搜档网
当前位置:搜档网 › 4.平面向量

4.平面向量

4.平面向量
4.平面向量

(四)平面向量 考纲要求

常考知识点 能力要求 考试规律 理解平面向量的概念及几何表示;

掌握平面向量的运算及基本定理;

理解平面向量的数量积;

会用平面向量解决一些实际问题。 平面向量的坐标运算; 平面向量的数量积; 平面向量共线与垂直; 平面向量的模与夹角。 考查考生简单的运算求解能力与空间想象能力 每年必考,通常是选择题 前6题或填空题第13-15题,属简单题。

【命题解读】

考向1:基本概念的综合运用

分析定位:平面向量是通过物理学的背景抽象出来的一个数学工具,概念性强,包括平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积等.

例1(2016年全国Ⅲ卷第3题)已知向量13(,)22BA = ,31(,)22

BC = ,则=∠ABC (A )30? (B )45? (C )60? (D )120? 分析:先画图确认ABC ∠是向量BA 与BC 的夹角,然后再通过数量积公式求得.

解:由公式得23114343cos =?+=??=∠BC

BA BC BA ABC ,所以?=∠30ABC ,故选A. 总结:考生要在理解好平面向量的基本概念及平面向量的基本定理的基础上进行解题,平面向量的数量积是重点内容,考生要真正掌握其内涵本质.

考向2:向量方法的灵活运用

分析定位:向量方法兼有几何图形的直观性和代数运算的简捷性,因而是数形结合的典范.高考常着眼于几何直观寻找命题点,从代数角度挖掘以向量知识为背景的试题,表现试题的新颖性与解题的灵活性.

例2(2014年全国Ⅰ卷理科第15题)已知C B A ,,是圆O 上的三点,若)(2

1AC AB AO +=

, 则AB 与AC 的夹角为 .

分析:从平面向量加法的几何表示入手先把图作出.

解:如图,ABCD 是平行四边形,

因为AD 是圆的直径,则?=∠=∠90C B ,

所以?=∠90BAC ,故填?90.

总结:考生要理解好平面向量的基本定理及其向量表示.

【备考启示】

1.平面向量是对物理学中的力、位移……这些既有大小又有方向的量进行抽象后形成的一种新的量.因为抽象,所以部分考生不能深刻理解其含义,下面简单梳理一下:

(1)理解其基本概念及表示方法:向量、向量的模、零向量、单位向量,相等向量、共线向量;

(2)理解向量的线性运算及几何意义:包括向量的加法、减法、数乘的运算(加法与减法可以对应物理中力的合成,而数乘则是加法的延伸);

(3)理解平面向量的基本定理:若a 、b 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量c ,有且只有一对实数1λ、2λ,使b a c 21λλ+=;

(4)在平面向量基本定理的基础上理解平面向量的坐标运算:加法、减法、数乘等;

(5)理解平面向量的数量积:与两数相乘的区别,对应物理学中功的运算,数量积的几何意义,数量积的坐标表示、模、夹角等;

(6)理解平面向量共线与垂直的线性运算与坐标运算.

总之,平面向量的内容虽不难,但多而杂,且多与物理有联系,考生务必加强理解才行。

2.复习时要注意以下两点:

(1)平面向量复习时要体现“数”与“形”的转换,一方面,考生要理解好平面向量的加、减、数乘、模、数量积等的几何背景,要善于把平面向量的问题转化成几何问题;另一方面,对于一些几何问题,要善于通过建系或基向量的办法转化成平面向量的办法; 2014年全国Ⅰ卷第6题:设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+FC EB

(A )AD (B )12AD (C )12

BC (D )BC 分析:从根据题意把图形作出来,然后运算平面向量基本定理解题.

解:在平行四边形EFBD 中,ED EF EB +=,

在平行四边形FDCE 中,FE FD FC +=, 故=+FC EB AD AE AF FD ED =+=+,故选A.

总结:考生要理解好平面向量的基本定理及其向量表示.

2013年全国Ⅱ卷(理科)第13题:已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ?= . A B C

D

E

A

B C D E F

解:如图,ABCD 是正方形,建立如图直角坐标系,

则(2,1)AE =- ,(2,2)BD = ,所以AE BD ?= 2.

(2)重视平面向量的数量积问题,掌握这一类题的基本套路,一般有定义法、基底法、坐标法,实际解题中要学会选择合理的方法.如:

2012年全国卷第15题:已知向量a ,b 夹角为45?,且||1a = ,|2|10a b -= ,则

b = .

法一:因为|2|10a b -= ,所以222(2)44cos 4510a b a a b b -=-??+= , 即22260b b --= ,解得32b = .

