搜档网
当前位置:搜档网 › N09.三角形内切椭圆及其性质的研究

N09.三角形内切椭圆及其性质的研究

N09.三角形内切椭圆及其性质的研究
N09.三角形内切椭圆及其性质的研究

椭圆焦点三角形面积

椭圆焦点三角形面积公式的应用 多年来,椭圆、双曲线相关的焦点?21F PF ,(为曲线上的任意一点P 21F F 与为曲线的焦点)中的边角关系是学生必须掌握的重点知识,也是 高考的热点内容之一,尤其是近几年的出题频率呈上升趋势.现列举部分典型试题说明其应用类型. 定理 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一点, θ=∠21PF F ,则2 tan 2 21θ b S PF F =?. 证明:记2211||,||r PF r PF ==,由椭圆的第一定义得 .4)(,2222121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:.)2(cos 22 212 22 1c r r r r =-+θ 配方得:.4cos 22)(2 2121221c r r r r r r =--+θ 即.4)cos 1(242 212 c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典题妙解 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 解法一:在椭圆 164 1002 2=+y x 中,,6,8,10===c b a 而.60?=θ记.||,||2211r PF r PF ==

椭圆中焦点三角形的性质(含答案)

焦点三角形习题 性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为a b 2 2 性质二:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形 21F PF 中,21θ=∠PF F 则2 tan 221θ b S PF F =?. 证明:记2211||,||r PF r PF ==, 由椭圆的第一定义得.4)(,22 22121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:.)2(cos 22 212 22 1c r r r r =-+θ 配方得:.4cos 22)(2 2121221c r r r r r r =--+θ 即.4)cos 1(242 212 c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 性质三:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形 21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ 性质三 证明:设,,2211r PF r PF ==则在21PF F ?中,由余弦定理得: 1 222242)(2cos 2 12 221221221212 212221--=--+=-+=r r c a r r c r r r r r r F F r r θ

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

高中数学椭圆、双曲线、抛物线历年真题及详解

【考点8】椭圆、双曲线、抛物线 2009年考题 1、(2009湖北高考)已知双曲线141222 2 222=+=-b y x y x 的准线经过椭圆(b >0)的焦点,则b=( ) A.3 B.5 C.3 D.2 选C.可得双曲线的准线为2 1a x c =±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3. 2、(2009陕西高考)“0m n >>”是“方程2 21mx ny +=”表示焦点在y 轴上的椭圆”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 【解析】选C.将方程2 2 1mx ny +=转化为 22 111x y m n +=, 根据椭圆的定义,要使焦点在y 轴上必须 满足 11 0,0,m n >>且11n m >,故选C.3、(2009湖南高考)抛物线 28y x =-的焦点坐标是( ) A .(2,0) B .(- 2,0) C .(4,0) D .(- 4,0) 【解析】选B.由 28y x =-,易知焦点坐标是(,0)(2,0)2 p - =-,故选B. 4、(2009全国Ⅰ)已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 若3FA FB =u u u r u u u r ,则||AF uuuu r =( ) (A) 2 (B) 2 3 (D) 3 【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =u u u r u u u r ,故2 ||3 BM =. 又由椭圆的第二定义,得222 ||233 BF = = ||2AF ∴=5、(2009江西高考)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的 三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

圆锥曲线定义、标准方程及性质(精)

圆锥曲线定义、标准方程及性质 一.椭圆 定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。 定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0>b a 取值范围:}{a x a x ≤≤-, }{b y b x ≤≤- 长轴长=a 2,短轴长=2b 焦距:2c 准线方程:c a x 2 ±= 焦半径:)(21c a x e PF +=,)(2 2x c a e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意:涉及焦半径时①用点P 坐标表示,②第一定义,第二定义。) 注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A += =等等。顶点与 准线距离、焦点与准线距离分别与c b a ,,有关。 (2)21F PF ?中经常利用余弦定理....、三角形面....积公式... 将有关线段1PF 、2PF 、2c , 有关角21PF F ∠结合起来,建立1 PF +2PF 、1 PF ? 2PF 等关系 (3)椭圆上的点有时常用到三角换元:?? ?θ =θ =sin cos b y a x ; (4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相 应的性质。 二、双曲线 (一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。 Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。 (二)图形: (三)性质 方程:12222=-b y a x )0,0(>>b a 122 22=-b x a y )0,0(>>b a 取值范围:}{a x a x x ≤≥或; 实轴长=a 2,虚轴长=2b 焦距:2c

