搜档网
当前位置:搜档网 › 平面向量基本概念与运算法则(含基础练习题)

平面向量基本概念与运算法则(含基础练习题)

平面向量基本概念与运算法则(含基础练习题)
平面向量基本概念与运算法则(含基础练习题)

平面向量1 1.数量和向量的区别:

数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小,不能比较大小。

2.向量的表示方法:

①用有向线段表示;②用字母b a ,等表示;③用有向线段的起点与终点字母表示:AB ;向量AB

的大小——长度称为向量的模,记作|AB |。

3.有向线段:

具有方向的线段叫做有向线段,三要素:起点、方向、长度。 向量与有向线段的区别:

⑴向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相同的向量;

⑵有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向,也是不同的有向线段。

4.零向量、单位向量概念:

①长度为0的向量叫零向量,记作0。

②长度为1个单位长度的向量,叫做单位向量。

说明:零向量、单位向量的定义都只是限制了大小。

5.相等向量的定义:长度相等且方向相同的向量叫相等向量。 说明:⑴向量a 与b 相等,记作a =b ;

⑵零向量与零向量相等;

⑶任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的起点无关。

6.平行向量的定义:

①方向相同或相反的非零向量叫平行向量;

②我们规定0与任一向量平行。

说明:⑴综合①②才是平行向量的完整定义;

⑵向量c b a 、、

平行,记作c b a ////。 二、向量的运算法则

1.向量的加法

某人从A 到B ,再从B 到C ,则两次的位移和:AC BC AB =+;

⑴向量的加法:求两个向量和的运算,叫做向量的加法。 ⑵三角形法则:AC BC AB b a =+=+

⑶四边形法则:OC AC OA OB OA b a =+=+=+

三角形法则 四边形法则

练习:化简(1)

CD BC AB ++)( (2)OM BO MB AB +++)( (3)CO BO OC OA +++

2.向量的减法

⑴相反向量:与a 长度相等,方向相反的向量,叫做a 的相反向量,记作a -。

①a a =--)(;

②任一向量与其相反向量的和是零向量,即:0)()(=+-=-+a a a a ;

③如果b a ,

是互为相反的向量,则:0,,=+-=-=b a a b b a 。 ⑵向量的减法:

向量a 加上b 的相反向量,叫做a 和b 的差。即)(b a b a -+=-

向量减法法则:两向量起点相同,则差向量就是连结两向量终点,指向被减向量终点的向

量。

注意:①起点相同;②指向被减向量的终点。

练习:(1)AC AB - (2)OA OD - (3)AD OD OA +- (4)DC AD AB --

例1.平行四边形ABCD 中,b AB a AD ==,,用a 、b 表示向量DB AC ,。

例2.已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为a 、b 、c ,试用向量a 、b 、c 表示OD 。

3.向量的数乘运算

实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:

⑴||||||a a λλ=;

⑵当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;特别的,

当λ=0或a =0时,λa =0。

注意:实数λ与向量a ,可以做积,但不可以做加减法,即λ+a ,λ-a 是无意义的。 实数与向量的积的运算律:

设a 、b 为任意向量,μλ,为任意实数,则有: ①a a )()(λμμλ=; ②a a a μλμλ+=+)(

③b a b a λλλ+=+)(

例1.计算

a 4)3).(1(?-; a

b a b a ---+)(2)(3).2(; )23()32).(3(

c b a c b a +---+

例2.计算

(1).);2(2)(3b a b a +-- (2).)243(3)362(2c b a c b a -+---+

结论:向量b 与非零向量a 共线,当且仅当有唯一一个实数λ,是的b =λa 。 例3.向量212122,e e b e e a +-=-=是否共线?

例 4.平行四边形ABCD 的两条对角线相交于点M ,且b AD a AB ==,,你能用b a ,表示

MD MC MB MA ,,,吗?