法二:根据题意,设(1,0)a = ,(,)b x x = (0x >),则2(2,)a b x x -=-- ,

所以22

(2)10x x -+=,解得3x =,即32b = . 法三:题意转化成:在ABC ?中,2AB =,10BC =,45CAB ∠=?,求AC .

如图: 设b x = ,则依余弦定理有242210x x +-=,解得32x =.

A

B C

【十年真题】

(A )组

1.(2014年全国Ⅰ卷第2题)已知点(0,1)A ,(3,2)B ,向量(4,3)AC =-- ,则向量BC =

(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)

2.(2010年全国卷第2题)a ,b 为平面向量,已知(4,3)a = ,2(3,18)a b += ,则a ,b

夹角的余弦值等于

(A )865 (B )865- (C ) 1665

(D )1665- 3.(2016年全国Ⅲ卷第3题)已知向量13(,)22BA = ,31(,)22

BC = ,则=∠ABC (A )30? (B )45? (C )60? (D )120?

4.(2014年全国Ⅱ卷第4题)设向量a ,b 满足10a b += ,6a b -= ,则a b ?=

(A )1 (B )2 (C )3 (D )5

5.(2015年全国Ⅱ卷第4题)已知()0,1a =- ,()1,2b =- ,则(2)a b a +=

(A )1- (B )0 (C )1 (D )2

6.(2007年海南宁厦卷第4题)已知平面向量(11)a =r ,,(11)b =-r ,,则向量1322

a b -=r r (A )(21)--, (B )(21)-, (C )(1

0)-, (D )(1,2)- 7.(2008年海南宁厦卷第5题)已知平面向量(13)a =- ,,(42)b =- ,,a b λ+ 与a 垂直,

则λ=

(A )1- (B )1 (C )2- (D )2

8.(2014年全国Ⅰ卷第6题)设F E D ,,分别为ABC ?的三边AB CA BC ,,的中点,则=+FC EB

(A )AD (B )12AD (C )12BC (D )BC 9.(2009年全国卷第7题)已知()3,2a =- ,()1,0b =- ,向量a b λ+ 与2a b - 垂直,则

实数λ的值为

(A )17-

(B )17 (C )16- (D )16

10.(2008年海南宁厦卷第9题)平面向量a ,b 共线的充要条件是

(A ),a b 方向相同 (B ),a b 两向量中至少有一个为零向量

(C )λ∈R ?,b a λ= (D )存在不全为零的实数1λ,2λ,120a b λλ+=

11.(2013年全国Ⅰ卷第13题)已知两个单位向量a ,b 的夹角为?60,b t a t c )1(-+=,

若0b c ?= ,则=t _____.

12.(2016年全国Ⅰ卷第13题)设向量(,1)a x x =+ ,(1,2)b = ,

且a b ⊥ ,则x = . 13.(2016年全国Ⅱ卷第13题)设向量(,4)a m = ,(3,2)b =- ,且//a b ,则m = .

14.(2011年全国卷第13题)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a b +

与向量ka b - 垂直,则k =___________.

15.(2012年全国卷第15题)已知向量a ,b 夹角为45?,且||1a = ,|2|10a b -= ,则

b = .

16.(2017年全国Ⅰ卷第13题)已知向量)1,(),2,1(m b a =-=.若向量b a +与a 垂直,则m =________.

17.(2017年全国Ⅱ卷第4题)设非零向量a ,b 满足+=-b b a a 则

(A )a ⊥b (B )=b a (C )a ∥b (D )>b a

18.(2017年全国Ⅲ卷第13题)已知向量),,3(),3,2(m b a =-=且b a ⊥,则m = .

人教版高中数学必修四 2.5平面向量应用举例

一、选择题 1.已知作用在A 点的三个力F 1=(3,4),F 2=(2,-5),F 3=(3,1)且A (1,1),则合力F =F 1+F 2+F 3的终点坐标为( ) A .(9,1) B .(1,9) C .(9,0) D .(0,9) 解析:F =F 1+F 2+F 3=(8,0). 又因为起点坐标为(1,1),所以终点坐标为(9,1). 答案:A 2.初速度为v 0,发射角为θ,若要使炮弹在水平方向的速度为1 2v 0,则发射角θ应为( ) A .15° B .30° C .45° D .60° 解析:炮弹的水平速度为v =v 0·cos θ=12v 0?cos θ=12?θ=60°. 答案:D 3.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,则AD +BE +CF =( ) A .0 B .0 C .AB D .AC 解析:设AB =a ,AC =b , 则AD =12a +1 2 b , BE =BA +12AC =-a +1 2b , CF =CA +1 2AB =-b +1 2a . ∴AD +BE +CF =0. 答案:B 4.在△ABC 中,D 为BC 边的中点,已知AB =a ,AC =b ,则下列向量中与AD 同向的是( ) A.a +b |a +b | B.a |a |+b |b | C.a -b |a -b | D.a |a |-a |b | 解析:AD =12AB +12AC =1 2(a +b ),而a +b |a +b | 是与a +b 同方向的单位向量.