椭圆的标准方程与性质

椭圆的标准方程与性质 教学目标: 1了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用; 2 掌握椭圆的定义、几何图形、标准方程及简单几何性质. 高考相关点: 在高考中所占分数:13分 考查出题方式:解答题的形式,而且考查方式很固定,涉及到的知识点有:求曲线方程,弦长,面积,对称关系,范围问题,存在性问题。 涉及到的基础知识 1.引入椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: 有以下3种情况 (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a

标准方程x2 a2 +\f(y2,b2)=1 (a>b>0) \f(y2,a2)+错误!=1 (a>b>0) 图形 性质范围 -a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c 离心率e=错误!∈(0,1) a,b,c的关系c2=a2-b2题型总结

类型一椭圆的定义及其应用 例1:如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( ) A.椭圆? B.双曲线 C.抛物线 D.圆 【解析】根据CD是线段MF的垂直平分线.可推断出,进而可以知道 结果为定值,进而根据椭圆的定义推断出点P的轨迹【答案】根据题意知,CD是线段MF的垂直平分线.,(定值),又显然,根 据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.所以A选项是正确的 练习1:已知F1,F2是椭圆C: 22 22 1 x y a b +=(a>b>0)的两个焦点,P为椭圆C 上的一点,且 错误! 1⊥2 PF,若△PF1F2的面积为9,则b=________. 【解析】由题意的面积∴故答案为: 【答案】3 练习2:已知F1,F2是椭圆错误!+错误!=1的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为() A.6?B.5 C.4 D.3

焦点三角形的性质

椭圆中焦点三角形的性质及应用 定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。与焦点三角形的有关问题有意地考查了定义、三角形中的的正(余)弦定理、内角和定理、面积公式等. 一.焦点三角形的形状判定及周长、面积计算 例1 椭圆上一点P 到焦点21,F F 的距离之差为2,试判断21F PF ?的形状. 解:由 112 162 2=+y x 椭圆定义: 3||,5||.2||||,8|||212121==∴=-=+PF PF PF PF PF PF . 又4||21=F F Θ,故满足:,||||||2 12 212 2PF F F PF =+故21F PF ?为直角三角形. 说明:考查定义、利用已知、发挥联想,从而解题成功. 性质一:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形 21F PF 中,21θ=∠PF F 则2 tan 221θ b S PF F =?。 θ cos 2)2(212 2212 2 12PF PF PF PF F F c -+==Θ)cos 1(2)(21221θ+-+=PF PF PF PF θ θθcos 12)cos 1(244) cos 1(24)(2 222 22121+= +-=+-+= ∴b c a c PF PF PF PF 2 tan cos 1sin 2122212 1θθθb b PF PF S PF F =+==∴? 性质二:已知椭圆方程为),0(122 22>>=+b a b y a x 左右两焦点分别为,,21F F 设焦点三角 形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点。 证明:设),(o o y x P ,由焦半径公式可知:o ex a PF +=1,o ex a PF -=1 在21PF F ?中,2 12 2 121212cos PF PF F F PF PF -+= θ2 12 21221242)(PF PF c PF PF PF PF --+=

椭圆标准方程+焦点三角形面积公式(高三复习)