二、向量运算法则的应用

向量的加法、减法、数乘运算统称为响亮的线性运算,对任意实数21μμλ、、,恒有

b a b a 2121)(λμλμμμλ+=+。

1.有关向量共线问题

例1.已知向量b a 、

满足)23(5

1

253b a b a b a +=--+,求证:向量b a 和共线。

例2.已知BC DE AB AD 3,3==,试判断AE AC 与是否共线?

定理的应用:

(1).有关向量共线问题;

(2).证明三点共线:C B A BC BC AB 、、→≠=)0(λ三点共线; (3).证明两直线平行问题。

例 3.已知任意两个非零向量b a 、

,试作b a OC b a OB b a OA 3,2,+=+=+=,你能判断C B A 、、三点间的位置关系吗?为什么?

例4 .在四边形ABCD 中,b a CD b a BC b a AB 35,4,2--=--=+=,求证:四边形ABCD 为梯形。

高中数学必修4同步练习

(2.1-2.2平面向量的概念及线性运算)

姓名______班级______学号______

一.选择题(每题5分)

1.设b →

是a →

的相反向量,则下列说法错误的是( ) A .a →与b →

的长度必相等 B .b a =

C .a →

与b →

一定不相等 D .a →

是b →

的相反向量

2.已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为a →

、b →

、c →

,则向量OD 等于( ) A .a b c ++ B .a b c -+ C .a b c +- D .a b c --

3.(如图)在平行四边形ABCD 中,下列正确的是( ). A .AB CD = B .AB AD BD -= C .AD AB AC += D .AD BC 0+=

4.CO BO OC OA +++等于( ) A .AB B .BA C .AC D .CA

5.化简SP PS QP OP ++-的结果等于( ) A 、QP B 、OQ C 、SP D 、SQ

6.(如图)在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( ) A AB OC = B AB ∥DE

C A

D B

E = D AD FC =

7.下列等式中,正确的个数是( ) ①a b b a +=+②a b b a =--③0a a -=- ④(a )a --=⑤a (a )0+-= A .5 B .4 C .3 D .2

8.在△ABC 中,AB a =,AC b =,如果a ||b |=|, 那么△ABC 一定是( ). A .等腰三角形B .等边三角形 C .直角三角形D .钝角三角形

9.在ABC ?中,BC a =,CA b =,则AB 等于( ) A .a b + B .(a b )-+ C .a b - D .b a - 10.已知a 、b 是不共线的向量,AB a b λ=+,AC a b μ=+(λ、R μ∈),当且仅当( )时, A 、B 、C 三点共线.

()1A λμ+=()1B λμ-=()1C λμ=-()1D λμ=

二.填空题(每题5分)

11.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是______ 12.ABCD 的两条对角线相交于点M ,且AB a,AD b ==,则MA =______,

MB =______,MC =______,MD =______.

13.已知向量a 和b

不共线,实数x ,y 满足

b y x a b a y x

)2(54)2(-+=+-,则=+y x ______

14.化简:①AB BC CD ++=______; ②AB AD DC --=______;

③()()AB CD AC BD ---=______

15.化简下列各式:

(1)=++++FA BC CD DF AB ______; (2)()()AB MB BO BC OM ++++=______.

16.在ABCD 中,AB a,AD b ==,则

AC =______,DB =______.

17.在四边形ABCD 中有AC AB AD =+,则它的形状一定是______

18.已知四边形ABCD 中,1

AB DC 2

=,且AD BC

=则四边形ABCD 的形状是______.

19.化简:=-++-)()(BD CP BA DP AC ______.

20.在△ABC 中,设BC a →

=,CA b →

=,则AB =______

三.解答题(每题10分)

21.某人从A 点出发向西走了10m ,到达B 点,然后改变方向按西偏北?60走了15m 到达C 点,最后又向东走了10米到达D 点.

(1)作出向量AB ,BC ,CD (用1cm 长线段代表10m 长);(2)求DA

B

D C A

C

D

A B

N M

22.如图,在梯形ABCD 中,对角线AC 和BD 交于点O ,E 、F 分别是AC 和BD 的中点,分别写出 (1)图中与EF 、CO 共线的向量;

(2)与EA 相等的向量.