答案:A 二、填空题 5.平面上有三个点A (-2,y ),B (0,y 2),C (x ,y ),若AB ⊥BC ,则动点C 的轨迹方 程为________. 解析:AB =(2,-y 2),BC =(x ,y 2 ). ∵AB ⊥BC ,∴A AB ·BC =2x -1 4y 2=0,即y 2=8x . 答案:y 2=8x 6.已知A ,B 是圆心为C ,半径为5的圆上的两点,且|AB |=5,则AC · CB =________. 解析:由弦长|AB |=5,可知∠ACB =60°, AC ·CB =-CA ·CB =-|CA ||CB |cos ∠ACB =-5 2. 答案:-5 2 7.质量m =2.0 kg 的物体,在4 N 的水平力作用下,由静止开始在光滑水平面上运动了3 s ,则水平力在3 s 内对物体所做的功为________. 解析:水平力在3 s 内对物体所做的功:F·s =F ·12at 2=12F ·F m t 2=12m F 2t 2=12×1 2×42×32 =36(J). 答案:36 J 8.设坐标原点为O ,已知过点(0,12)的直线交函数y =1 2x 2的图像于A 、B 两点,则OA · OB 的值为________. 解析:由题意知直线的斜率存在,可设为k ,则直线方程为y =kx +12,与y =1 2x 2联立 得12x 2=kx +1 2 , ∴x 2-2kx -1=0,∴x 1x 2=-1,x 1+x 2=2k , y 1y 2=(kx 1+12)(kx 2+12) =k 2x 1x 2+14+k (x 1+x 2) 2 =-k 2+k 2+1 4 =14 , ∴OA · OB =x 1x 2+y 1y 2=-1+14=-3 4.

高中数学必修四平面向量知识归纳典型题型(经典)

一,向量重要结论 (1)、向量的数量积定义:||||cos a b a b θ?= 规定00a ?=, 22||a a a a ?== (2)、向量夹角公式:a 与b 的夹角为θ,则cos |||| a b a b θ?= (3)、向量共线的充要条件:b 与非零向量a 共线?存在惟一的R λ∈,使b a λ=。 (4)、两向量平行的充要条件:向量11(,)a x y =,22(,)b x y =平行?12210x y x y -= (5)、两向量垂直的充要条件:向量a b ⊥0a b ??=?12120x x y y += (6)、向量不等式:||||||a b a b +≥+,||||||a b a b ≥? (7)、向量的坐标运算:向量11(,)a x y =,22(,)b x y =,则a b ?=1212x x y y + (8)、向量的投影:︱b ︱cos θ=||a b a ?∈R ,称为向量b 在a 方向上的投影投影的绝对值称为射影 (9)、向量:既有大小又有方向的量。 向量不能比较大小,但向量的模可以比较大小。相等 向量:长度相等且方向相同的向量。 (10)、零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a = 0 ?|a |=0 由于0的方向是任意的, 且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) (11)、单位向量:模为1个单位长度的向量 向量0a 为单位向量?| 0a |=1 (12)、平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b (即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 注:解析几何与向量综合时可能出现的向量内容: (1) 给出直线的方向向量()k u ,1= 或()n m u ,= ,要会求出直线的斜率; (2)给出+与AB 相交,等于已知+过AB 的中点; (3)给出0 =+,等于已知P 是MN 的中点; (4)给出()+=+λ,等于已知Q P ,与AB 的中点三点共线; (5)给出以下情形之一:①AC AB //;②存在实数,AB AC λλ=使;③若存在实数,,1,O C O A O B αβαβαβ+==+且使,等于已知C B A ,,三点共线. (6) 给出λλ++=1OP ,等于已知P 是AB 的定比分点,λ为定比,即λ= (7) 给出0=?,等于已知MB MA ⊥,即AMB ∠是直角,给出0<=?m ,等于已知AMB ∠是钝角, 给出0>=?m ,等于已知 AMB ∠是锐角。 ( 8)给出=??λ,等于已知MP 是AMB ∠的平分线/ (9)在平行四边形ABCD 中,给出0)()(=-?+,等于已知ABCD 是菱形;

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。 (5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。 (6)若a 与b 共线, b 与c 共线,则a 与c 共线。 (7)若ma mb =,则a b =。

