀速度c 增长,则球的表面积的增长速 度与球半径 A.成正比,比例系数为C B. 成正比,比例系数为2C C.成反比,比例系数为C D. 成反比,比例系数为2C 6.已知函数1)(2 3--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是 ( ) A .),3[]3,(+∞--∞Y B .]3,3[- C .),3()3,(+∞--∞Y D .) 3,3(-7.一点沿直线运动,如果由始点起经过t 秒后的距离为43215 243 s t t t =-+,那么速度为零的时 刻是 ( ) A .1秒末 B .0秒 C .4秒末 D .0,1,4秒末 8.下列等于1的积分是 ( ) A . dx x ? 1 B . dx x ?+1 0)1( C .dx ?1 01 D .dx ?1021 9.1 1lim 10 0-+→x x x 的值是 A.不存在 B.0 C.2 D.10

导数及其应用经典题型总结

《导数及其应用》经典题型总结 一、知识网络结构 题型一 求函数的导数及导数的几何意义 考 点一 导数的概念,物理意义的应用 例 1.(1)设函数()f x 在 2x =处可 导,且(2)f '=, 求 0(2)(2) lim 2h f h f h h →+--; (2)已知()(1)(2) (2008)f x x x x x =+++,求(0)f '. 考点二 导数的几何意义的应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3 43 13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程. 题型二 函数单调性的应用 考点一 利用导函数的信息判断f(x)的大致形状 例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( ) 考点二 求函数的单调区间及逆向应用 例1 求函数522 4 +-=x x y 的单调区间.(不含参函数求单调区间) 例2 已知函数f (x )=1 2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间) 练习:求函数x a x x f + =)(的单调区间。 例3 若函数f(x)=x 3 -ax 2 +1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用) 练习1:已知函数0],1,0(,2)(3 >∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。 2. 设a>0,函数ax x x f -=3 )(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

导数基础练习题

导数基础题 一 1.与直线042=+-y x 的平行的抛物线2 x y =的切线方程是 ( ) A .032=+-y x B .032=--y x C .012=+-y x D .012=--y x 2. 函数)1()1(2 -+=x x y 在1=x 处的导数等于 ( ) A .1 B .2 C .3 D .4 3.过抛物线2 x y =上的点M (41 ,21-)的切线的倾斜角为( ) A . 4 π B .3π C .43π D .2 π 4.函数3 31x x y -+=有( ) (A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2 (D )极小值-1,极大值3 1、已知()2 f x x =,则()3f '等于( ) A .0 B .2x C .6 D .9 2、()0f x =的导数是( ) A .0 B .1 C .不存在 D .不确定 3、32y x =的导数是( ) A .23x B .213x C .1 2- D .323x 4、曲线n y x =在2x =处的导数是12,则n 等于( ) A .1 B .2 C .3 D .4 5、若()3f x x =,则()1f '等于( ) A .0 B .1 3 - C .3 D .13 6、2y x =的斜率等于2的切线方程是( ) A .210x y -+= B .210x y -+=或210x y --= C .210x y --= D .20x y -=

7、在曲线2y x =上的切线的倾斜角为 4 π 的点是( ) A .()0,0 B .()2,4 C .11,416?? ??? D .11,24?? ??? 8、已知()53sin f x x x -=+,则()f x '等于( ) A .653cos x x --- B .63cos x x -+ C .653cos x x --+ D .63cos x x -- 9、函数2cos y x -=的导数是( ) A .2cos sin x x - B .4sin 2cos x x - C .22cos x - D .22sin x - 10、设()sin y f x =是可导函数,则x y '等于( ) A .()sin f x ' B .()sin cos f x x '? C .()sin sin f x x '? D .()cos cos f x x '? 11、函数()2 2423y x x =-+的导数是( ) A .()2823x x -+ B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+- 12、22sin 35cos y x x =+的导数是( ) A .22sin 35sin x x - B .2sin 610sin x x x - C .23sin 610sin x x x + D .23sin 610sin x x x - 13、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+ B .72y x =+ C .4y x =- D .2y x =- 14、已知a 为实数,()()()24f x x x a =--,且()10f '-=,则 a =___________. 17、正弦曲线sin y x =上切线斜率等于 1 2 的点是___________.