23.在直角坐标系中,画出下列向量:

(1)a 2=,a 的方向与x 轴正方向的夹角为 60,与y 轴正方向的夹角为 30;

(2)a 4=,a 的方向与x 轴正方向的夹角为 30,与y 轴正方向的夹角为 120;

(3)a 42=,a 的方向与x 轴正方向的夹角为

135,与y 轴正方向的夹角为

135. 24.在ABC ?所在平面上有一点P ,

使得AB PC PB PA =++,试判断P 点的位置.

25.如图所示,在平行四边形ABCD 中,点M 是AB 边中点,点N 在BD 上且BD BN 3

1

=,求证:M 、N 、C 三点共线.

参考答案

一.选择题(每题5分)

1.C

2.B

3.C

4.B

5.B

6.D

7.C

8.A

9.B 10.D

二.填空题(每题5分) 11.圆

12.

111(a b ),(a b ),(a b )222

-+-+,1

(b a )2-

13.1

14.①AD ;②CB ;③0

15.(1)0

(2)AC

16.a b +,a b - 17.平行四边形 18.等腰梯形 19.0

20

.→

--b a

三.解答题(每题10分) 21.【解答】(1)如图,

(2)∵CD AB -=,

故四边形ABCD 为平行四边形, ∴)m (15==DA BC

22.【解答】与EF 共线的向量有AB 、CD ; 与CO 共线的向量有CE ,CA ,OE ,OA ,EA ; 与EA 相等的向量是CE

23.【解答】

24.【解答】

PA PB PC AB ++=

()

PA PA AB PC AB ∴+++=,故PC PA -=2

A ∴、P 、C 三点共线,

且P 是线段AC 的三分点中靠近A 的那一个

25.【解答】提示:可以证明MC 3MN =

C

D

A B

N

M

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

(完整版)平面向量练习题集答案

平面向量练习题集答案 典例精析 题型一向量的有关概念 【例1】下列命题: ①向量AB的长度与BA的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反; ③两个有共同起点的单位向量,其终点必相同; ④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上. 其中真命题的序号是. 【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD 是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①. 【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可. 【变式训练1】下列各式: a?; ①|a|=a ②(a?b) ?c=a?(b?c); ③OA-OB=BA; ④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+DC=2MN; ⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b). 其中正确的个数为() A.1 B.2 C.3 D.4 a?正确;(a?b) ?c≠a?(b?c);OA-OB=BA正确;如下图所示,【解析】选D.| a|=a MN=MD+DC+CN且MN=MA+AB+BN, 两式相加可得2MN=AB+DC,即命题④正确; 因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线, 即得(a+b)⊥(a-b). 所以命题①③④⑤正确.

题型二 与向量线性运算有关的问题 【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且DM = DO 31,点N 在线段OC 上,且ON =OC 3 1 ,设AB =a , AD =b ,试用a 、b 表示AM ,AN ,MN . 【解析】在?ABCD 中,AC ,BD 交于点O , 所以DO =12DB =12(AB -AD )=1 2 (a -b ), AO =OC =12AC =12(AB +AD )=1 2(a +b ). 又DM =13DO , ON =1 3OC , 所以AM =AD +DM =b +1 3DO =b +13×12(a -b )=16a +56 b , AN =AO +ON =OC +1 3OC =43OC =43×12(a +b )=2 3(a +b ). 所以MN =AN -AM =23(a +b )-(16a +56b )=12a -16 b . 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形. 【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点P 满足OP =OA +λ(AB +AC ),若λ=1 2 时,则PA ?(PB +PC )的值为 . 【解析】由已知得OP -OA =λ(AB +AC ), 即AP =λ(AB +AC ),当λ=12时,得AP =1 2(AB +AC ), 所以2AP =AB +AC ,即AP -AB =AC -AP , 所以BP =PC , 所以PB +PC =PB +BP =0, 所以PA ? (PB +PC )=PA ?0=0,故填0.