平面向量四心问题(最全)

平面向量四心问题 近年来,对于三角形的“四心”问题的考察时有发生,尤其是和平面向量相结合来考察很普遍,难度上偏向中等,只要对于这方面的知识准备充分,就能应付自如.下面就平面向量和三角形的“四心”问题的类型题做一阐述: 一、重心问题 三角形“重心”是三角形三条中线的交点,所以“重 心”就在中线上. 例1 已知O是平面上一定点,A,B,C是平面上不 共线的三个点,动点P 满足:, 则P的轨迹一定通过△ABC 的() A外心B内心 C 重心 D 垂心 解析:如图1,以AB,AC为邻边构造平行四边形ABCD,E为对角线的交点,根据向量平行四边形法则,因为, 所以,上式可化为,E在直线AP上,因为AE为的中线,所以选C. 点评:本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合. 二、垂心问题 三角形“垂心”是三角形三条高的交点,所以“垂心”就在高线上.

例2 P是△ABC所在平面上一点,若,则P是△ABC的( ). A.外心 B.内心 C.重心 D.垂心 解析:由. 即. 则, 所以P为的垂心. 故选D. 点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直” 等相关知识巧妙结合. 三、内心问题 三角形“内心”是三角形三条内角平分线的交点,所以“内心”就在内角平分线线上. 例3 已知P是△ABC所在平面内的一动点,且点P满足 ,则动点P一定过△ABC的〔〕. A、重心 B、垂心 C、外心 D、内心

高中数学必修4平面向量教案

科组长签字:

高中数学必修4 平面向量 基本知识回顾: 1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向. 2.向量的表示方法: ①用有向线段表示-----AB u u u r (几何表示法); ②用字母a r 、b r 等表示(字母表示法); ③平面向量的坐标表示(坐标表示法): 分别取与x 轴、y 轴方向相同的两个单位向量i r 、j r 作为基底。任作一个向量a ,由平 面向量基本定理知,有且只有一对实数x 、y ,使得a xi yj r r ,),(y x 叫做向量a 的(直 角)坐标,记作(,)a x y r ,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特 别地,i r (1,0) ,j r (0,1) ,0(0,0) r 。a r ),(11y x A ,),(22y x B ,则 1212,y y x x , AB 3.零向量、单位向量: ①长度为0的向量叫零向量,记为0; ②长度为1个单位长度的向量,叫单位向量.| |a 就是单位向量) 4.平行向量: ①方向相同或相反的非零向量叫平行向量; ②我们规定0r 与任一向量平行.向量a r 、b r 、c r 平行,记作a r ∥b r ∥c r .共线向量与平行向量 关系:平行向量就是共线向量. 性质://(0)(a b b a b r u r r r r r 是唯一)||b a b a a b u r r u r r r r 0,与同向方向---0,与反向长度--- 1221//(0)0a b b x y x y r u r r r (其中 1122(,),(,)a x y b x y r u r ) 5.相等向量和垂直向量: ①相等向量:长度相等且方向相同的向量叫相等向量. ②垂直向量——两向量的夹角为2 性质:0a b a b r u r r r g

北京四中数学必修四平面向量应用举例基础版

平面向量应用举例 编稿:丁会敏 审稿:王静伟 【学习目标】 1.会用向量方法解决某些简单的平面几何问题. 2.会用向量方法解决简单的力学问题与其他一些实际问题. 3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力. 【要点梳理】 要点一:向量在平面几何中的应用 向量在平面几何中的应用主要有以下几个方面: (1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义. (2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ?=a b a b (或x 1y 2-x 2y 1=0). (3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥??=a b a b (或x 1x 2+y 1y 2=0). (4)求与夹角相关的问题,往往利用向量的夹角公式cos |||| θ?=a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题. 要点诠释: 用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了. 要点二:向量在解析几何中的应用 在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决. 常见解析几何问题及应对方法:

高中数学必修4平面向量知识点总结

高中数学必修4 平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的 起点与终点的大写字母表示,如:AB u u u r 几何表示法 AB u u u r ,a ;坐标表示法 ),(y x yj xi a 向量的大小即向量的模(长度) ,记作|AB u u u r |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向 量a =0 |a |=0 由于0r 的方向是任意的,且规定0r 平行于任何向量,故在 有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量 |0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以 移到同一直线上方向相同或相反的向量,称为平行向量记作a ∥b 由于向量可 以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为 b a 大小相等,方向相同 ),(),(2211y x y x 21 2 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一

高中数学必修4第二章平面向量教案完整版

§ 平面向量的实际背景及基本概念 1、数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:; ④向量的大小――长度称为向量的模,记作||. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别: (1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念: ①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义: ①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行. 说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等; (3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段..... 的起点无关..... . 7、共线向量与平行向量关系: 平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)..... . 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. A(起点) B (终点) a