椭圆标准方程+焦点三角形面积公式(高三复 习) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

椭圆焦点三角形面积公式的应用 性质1(选填题课直接用,大题需论证): 在椭圆122 22=+b y a x (a >b >0)中,焦点分别为1F 、2F ,点P 是椭圆上任意一 点,θ=∠21PF F ,则2 tan 221θ b S PF F =?. 证明:记2211||,||r PF r PF ==,由椭圆的第一定义得 .4)(,2222121a r r a r r =+∴=+ 在△21PF F 中,由余弦定理得:2(cos 2212 22 1r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ .cos 12cos 1)(22 2221θ θ+=+-=∴b c a r r 由任意三角形的面积公式得: 2tan 2 cos 22cos 2 sin 2cos 1sin sin 2122 222121θθθ θ θ θθ?=?=+?== ?b b b r r S PF F . .2 tan 221θ b S PF F =∴? 同理可证,在椭圆122 22=+b x a y (a >b >0)中,公式仍然成立. 典型例题 例1 若P 是椭圆 164 1002 2=+y x 上的一点,1F 、2F 是其焦点,且?=∠6021PF F ,求 △21PF F 的面积. 例2 已知P 是椭圆 19252 2=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若2 1 | |||2121= ?PF PF ,则△21PF F 的面积为( )

高中数学椭圆练习题

椭圆标准方程典型例题 例1 已知椭圆0632 2=-+m y mx 的一个焦点为(0,2)求m 的值. 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 例5 已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内 切,求动圆圆心P 的轨迹方程 例7 已知椭圆1222=+y x ,(1)求过点?? ? ??2121,P 且被P 平分的弦所在直线的方程;

(2)求斜率为2的平行弦的中点轨迹方程; (3)过()12, A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=?OQ OP k k , 求线段PQ 中点M 的轨迹方程. 例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 102,求直线的方程. 例9 以椭圆13 122 2=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程. 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范 例10 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.

高中数学椭圆的知识总结(含答案)

高中数学椭圆知识总结 一、选择题 1.(09·浙江)已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上, 且BF ⊥x 轴,直线AB 交y 轴于点P ,若AP →=2PB → ,则椭圆的离心率是 ( ) A.32 B.22 C.13 D.12 [答案] D [解析] 由题意知:F (-c,0),A (a,0). ∵BF ⊥x 轴,∴AP PB =a c .又∵AP →=2PB → , ∴a c =2,∴e =c a =1 2 .故选D. 2.已知P 是以F 1、F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,若PF 1→·PF 2→=0,tan∠PF 1F 2 =1 2 ,则椭圆的离心率为 ( ) A.12 B.23 C.13 D.53 [答案] D [解析] 由PF 1→·PF 2→ =0知∠F 1PF 2为直角, 设|PF 1|=x ,由tan∠PF 1F 2=1 2 知,|PF 2|=2x , ∴a =32x , 由|PF 1|2 +|PF 2|2 =|F 1F 2|2 得c =52 x , ∴e =c a = 53 . 3.(文)(北京西城区)已知圆(x +2)2+y 2 =36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线 D .抛物线 [答案] B [解析] 点P 在线段AN 的垂直平分线上,故|PA |=|PN |,又AM 是圆的半径, ∴|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |,由椭圆定义知,P 的轨迹是椭圆. (理)(浙江台州)已知点M (3,0),椭圆x 2 4 +y 2 =1与直线y =k (x +3)交于点A 、B , 则△ABM 的周长为 ( ) A .4 B .8 C .12 D .16 [答案] B [解析] 直线y =k (x +3)过定点N (-3,0),而M 、N 恰为椭圆x 2 4 +y 2 =1的两个焦 点,由椭圆定义知△ABM 的周长为4a =4×2=8. 4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2 n 2=1(m >0,n >0)有相同的焦点(-c ,0)和 (c,0)(c >0).若c 是a 、m 的等比中项,n 2是2m 2与c 2 的等差中项,则椭圆的离心率是( )

椭圆定义及性质整合

椭圆定义及性质的应用 一、椭圆的定义 椭圆第一定义 第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. ★过点1F 作12PF F ?的P ∠的外角平分线的垂线,垂足为Q ,则Q 的轨迹方程为222 x y a +=. 推导过程:延长1F Q 交2F P 于M ,连接OQ , 由已知有PQ 为1MF 的中垂线,则1PF PM =,Q 为1 F M 中点,212OQ F M ==()121 2 PF PF +=a ,所以Q 的轨迹方程为 222 x y a +=.(椭圆的方程与离心率学案第5题) 椭圆第二定义 第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<