平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理 突破点(一)平面向量的有关概念 知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量 考点 平面向量的有关概念 [典例]⑴设a , b 都是非零向量,下列四个条件中,使 向=而成立的充分条件是( ) A . a =- b B . a // b C . a = 2b D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是( ) A . o B . 1 C . 2 D . 3 [解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与 |a| |b| |a| |b| 向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b ,故a = 2b 是耳=g 成立的充分条件. |a| |2b| |b| |a| |b| (2)向量是既有大小又有方向的量, a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o 平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上 所述,假命题的个数是 3. [答案](1)C (2)D _ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小 […(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上. 突破点(二)平面向量的线性运算 1. 向量的线性运算: 加法、减法、数乘 2. 平面向量共线定理: 向量b 与a(a ^ o )共线的充 要条件是有且只有一个实数 人使得b = 1 [答案](1)D ⑵1 —…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「 i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解. ⑵含图形的情况:将它们转化到 ] 三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解. 2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________ 考点二 平面向量共线定理的应用 [例2Lu 设两个非零向J a 和b 不共鈿 平面向量的线性运算 …uuur …"uLu r 考点一 ~~uuur ----- u uur [例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC 12 5 2 A.3b + 3C B.gC — 3b 2 1 2 1 C.gb — 3c D.gb + 3C uuuu 1 uuur ⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ . uuur umr [解析](1)由题可知BC = AC - uuur + BD = c + 2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur (2)如图,因为AN = 2 NC ,所以 uuur 2 uuuu m AB + 3 AN ?因为B ,P ,N 三点共线, ―uuur ,贝U AD =( ) UULT uuur 2 uuur 若 AP = m AB + 9 AC ,则实 2 uuir 2 uuir uur uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC = 1 m = 3.

平面向量及其加减运算(教师版)

【知识结构】 【要点点拨】 一.平面向量 1.有向线段 规定了方向的线段叫做有向线段。 2.向量 既有大小又有方向的量叫做向量。 向量的大小也叫做向量的长度。(或向量的模) 3.向量的表示 (1)向量可以用有向线段直观表示 ①有向线段的长度表示向量的长度; ②有向线段的方向表示向量的方向。 (2)常见的表示方法 ①向量AB u u u r ,长度记为AB u u u r ; ②向量a r 、b r 、c r ,长度记为a r 、b r 、c r 。 4.相等的向量 方向相同且长度相等的两个向量叫做相等的向量。 5.相反的向量 方向相反且长度相等的两个向量叫做互为相反的向量。 6.平行向量 方向相同或相反的两个向量叫做平行向量。 例1:判断下列语句是否正确: (1)用有向线段表示向量时,起点不同但“同向且等长”的有向线段表示相等的向量。 (2)表示两个向量的有向线段具有同一起点,那么当两个向量不相等时,两个有向线段的终点有可能相 同。 (3)向量AB u u u r 与向量BA uu u r 是同一个向量。 (4)相等向量一定是平行向量。 (5)互为相反的向量不一定是平行向量。 (6)平行向量一定是相等向量或互为相反的向量。 解:(1)√ (2)× (3)× (4)√ (5)× (6)× 例2:在梯形ABCD 中,//AD BC ,AB CD ,//DE AB ,点E 在BC 上,如果把图中线段都画成有向 平面向量的减法 平面向量的加法 平面向量的概念平面向量