北师大版数学高一 2.7《平面向量应用举例》教案(必修4)

2.7平面向量应用举例 一.教学目标: 1.知识与技能 (1)经历用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具. (2)揭示知识背景,创设问题情景,强化学生的参与意识;发展运算能力和解决实际问题的能力. 2.过程与方法 通过本节课的学习,让学生体会应用向量知识处理平面几何问题、力学问题与其它一些实际问题是一种行之有效的工具;和同学一起总结方法,巩固强化. 3.情感态度价值观 通过本节的学习,使同学们对用向量研究几何以及其它学科有了一个初步的认识;提高学生迁移知识的能力、运算能力和解决实际问题的能力. 二.教学重、难点 重点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 难点: (体现向量的工具作用),用向量的方法解决某些简单的平面几何问题、力学问题与其它一些实际问题,体会向量在几何、物理中的应用. 三.学法与教学用具 学法:(1)自主性学习法+探究式学习法 (2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 教学用具:电脑、投影机. 四.教学设想 【探究新知】 同学们阅读教材P116---118的相关内容思考: 1.直线的向量方程是怎么来的? 2.什么是直线的法向量? 【巩固深化,发展思维】 教材P118练习1、2、3题 例题讲评(教师引导学生去做) 例1.如图,AD、BE、CF是△ABC的三条高,求证:AD、BE、CF相交于一点。 证:设BE、CF交于一点H, ?→ ? AB= a, ?→ ? AC= b, ?→ ? AH= h, 则 ?→ ? BH= h-a , ?→ ? CH= h-b , ?→ ? BC= b-a ∵ ?→ ? BH⊥ ?→ ? AC, ?→ ? CH⊥ ?→ ? AB B C

高中数学必修4第二章 平面向量公式及定义

平面向量公式 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λ b. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ. 3、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b.若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a?b=x?x'+y?y'. 向量的数量积的运算律 a?b=b?a(交换律);

必学4平面向量(讲义和练习)

《必修4》 第二章 平面向量 一、知识纲要 1、向量的相关概念: (1) 向量: 既有大小又有方向的量叫做向量,记为AB u u u r 或a 。 向量又称矢量。 ①向量和标量的区别:向量既有大小又有方向;标量只有大小,没有方向。普通的数量都是标量,力是一种常见的向量。②向量常用有向线段来表示,但也不能说向量就是有向线段,因为向量是自由的,可以平移;有向线段有固定的起点和终点,不能随意移动。 (2)向量的模:向量的大小又叫向量的模,它指的是:表示向量的有向线段的长度。 记作:|AB u u u r |或|a |。 向量本身不能比较大小,但向量的模可以比较大小。 (3)零 向 量: 长度为0的向量叫零向量,记为0 ,零向量的方向是任意的。 ①|a |=0; ②0 与0的区别:写法的区别,意义的区别。 (4)单位向量:模长为1个单位长度的非零向量叫单位向量。 若向量a 是单位向量,则|a |= 1 。 2、 向量的表示: (1) 几何表示法:用带箭头的有向线段表示,如AB u u u r ,注意:方向是“起点指向终点”。 (2) 符号表示法:用一个小写的英文字母来表示,如a ,b 等; (3) 坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴正方向相同的两个单位向量 i 、j 为基底向量,则平面内的任一向量a 可表示为 ,a xi y j x y r r r ,称 ,x y 为向量a 的 坐标,a = ,x y 叫做向量a 的坐标表示。此时|a |。 若已知1122(,)(,)A x y B x y 和,则 2121=--AB x x y y u u u r ,, 即终点坐标减去起点坐标。

必修4平面向量知识要点

必修4平面向量知识要点 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ① a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当 0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 5、向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=. 设()11,a x y =,()22,b x y =, 其中0b ≠,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作 b a C B A a b C C -=A -AB =B

第4讲 平面向量应用举例

第4讲 平面向量应用举例 一、选择题 1.△ABC 的三个内角成等差数列,且(AB → +AC →)·BC →=0,则△ABC 一定是( ). A .等腰直角三角形 B .非等腰直角三角形 C .等边三角形 D .钝角三角形 解析 △ABC 中BC 边的中线又是BC 边的高,故△ABC 为等腰三角形,又A ,B ,C 成等差数列,故B =π3 . 答案 C 2. 半圆的直径AB =4,O 为圆心,C 是半圆上不同于A 、B 的任意一点,若P 为半径OC 的中点,则(PA →+PB →)·PC →的值是( ) A .-2 B .-1 C .2 D .无法确定,与C 点位置有关 解析 (PA →+PB →)·PC →=2PO →·PC →=-2. 答案 A 3. 函数y =tan π4x -π2的部分图象如图所示,则(OA →+OB →)·AB →= ( ). A .4 B .6 C .1 D .2 解析 由条件可得B (3,1),A (2,0), ∴(OA →+OB →)·AB →=(OA →+OB →)·(OB →-OA →)=OB →2-OA →2=10-4=6. 答案 B 4.在△ABC 中,∠BAC =60°,AB =2,AC =1,E ,F 为边BC 的三等分点,则