推导过程: 2 200 a PF ed e x a ex c ?? ==-=- ? ?? ;同理得 10 PF a ex =+. 简记为:左加右减a在前.由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数. (离心率、焦点弦问题)例1:(2010全国卷Ⅱ理数12题)已知椭圆 22 22 :1(0) x y C a b a b +=> >的离心率为 3 ,过右焦点F且斜率为(0) k k>的直线与C相交于,A B两点.若3 AF FB = u u u r u u u r ,则k=() A.1 D.2 B【解析】解法一:1122 (,),(,) A x y B x y,∵3 AF FB = u u u r u u u r ,∴12 3 y y =-,∵ 2 e=,设2, a t c ==,b t=,∴222 440 x y b +-=,直线AB方程为x my =.代入消去x,∴222 (4)0 m y b ++-=,∴ 2 1212 22 , 44 b y y y y m m +=-=- ++ ,则 2 2 22 22 2,3 44 b y y m m -=--=- ++ ,解得2 1 2 m=,则k= 0 k>. 解法二:设直线l为椭圆的右准线,e为离心率,过,A B别作11 , AA BB垂直于l, 11 , A B为垂足,过B作BH垂直于1 AA与H,设BF m =,由第二定义得, 11 , AF BF AA BB e e ==,由3 AF FB = u u u r u u u r ,得 1 3m AA e =, 2m AH e =,4 AB m =,则 2 1 cos 42 m AH e BAH AB m e ∠====,则sin BAH ∠=tan BAH ∠=,则k=0 k>.故选B. (离心率、焦点弦问题)例2:倾斜角为 6 π 的直线过椭圆)0 (1 2 2 2 2 > > = +b a b y a x 的左焦点F,交椭圆于,A B 两点,且有3 AF BF =,求椭圆的离心率.

椭圆中的焦点三角形(总结非常好)

学习任务单 椭圆焦点三角形的性质 班级_______________学号_______________姓名_______________ 任务一课前小测,知识回顾 1.△ABC 的内角,,A B C 的对边分别为,,a b c ,已知3 A π=,2a =,求,b c .2.△ABC 的内角,,A B C 的对边分别为,,a b c ,已知2a =,4b c +=. (1)若23B π=,求c ;(2)设B θ=,试用θ表示c . 3.(教材习题)如果椭圆22 110036 x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是________. 4.(教材习题)已知经过椭圆22 12516 x y +=的右焦点2F 作直线AB ,交椭圆于A ,B 两点,1F 是椭圆的左焦点,则△1AF B 的周长为________.思考与总结: ①你能说出椭圆焦点三角形,焦点弦的定义吗? ②通过题3、题4的解答,你能说说“椭圆焦点三角形的元素”与“椭圆的几何性质”间的一些关系吗? 任务二抽丝剥茧,试题分析

学而不思则罔,思而不学则殆 5.(2020顺德二模第19题)已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为1F ,2F ,122F F =, 设点P 为椭圆C 上一点,123 F PF π∠= ,且△12F PF (1)求椭圆C 的标准方程;(2)设椭圆C 的左右顶点为1A ,2A ,称以12A A 为直径的圆为椭圆C 的“伴随圆”.设直线1l ,2l 为过点1F 的两条互相垂直的直线,设1l 交椭圆于Q ,T 两点,2l 交椭圆C 的“伴随圆”于M ,N 两点,当QT 取到最小值时,求四边形QMTN 的面积.思考与总结: ①题5条件中有很多△12F PF 的信息,由这些出发,你能得到什么?这些对第(1)问求椭圆C 的标准方程有帮助吗? ②第(2)问表面上“高深莫测”,请耐心一点,逐句分析,你能得到哪些基本信息?请一一写出来! ③你能想到什么方法求QT 的最小值? 任务三方法感悟,素养提升