线段,那么在这些有向线段表示的向量中,指出(用符号表示)。 (1)所有与AB u u u r 相等的向量。 (2)所有与AB u u u r 互为相反的向量。 (3)所有与AD u u u r 平行的向量。 解:(1)DE AB =u u u r u u u r ; (2)与AB u u u r 互为相反的向量:BA uu u r 、ED u u u r ; (3)所有与AD u u u r 平行的向量为:DA u u u r ,BE uuu r ,EB uu u r ,EC uuu r ,CE u u u r ,BC uuu r ,CB u u u r 。 二.平面向量的加法 1.向量的加法 求两个向量的和向量的运算叫做向量的加法。 2.零向量 长度为零的向量叫做零向量,记作0r 。规定0r 的方向可以是任意的(或者说不确定);00=r 。 因此,两个相反向量的和向量是零向量,即:()0a a +-=r r r 。 对于任意向量,都有0a a +=r r r ,0a a +=r r r 。 3.向量的加法满足交换律:a b b a +=+r r r r 。 4.向量的加法满足结合律:()()a b c a b c ++=++r r r r r u u r 。 5.向量加法的三角形法则 求不平行的两个向量的和向量时,只要把第二个向量与第一个向量首尾相接,那么以 第一个向量的起点为起点、第二个向量的终点为终点的向量就是和向量。 6.向量加法的多边形法则 几个向量相加,可把这几个向量首尾顺次相接,那么以第一个向量的起点为起点、最后一个向量的终点为终点的向量,就是这几个向量的和向量。 例1 如图,已知向量a r 与b r ,求作a b +r r 。 略 例2 计算:(1)AB BC +u u u r u u u r AC u u u r ;OE EF +u u u r u u u r OF u u u r . (2)AE FC EF ++=u u u r u u u r u u u r AC u u u r 。 (3)AB BC CD DE EF ++++u u u r u u u r u u u r u u u r u u u r AF u u u r 。 三、平面向量的减法 1.向量的减法

平面向量基础练习题

向量练习 一、选择题 1. 如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 2. 下列说法正确的是( ) A.,a b b c a c ?r r r r r r P P P B. a b b c a c ?=??=r r r r r r C. ()()a b c a b c ??=??r r r r r r D.a b a b =r r r r 3. 在矩形ABCD 中,O 是对角线的交点,若 e e 则213,5=== ( ) A .121(53)2 e e +r r B . 121(53)2e e -r r C .211(35)2e e -r r D .211(53)2e e -r r 4. 已知4||,6||==,则||的取值范围为( ) (A ))8,2((B )]8,2[(C ))10,2((D )]10,2[ 5. 设)3,1(A ,)3,2(--B ,)7,(x C 若∥,则x 的取值范围是( ) (A )0 (B )3 (C )15 (D )18 6. 与向量a=(-5,4)平行的向量是( ) A.(-5k,4k ) B.(-k 5,-k 4) C.(-10,2) D.(5k,4k) 7. 若点P 分AB 所成的比为 43,则A 分BP 所成的比是( ) A.73 B. 37 C.- 37 D.-7 3 8. 设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( )

A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,-21) 9. 在四边形ABCD 中,若AC AB AD =+u u u r u u u r u u u r ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 10. 设四边形ABCD 中,有DC = 21AB ,且|AD |=|BC |,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形 11. 已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D 的坐标 是( ) A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 12. 如图.点M 是ABC ?的重心,则MC MB MA -+为( ) A .0? B .4ME C .4M D D .4MF 13. 已知ABC ?的顶点)3,2(A 和重心)1,2(-G ,则BC 边上的中点坐标是( ) A .)3,2(- B .)9,2(- C .)5,2(- D .)0,2( 14. 已知点O 、A 、B 不在同一条直线上,点P 为该平面上一点,且32 OA OB OP -=u u u r u u u r u u u r ,则 ( ) (A) 点P 在线段AB 上 (B) 点P 在线段AB 的反向延长线上 (C) 点P 在线段AB 的延长线上 (D) 点P 不在直线AB 上 15. 已知点A (2,3)、B (10,5),直线AB 上一点P 满足|PA|=2|PB|,则P 点坐标是( ) (A )2213,33?? ??? (B )(18,7) (C )2213,33?? ??? 或(18,7) (D )(18,7)或(-6,1)

高中数学经典解题技巧和方法:平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。

[高二数学]平面向量的概念及运算知识总结

平面向量的概念及运算 一.【课标要求】 (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示; (2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件 二.【命题走向】 本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。 预测2010年高考: (1)题型可能为1道选择题或1道填空题; (2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。 三.【要点精讲】 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点 的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a | =0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量) 方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相