AE →·AF →=( ). A.53 B.54 C.109 D.158 解析 法一 依题意,不妨设BE →=12 E C →,B F →=2FC →, 则有AE →-AB →=12(AC →-AE →),即AE →=23AB →+13 AC →; AF →-AB →=2(AC →-AF →),即AF →=13AB →+23 AC →. 所以AE →·AF →=? ????23AB →+13AC →·? ?? ??13AB →+23AC → =19(2AB →+AC →)·(AB →+2AC →) =19(2AB →2+2AC →2+5AB →·AC →) =19(2×22+2×12+5×2×1×cos 60°)=53,选A. 法二 由∠BAC =60°,AB =2,AC =1可得∠ACB =90°, 如图建立直角坐标系,则A (0,1),E ? ????-233,0,F ? ?? ??-33,0, ∴AE →·AF →=? ????-233,-1·? ????-33,-1=? ????-233·? ????-33+(-1)·(-1)=23+1=53,选A. 答案 A 5.如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M , N 两点,且AM →=xAB →,AN →=yAC → ,则x ·y x +y 的值为( ).

高中数学-2.5《平面向量应用举例》教学设计

2.5《平面向量应用举例》教学设计 【教学目标】 1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节”和生活中的实际问题; 2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神. 【导入新课】 回顾提问: (1)若O 为ABC ?重心,则OA +OB +OC =0. (2)水渠横断面是四边形ABCD ,DC =12 AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系? (3)两个人提一个旅行包,夹角越大越费力.为什么? 教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来. 新授课阶段 探究一:(1)向量运算与几何中的结论"若a b =,则||||a b =,且,a b 所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例. 教师:平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及 数量积表示出来: 例如,向量数量积对应着几何中的长度.如图: 平行四边行 ABCD 中,设AB =a ,AD =b ,则AC AB BC a b =+=+(平移) ,DB AB AD a b =-=-,2 22||AD b AD ==(长度).向量AD ,AB 的夹角为DAB ∠.因此,可用向量方法解决平面几何中的一些问题.通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果 “翻译”成几何关系.本节课,我们就通过几个具体实例,来说明向量方法在平面几何中的运用 例1 证明:平行四边形两条对角线的平方和等于四条边的平方和. 已知:平行四边形ABCD .

高一数学必修4平面向量测试题(含答案)

一.选择题 1.以下说法错误的是( ) A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量 2.下列四式不能化简为AD 的是( ) A .;)++(BC CD A B B .); +)+(+(CM BC MB AD C .;-+BM AD MB D .; +-CD OA OC 3.已知=(3,4),=(5,12),与 则夹角的余弦为( ) A .6563 B .65 C .5 13 D .13 4. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( ) A .7 B .10 C .13 D .4 5.已知ABCDEF 是正六边形,且?→?AB =→a ,?→?AE =→b ,则?→?BC =( ) (A ) )(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→ →+b a 6.设→a ,→b 为不共线向量,?→?AB =→a +2→b ,?→?BC =-4→a -→b ,?→?CD = -5→a -3→b ,则下列关系式中正确的是 ( ) (A )?→?AD =?→?BC (B )?→?AD =2?→?BC (C )?→?AD =-?→?BC (D )?→?AD =-2?→?BC 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,?→?AB =?→?DC ,且?→?AC ·?→?BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→?PN =-2?→?PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4) 10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( ) (A ) 21±-(B ) 12±(C ) 32±(D ) 23±

高中数学必修4之平面向量知识点

高中数学必修4之平面向量知识点 一.向量的基本概念与基本运算 1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r (1)a a a 00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. 3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) 4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λa 的方向与a 的方向 相反;当0 时,0 a ,方向是任意的 5、两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 1平面向量的坐标表示:平面内的任一向量a r 可表示成a xi yj r r r ,记作a r =(x,y)。 2平面向量的坐标运算: (1) 若 1122,,,a x y b x y r r ,则 1212,a b x x y y r r (2) 若 2211,,,y x B y x A ,则 2121,AB x x y y u u u r (3) 若a r =(x,y),则 a r =( x, y) (4) 若 1122,,,a x y b x y r r ,则1221//0a b x y x y r r