最新导数及其应用知识点经典习题集

导数及其应用 1、函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111 212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数在0x x =处的瞬时变化率是 ,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即= . 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 )(x f y =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000)(x f y =0x )(x f y =0x )(0'x f 0|'x x y =)(0'x f x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000

6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有: 7.用导数求函数单调区间的步骤:①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 8.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。(2) 求函数f (x )的导数 '()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区 间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值 9.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;

高数导数的应用习题及答案

一、是非题: 1. 函 数 ()x f 在 []b a , 上 连 续 ,且()()b f a f =,则 至 少 存 在 一 点 ()b a ,∈ξ,使()0=ξ'f . 错误 ∵不满足罗尔定理的条件。 2.若函数()x f 在0x 的某邻域内处处可微,且()00='x f ,则函数()x f 必在0x 处取得 极值. 错误 ∵驻点不一定是极值点,如:3 x y =,0=x 是其驻点,但不是极值点。 3.若函数()x f 在0x 处取得极值,则曲线()x f y =在点()()00,x f x 处必有平 行 于x 轴 的切线. 错误 ∵曲线3 x y =在0=x 点有平行于x 轴的切线,但0=x 不是极值点。 4.函数x x y sin +=在()+∞∞-,内无极值. 正确 ∵0cos 1≥+='x y ,函数x x y sin +=在()+∞∞-,内单调增,无极值。 5.若函数()x f 在()b a ,内具有二阶导数,且()()0,0>''<'x f x f ,则曲线()x f y =在()b a ,内单调减少且是向上凹. 正确 二、填空: 1.设()x bx x a x f ++=2 ln (b a ,为常数)在2,121==x x 处有极值,则=a ( 23- ),=b ( 16 - ). ∵()12++='bx x a x f ,当2,121==x x 时, 012=++b a ,0142=++b a ,解之得6 1 ,32-=-=b a 2.函数()() 1ln 2 +=x x f 的极值点是( 0=x ). ∵()x x x f 211 2 ?+= ',令()0='x f ,得0=x 。又0>x ,()0>'x f ; 0x ,()0>''x f ;0

导数练习题含答案

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32 ()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3 y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a = +2 ()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 22 2()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2 y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线32 153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

高二数学选修2-2导数及其应用测试题(含答案)

高二数学选修2-2导数及其应用测试题 一、 选择题(本大题共12小题,每小题5分,共60分) 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 》 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ) . A .]21,21[2π e B .)2 1 ,21(2π e C .],1[2π e D .),1(2π e 8.07622 3 =+-x x 在区间)2,0(内根的个数为 ( ) ] A .0 B .1 C .2 D .3

导数基础练习题

导数基础练习题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

导数基础练习题 一 选择题 1.函数()2 2)(x x f π=的导数是( C ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 28)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( A ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时, ()0()0f x g x ''>>,,则0x <时( B ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则(A ) (A ) 10<b (D ) 2 1 ,对于任意实数x 都有 ()0f x ≥,则 (1) '(0) f f 的最小值为( C ) A .3 B . 52 C .2 D .32

导数及其应用大题精选

导数及其应用大题精选 姓名____________班级___________学号____________分数______________ 1 .已知函数)0()(>++ =a c x b ax x f 的图象在点(1,)1(f )处的切线方程为1-=x y . (1)用a 表示出c b ,; (2)若x x f ln )(≥在[1,+∞)上恒成立,求a 的取值范围. 2 .已知2 ()I 若()f x 在x=1处取得极值,求a 的值; ()II 求()f x 的单调区间; (Ⅲ)若()f x 的最小值为1,求a 的取值范围 . 4 .已知函数 ()ln f x x x =. (Ⅰ)求()f x 的单调区间; (Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立. 5 .已知函数()ln a f x x x =- ,其中a ∈R . (Ⅰ)当2a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程; (Ⅱ)如果对于任意(1,)x ∈+∞,都有()2f x x >-+,求a 的取值范围.

6 .已知函数 2()4ln f x ax x =-,a ∈R . (Ⅰ)当1 2 a = 时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性. 7 .已知函数 ()e (1)x f x x =+. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若对于任意的(,0)x ∈-∞,都有()f x k >,求k 的取值范围. 8 .已知函数 a ax x x f 23)(3+-=,)(R a ∈. (Ⅰ) 求)(x f 的单调区间; (Ⅱ)曲线)(x f y =与x 轴有且只有一个公共点,求a 的取值范围. 9 .已知函数 22()2ln (0)f x x a x a =->. (Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)求函数()f x 的单调区间; (Ⅲ)若()f x 在[1]e , 上没有零点,求实数a 的取值范围. 10.已知曲线 ()x f x ax e =-(0)a >. (Ⅰ)求曲线在点(0,(0)f )处的切线; (Ⅱ)若存在实数0x 使得0()0f x ≥,求a 的取值范围.