平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB =3a, CD =-5a ,且||||AD BC = ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =1 3 CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB =a +2b ,BC = -5a +6b ,CD =7a -2b ,则一定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =x AB ,AE =y AC ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB =2AC ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB =(sin α,cos β), α,β∈(-2π,2π),则α+β= * 11.已知a =(1,2) ,b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

平面向量基础试题(一)

平面向量基础试题(一) 一.选择题(共12小题) 1.已知向量=(1,2),=(﹣1,1),则2+的坐标为() A.(1,5) B.(﹣1,4)C.(0,3) D.(2,1) 2.若向量,满足||=,=(﹣2,1),?=5,则与的夹角为()A.90°B.60°C.45°D.30° 3.已知均为单位向量,它们的夹角为60°,那么=()A.B. C.D.4 4.已知向量满足||=l,=(2,1),且=0,则||=()A.B.C.2 D. 5.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D. 6.已知点P(﹣3,5),Q(2,1),向量,若,则实数λ等于() A.B.﹣C.D.﹣ 7.已知向量=(1,2),=(﹣2,x).若+与﹣平行,则实数x的值是()A.4 B.﹣1 C.﹣4 8.已知平面向量,且,则为()A.2B.C.3 D.1 9.已知向量=(3,1),=(x,﹣1),若与共线,则x的值等于()A.﹣3 B.1 C.2 D.1或2 10.已知向量=(1,2),=(2,﹣3),若m+与3﹣共线,则实数m=

() A.﹣3 B.3 C.﹣D. 11.下列四式不能化简为的是() A.B. C.D. 12.如图所示,已知,=,=,=,则下列等式中成立的是() A.B.C.D. 二.选择题(共10小题) 13.已知向量=(2,6),=(﹣1,λ),若,则λ=. 14.已知向量=(﹣2,3),=(3,m),且,则m= . 15.已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m= .16.已知,若,则等于.17.设m∈R,向量=(m+2,1),=(1,﹣2m),且⊥,则|+|= .18.若向量=(2,1),=(﹣3,2λ),且(2﹣)∥(+3),则实数λ=.19.设向量,不平行,向量+m与(2﹣m)+平行,则实数m= .20.平面内有三点A(0,﹣3),B(3,3),C(x,﹣1),且∥,则x为.21.向量,若,则λ=. 22.设B(2,5),C(4,﹣3),=(﹣1,4),若=λ,则λ的值为.

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

平面向量的运算法则

平面向量运算法则 (1)实数与向量的运算法则:设λ、μ为实数,则有: 1)结合律:a a )()(λμμλ=。 2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。 (2)向量的数量积运算法则: 1)a b b a ??=。 2))()()(b a b a b a b a λλλλ===???。 3)c b c a c b a ???+=+)(。 (3)平面向量的基本定理。 21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。 (4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =?,数量积b a ?等于a 的长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。 (5)平面向量的运算法则。 1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。 2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。 3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--。 4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。 5)设a =11(,)x y ,b =22(,)x y ,则a ?b =1212()x x y y +。 (6)两向量的夹角公式: cos θ=(a =11(,)x y ,b =22(,)x y )。 (7)平面两点间的距离公式:

平面向量经典习题_提高篇

平面向量: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,- 2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线, ∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与 c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611 B .-116

C.6 11D. 11 6 [答案] C [解析] a+b=(4,1),a-λb=(1-3λ,2+λ), ∵a+b与a-λb垂直, ∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ =6 11 . 3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、 b间的夹角为( ) A.150° B.120° C.60° D.30° [答案] B [解析] 如图,在?ABCD中, ∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形, ∴∠BAD=60°,∴〈a,b〉=120°,故选B.