高中数学必修4-平面向量单元教学设计方案

高中数学必修4-平面向量单元教学设计方案 第十一学时~第十二学时:全章小结 (一)学习目标 1.进一步理解向量的有关概念; 2.掌握向量的线性运算,掌握向量数乘的运算,并理解其几何意义. 3.掌握平面向量的正交分解及其坐标表示以及相关应用. 4.掌握平面向量的数量积,并会应用其判断两个平面向量的垂直关系。 5.能够用向量解决一些具体问题,如平面几何中的一些问题和物理中的一些 问题. (二)重点难点 1.重点是让学生理解向量的相关概念和向量的运算 2. 难点是如何向量方法解决一些问题.

(四)教学资源建议 教材、教参、多媒体或实物投影仪、尺规 (五)教学方法与学习指导策略建议 向量是沟通代数,几何,三角函数的工具,掌握向量的解题技巧,方法显得非常重要.向量的解题方法有向量法和坐标法.而要熟练应用这些方法,学生应该对相应的基本概念比较清楚,因此教师在复习时,应该在引导学生得到结果基础之上,让同学理解相关的意义和了解其实际背景.应该把几何的直观性和向量的运算有机的结合在一起.运算和运算律是向量的灵魂,是连接数与形的纽带,教师应该突出这一点.因此,教师在讲授时: (1)关注解题方法产生的思维过程 引导学生探究如何将把问题转化为向量问题,揭示解题方法产生的的思维过程,让学生体会解题思路的形成过程和数学思想方法的运用,从而提高学生综合运用知识分析和解决问题的能力。 (2)强化学生的应用意识 一是培养学生利用所学数学知识、用数学的思维与观点去观察和分析现实生活现象的习惯和意识,强化学生的应用意识;二是为学生提供充足的动手操作的机会,一旦形成解决问题的思路,后续的解题过程则放手让学生独立完成,让学生体验问题的解决过程,并在此过程中锻炼与提高数学能力。 (3)引导学生探究解题规律 指导学生做好解题后的反思,总结解题规律,从而培养学生理性的、条理的思维习惯,形成对通性通法的归纳意识。

最新5-4平面向量应用举例汇总

5-4平面向量应用举 例

一、选择题 1.已知△ABC 中,|AB →|=|AC →|,则一定有( ) A.AB →⊥AC → B.AB →=AC → C .(AB →+AC →)⊥(AB →-AC →) D.AB →+AC →=AB →-AC → [答案] C [解析] ∵|AB →|=|AC →| ∴(AB →+AC →)(AB →-AC →)=|AB →|2-|AC →|2=0, ∴(AB →+AC →)⊥(AB →-AC →). 2.已知两个力F 1,F 2的夹角为90°,它们的合力大小为10N ,合力与F 1的夹角为60°,那么F 1的大小为( ) A .53N B .5N C .10N D .52N [答案] B

[解析] 如图所示,由向量加法的平行四边形法则知F 合=F 1+F 2, 四边形OABC 是矩形,∵∠AOB =60°, ∴|F 1|=|F 合|cos60°=10×12 =5(N). 3.已知a 、b 、c 为△ABC 的三个内角A 、B 、C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角 A 、 B 的大小分别为( ) A.π6,π3 B.2π3,π6 C.π3,π6 D.π3,π3 [答案] C [解析] 解法1:∵m ⊥n ,∴3cos A -sin A =0, ∴cos ? ????A +π6=0, 又∵0

平面向量四心问题(最全)

近年来,对于三角形的“四心”问题的考察时有发生,尤其是和平面向量相结合来考察很普遍,难度上偏向中等,只要对于这方面的知识准备充分,就能应付自如.下面就平面向量和三角形的“四心”问题的类型题做一阐述: 一、重心问题 三角形“重心”是三角形三条中线的交点,所以“重 心”就在中线上. 例1 已知O是平面上一定点,A,B,C是平面上 不共线的三个点,动点P 满足: ,则P的轨迹一定通过△ABC 的( ) A外心 B 内心 C 重心D垂心 解析:如图1,以AB,AC为邻边构造平行四边形ABCD,E为对角线的交点,根据向量平行四边形法则,因为, 所以,上式可化为,E在直线AP上,因为AE为的中线,所以选 C. 点评:本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合. 二、垂心问题 三角形“垂心”是三角形三条高的交点,所以“垂心”就在高线上. 例2 P是△ABC所在平面上一点,若,则P是△ABC的( ).