高中数学 椭圆 知识点与例题

椭圆 知识点一:椭圆的定义 第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和为定值 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹不存在. 知识点二:椭圆的标准方程 1.当焦点在x 轴上时,椭圆的标准方程:122 22=+b y a x )0(>>b a ,其中222b a c -= 2.当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=. 注意:①只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; ②在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; ③椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 题型一、椭圆的定义 1、方程()()10222222=++++-y x y x 化简的结果是 2、若ABC ?的两个顶点()()4,0,4,0A B -,ABC ?的周长为18,则顶点C 的轨迹方程是 3、椭圆19 252 2=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为( ) A .4 B .2 C .8 D .2 3

4、椭圆22 12516 x y +=两焦点为12F F 、,()3,1A ,点P 在椭圆上,则1PF PA +的最大值为_____,最小值为 ___ 题型二、椭圆的标准方程 5、方程Ax 2+By 2=C 表示椭圆的条件是 (A )A , B 同号且A ≠B (B )A , B 同号且C 与异号 (C )A , B , C 同号且A ≠B (D )不可能表示椭圆 6、若方程22 153 x y k k +=--, (1)表示圆,则实数k 的取值是 . (2)表示焦点在x 轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y 型上的椭圆,则实数k 的取值范围是 . (4)表示椭圆,则实数k 的取值范围是 . 7、椭圆22 14x y m +=的焦距为2,则m = 8、已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值. 9、已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 10、求与椭圆224936x y +=共焦点,且过点(3,2)-的椭圆方程。 11、已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为 354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

高考数学专题讲解:椭圆

高考数学专题讲解:椭圆 定义与基本性质 第一部分:椭圆的定义与性质 第一部分:椭圆的定义与方程推理 【椭圆的定义】:到两个定点的距离之和等于定长的动点轨迹。 规定:定点为椭圆的交点。 【焦点在x 轴】:如下图所示: 规定:①以两个焦点的连线为x 轴; ②以两个焦点的连线的中垂线为y 轴。 假设:椭圆上任意一点P 的坐标为),(y x ; 两个焦点之间的距离(焦距)为c 2。如下图所示: 左焦点1F 的坐标为)0,(c ,右焦点2F 的坐标为) 0,(c 假设:定长为a 2。

椭圆的定义式:a PF PF 221=+。 P 点的坐标),(y x ,1F 点的坐标为22221)()0()]([)0,(y c x y c x PF c ++=-+--=?-;P 点的坐标),(y x ,2F 点的坐标为221)()0,(y c x PF c +-=?; a y c x y c x a PF PF 2)()(2222221=+-+++?=+。化简:2 2222222)(2)(2)()(y c x a y c x a y c x y c x +--=++?=+-+++2222222222222)()(44)())(2())((y c x y c x a a y c x y c x a y c x +-++--=++?+--=++?cx y c x a a cx y c cx x y c x a a y c cx x 2)(4422)(442222222222222-+--=?++-++--=+++?22222222222)(])([)(44)(4cx a y c x a cx a y c x a cx a y c x a -=+-?-=+-?-=+-?2 224222222242222)2(2])[(x c cx a a y c cx x a x c cx a a y c x a +-=++-?+-=+-?2 242222222224222222222x c a y a c a x a x c cx a a y a c a cx a x a +=++?+-=++-?) ()(22222222224222222c a a y a x c a c a a x c y a x a -=+-?-=-+?1)()()()()(222 2222222222222222222=-+?--=-+--?c a y a x c a a c a a c a a y a c a a x c a 。假设:2 22c a b -=。椭圆的方程:122 22=+b y a x 。左右顶点(与x 轴的交点):令:?±=?=?=?=a x a x a x y 2222 10左顶点)0,(a -,右顶点)0,(a ;上下顶点(与y 轴的交点):令:?±=?=?=?=b y b y b y x 2222 10上顶点),0(b ,下顶点),0(b -。如下图所示:

椭圆中与焦点三角形有关的问题

椭圆中与焦点三角形有关的问题 例1:椭圆14 92 2=+y x 的焦点为F l 、F 2,点P 为其上动点,当 21PF F ∠为钝角时,点P 横坐标的取值范围是_______。 (二)问题的分析 问题1. 椭圆14 92 2=+y x 的焦点为F l 、F 2,点P 为其上一点,当21PF F ∠为直角时,点P 的横坐标是_______。 问题2. 而此题为钝角,究竟钝角和直角有何联系? 解题的关键在于点动,发现21PF F ∠的大小与点P 的位置有关,究竟有何联系。 性质一:当点P 从右至左运动时,21PF F ∠由锐角变成直角,又变成钝角,过了Y 轴之后,对称地由钝角变成直角再变成锐角,并且发现当点P 与短轴端点重合时,21PF F ∠达到最大。 3.“性质一”是为什么呢?你能证明吗? 问题3:解三角形中我们常用的理论依据是什么? 问题4:究竟转化为求哪种三角函数的最值,经演算、试验,悟出“欲求21PF F ∠的最大值,只需求cos 21PF F ∠的最小值”

问题5:由上面的分析,你能得出cos 21PF F ∠与离心率e 的关系吗? 性质二:已知椭圆方程为),0(122 22>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ(当且仅当动点为短轴端点时取等号) 题2:已知1F 、2F 是椭圆)0(122 22>>=+b a b y a x 的两个焦点,椭圆上一点P 使?=∠9021PF F ,求椭圆离心率e 的取值范围。 变式1:已知椭圆)0(122 22>>=+b a b y a x 的两焦点分别为,,21F F 若椭圆上存在一点,P 使得,1200 21=∠PF F 求椭圆的离心率e 的取值范围。 变式2:若椭圆13 42 2=+y x 的两个焦点1F 、2F ,试问:椭圆上是否存在点P ,使?=∠9021PF F ?存在,求出点P 的纵坐标;否则说明理由。

椭圆的第一定义与基本性质的练习题(精)

椭圆的第一定义与基本性质的练习题 1.椭圆2x2+3y2=6的焦距是 A.2 B.2(- C.2 D.2(+ 2.方程4x2+Ry2=1的曲线是焦点在y轴上的椭圆,则R的取值范围是 A.R>0 B.0

10.椭圆的焦点、,P为椭圆上的一点,已知,则△的面积为()(A)9 (B)12 (C)10 (D)8 11.AB为过椭圆+=1中心的弦,F(c,0为椭圆的右焦点,则△AFB面积的最大值是 A.b2 B.ab C.ac D.bc 12.若椭圆的两个焦点为F1(-4,0、F2(4,0,椭圆的弦AB过点F1,且△ABF2的周长为20,那么该椭圆的方程为__________. 14.与椭圆具有相同的离心率且过点(2,-)的椭圆的标准方程是_____ 15.椭圆+ =1的焦点为F1、F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是__________. 椭圆的第二定义与性质的练习题 16.点M到一个定点F(0,2的距离和它到一条定直线y=8的距离之比是1∶2,则M点的轨迹方程是__________. 17.如果椭圆的两个焦点将长轴三等分,那么这个椭圆的两条准线间的距离是焦距的 A.4倍 B.9倍 C.12倍 D.18倍 18.设点A(-2,,椭圆+ =1的右焦点为F,点P在椭圆上移动.当|PA|+2|PF|取最小值时,P点的坐标是__________. 19.设椭圆+=1(a>b>0的左焦点为F1(-2,0,左准线l1与x轴交于点N(-3,0,过点N且倾斜角为30°的直线l交椭圆于A、B两点. (1求直线l和椭圆的方程; (2求证:点F1(-2,0在以线段AB为直径的圆上.

高中数学椭圆题型完美归纳(经典)

椭圆题型归纳 一、知识总结 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形, 可设方程为221(0,0)mx ny m n +=>>不必考虑焦点位置,求出方程。 3.范围. 椭圆位于直线x =±a 和y =±b 围成的矩形里.|x|≤a ,|y|≤b . 4.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 5.顶点 椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ). 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.。 长轴的长等于2a . 短轴的长等于2b .

|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2,即c 2=a 2-b 2. 6.离心率 7.椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8.椭圆22 221x y a b +=(a >b >0)的焦半径公式10||MF a ex =+,20 ||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ). 9.AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2 OM AB b k k a ?=-,即0 2 02y a x b K AB -=。 )10(<<= e a c e

相关主题