(理)向量a ,b 满足|a |=1,|a -b |=3 2,a 与b 的夹角为60°, 则|b |=( ) A.12 B.1 3 C.1 4 D.15 [答案] A [解析] ∵|a -b |=32,∴|a |2+|b |2 -2a ·b =34, ∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2 -x =34,∵x >0,∴x =1 2 . 4. 若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形 [答案] B [解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示 c 为( ) A .-a +3b B .a -3b

平面向量基础练习题

平面向量基础练习 1)在四边形ABCD 中,若AC AB AD =+ ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 3)AB BC AD +-= ( ) A 、A D B 、CD C 、 D B D 、DC 4)已知正方形ABCD 的边长为 1,A B = a ,BC = b ,AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 5)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b = C 、(2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 6)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不 可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(m A )0(≠m , 按向量a 平移后的对应点的坐标是 ) 0,(m ,则向量a 是( ) A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 8)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、045 B 、0 60 C 、0 135 D 、0 120 9)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 10)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影为 . 11)已知3a = ,4b = ,a 与b 的夹角为4 3π , (3)(2)a b a b -?+ =__________. 12)已知3=a ,4=b ,且向量a ,b 不共线,若向量+a k b 与向量-a k b 互相垂直,则 实数k 的值为 . 平面向量基础练习 1)在四边形ABCD 中,若AC AB AD =+ ,则四边形ABCD 的形状一定是 ( ) (A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形 2)如果a ,b 是两个单位向量,则下列结论中正确的是 ( ) (A) a =b (B) 1?a b = (C) 22≠a b (D) =a b 3)AB BC AD +-= ( ) A 、A D B 、CD C 、 D B D 、DC 4)已知正方形ABCD 的边长为 1,A B = a ,BC = b ,AC = c , 则++a b c 等于 ( ) (A) 0 (B) 3 (D) 5)下列各组的两个向量,平行的是 A 、(2,3)a =- ,(4,6)b = B 、(1,2)a =- ,(7,14)b = C 、(2,3) a = , (3,2) b = D 、 (3,2) a =- , (6,4) b =- 6)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),则第4个顶点的坐标不 可能是( ) (A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)7)点),0(m A )0(≠m , 按向量a 平移后的对应点的坐标是 ) 0,(m ,则向量a 是( ) A 、),(m m - B 、),(m m - C 、),(m m -- D 、),(m m 8)已知(6,0)a = ,(5,5)b =- ,则a 与b 的夹角为 A 、045 B 、0 60 C 、0 135 D 、0 120 9)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。 10)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影为 . 11)已知3a = ,4b = ,a 与b 的夹角为4 3π , (3)(2)a b a b -?+ =__________. 12)已知3=a ,4=b ,且向量a ,b 不共线,若向量+a k b 与向量-a k b 互相垂直,则 实数k 的值为 .

平面向量概念教学设计

篇一:平面向量概念教案 平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。 3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣 三.教学类型:新知课 四、教学重点、难点 1、重点:向量及其几何表示,相等向量、平行向量的概念。 2、难点:向量的概念及对平行向量的理解。 五、教学过程 (一)、问题引入 1、在物理中,位移与距离是同一个概念吗?为什么? 2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗? 3、在物理中,像这种既有大小、又有方向的量叫做矢量。 在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。 (二)讲授新课 1、向量的概念 练习1 对于下列各量: ①质量②速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度 其中,是向量的有:②③④⑤ 2、向量的几何表示 请表示一个竖直向下、大小为5n的力,和一个水平向左、大小为8n的力(1厘米表示1n)。思考一下物理学科中是如何表示力这一向量的? (1)有向线段及有向线段的三要素 (2)向量的模 (4)零向量,记作____; (5)单位向量 练习2 边长为6的等边△abc中,=__,与相等的还有哪些? 总结向量的表示方法: 1)、用有向线段表示。 2)、用字母表示。 3、相等向量与共线向量 (1)相等向量的定义 (2)共线向量的定义 六.教具:黑板 七.作业 八.教学后记 篇二:平面向量的实际背景及基本概念教学设计 平面向量的实际背景及基本概念教学设计

相关主题