A.外心 B.内心 C.重 心D.垂心 解析:由. 即. 则, 所以P为的垂心. 故选D. 点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直”等相关知识巧妙结合. 三、内心问题 三角形“内心”是三角形三条内角平分线的交点,所以“内心”就在内角平分线线上. 例3 已知P是△ABC所在平面内的一动点,且点P满足 ,则动点P一定过△ABC的〔〕. A、重心 B、垂心 C、外 心 D、内心 解析:如图2所示,因为是向量的单位向量设与方向上的单位向量分别为,又,则原式可化为,由菱形的基本性质知AP平分,那么在中,AP平分,则知选B.

必修4-平面向量知识点总结

平面向量知识点小结 一、向量的基本概念 1.向量的概念:既有大小又有方向的量,注意向量和数量的区别.向量常用有向线段来表示. 注意:不能说向量就是有向线段,为什么? 提示:向量可以平移. 举例1 已知(1,2)A ,(4,2)B ,则把向量AB 按向量(1,3)a =-平移后得到的向量是_____. 结果:(3,0) 2.零向量:长度为0的向量叫零向量,记作:0,规定:零向量的方向是任意的; 3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ± ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b , 规定:零向量和任何向量平行. 注:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有0); ④三点A B C 、、共线 AB AC ?、共线. 6.相反向量:长度相等方向相反的向量叫做相反向量.a 的相反向量记作a -. 举例2 如下列命题:(1)若||||a b =,则a b =. (2)两个向量相等的充要条件是它们的起点相同,终点相同. (3)若AB DC =,则ABCD 是平行四边形. (4)若ABCD 是平行四边形,则AB DC =. (5)若a b =,b c =,则a c =. (6)若//a b ,//b c 则//a c .其中正确的是 . 结果:(4)(5) 二、向量的表示方法 1.几何表示:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示:用一个小写的英文字母来表示,如a ,b ,c 等; 3.坐标表示:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,i j 为基底,则平面内的任一向量a 可表示为(,)a xi yj x y =+=,称(,)x y 为向量a 的坐标,(,)a x y =叫做向量a 的坐标表示. 结论:如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同. 三、平面向量的基本定理 定理 设12,e e 同一平面内的一组基底向量,a 是该平面内任一向量,则存在唯一实数对12(,)λλ,使1122 a e e λλ=+. (1)定理核心:1122a λe λe =+;(2)从左向右看,是对向量a 的分解,且表达式唯一;反之,是对向量a 的合成. (3)向量的正交分解:当12,e e 时,就说1122a λe λe =+为对向量a 的正交分解. 举例3 (1)若(1,1)a =,(1,1) b =-,(1,2) c =-,则c = . 结果:1 322 a b -. (2)下列向量组中,能作为平面内所有向量基底的是 B A.1(0,0)e =,2(1,2)e =- B.1(1,2)e =-,2(5,7)e = C.1(3,5)e =,2(6,10)e = D.1(2,3)e =-,213,2 4e ??=- ??? (3)已知,AD BE 分别是ABC △的边BC ,AC 上的中线,且AD a =,BE b =,则BC 可用向量,a b 表示为 . 结果:24 33 a b +. (4)已知ABC △中,点D 在BC 边上,且2CD DB =,CD rAB sAC =+,则r s +=的值是 . 结果:0. 四、实数与向量的积 实数λ与向量a 的积是一个向量,记作a λ,它的长度和方向规定如下: (1)模:||||||a a λλ=?; (2)方向:当0λ>时,a λ的方向与a 的方向相同,当0λ<时,a λ的方向与a 的方向相反,当0λ=时,0a λ=, 注意:0a λ≠. 五、平面向量的数量积 1.两个向量的夹角:对于非零向量a ,b ,作O A a =,OB b =,则把(0)AOB θθπ∠=≤≤称为向量a ,b 的夹角. 当0θ=时,a ,b 同向;当θπ=时,a ,b 反向;当2 π θ=时,a ,b 垂直. 2.平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a b ?,即||||cos a b a b θ?=?. 规定:零向量与任一向量的数量积是0. 注:数量积是一个实数,不再是一个向量. 举例4 (1)ABC △中,||3AB =,||4AC =,||5BC =,则AB BC ?=_________. 结果:9-. (2)已知11,2a ??= ??? ,10,2b ? ?=- ?? ? ,c a kb =+,d a b =-,c 与d 的夹角为4 π,则k = ____. 结果:1. (3)已知||2a =,||5b =,3a b ?=-,则||a b +=____. 结果:23. (4)已知,a b 是两个非零向量,且||||||a b a b ==-,则a 与a b +的夹角为____. 结果:30. 3.向量b 在向量a 上的投影:||cos b θ,它是一个实数,但不一定大于0.

相关主题