搜档网
当前位置:搜档网 › 连续函数的性质

连续函数的性质

连续函数的性质
连续函数的性质

§2 连续函数的性质

(一) 教学目的:

掌握连续函数的局部性质和闭区间上连续函数的整体性质.

(二) 教学内容:

连续函数的局部保号性,局部有界性,四则运算;闭区间上连续函数的最大最小值定理,有界性定理,介值性定理,反函数的连续性,一致连续性.

基本要求:

1)掌握函数局部性质概念,可去间断点,跳跃间断点,第二类间断点;了解闭区间上连续函数的性质.

2) 理解一致连续于逐点连续的本质区别.

(三)教学建议:

1) 函数连续性概念是本节的重点.要求学生掌握函数在一点和在区间上连续的定义,间断点的分类,了解连续函数的整体性质.对一致连续性作出几何上的解释.

2)本节的难点是连续函数的整体性质,尤其是一致连续性和非一致连续性的特征. 难点:连续函数的保号性;一致连续性

————————————————————————————

一 连续函数的局部性质

根据函数的在0x 点连续性,即)()(lim 00

x f x f x x =→可推断出函数)(x f 在0x 点的某邻域)(0x U 内的性态。

定理4.2(局部连续性)若函数)(x f 在0x 点连续,则)(x f 在0x 点的某邻域内有界。 定理4.3(局部保号性)若函数)(x f 在0x 点连续,且0)(0>>αx f ,则对任意αα<'<0存在0x 某邻域 )(,)(00x U x x U ∈ 时,0)(>'>αx f

定理4.4(四则运算性质)若函数则)(,)(x g x f 在区间I 上有定义,且都在I x ∈0 连续,则)(/)(,)()(,)()(x g x f x g x f x g x f ±(0)(0≠x g )在0x 点连续。

例 因x y c y == 和连续,可推出多项式函数

n n n n a a x a x a x P ++++=--1)1(10)(

和有理函数Q P, ( )

()()(x Q x P x R =为多项式)在定义域的每一点连续。同样由R x x 在和cos sin 上的连续性,可推出x tan 与x cot 在定义域的每一点连续。

定理4.5(复合函数的连续性)若函数)(x f 在0x 点连续,)(u g 在0u 点连续,

)(00x f u =,则复合函数))((x f g 在0x 点连续。

证明 由于g 在0u 连续,对任给的0>ε,存在 01>δ,使10δ<-u u 时有 ε<-)()(0u g u g (1)

又由)(00x f u =及)(x f u =在连续,故对上述01>δ,存在0>δ,使得当δ<-0x x 时,有100)()(δ<-=-x f x f u u .联系(1)得: 对任给的0>ε,存在 0>δ,当δ<-0x x 时有

ε<-))(())((0x f g x f g .

这就证明了f g 在点0x 连续.

注:根据连续性的定义,上述定理的结论可表示为

))(())(lim ())((lim 000

x f g x f g x f g x x x x ==→→ (2) 例1 求)1sin(lim 21

x x -→. 解 )1sin(2x -可看作函数u u g sin )(=与2

1x u -=的复合.由(2)式,可得 00sin )1(lim sin )1sin(lim 21

21==-=-→→x x x x 注:若复合函数的f g 内函数f 当0x x →时极限为a ,而)(0x f a ≠或f 在0x 无定义(0x 为f 的可去间断点),又外函数g 在a u =处连续,则我们仍可用上述定理来求复合函数的极限,即有

))(lim ())((lim 0

0x f g x f g x x x x →→= (3) 读者还可证明(3)式对于-∞→∞→x x ,或±→0x x 等类型的极限也是成立的。

例2 求极限:(1)x x x sin 2lim 0-→;(2)x

x x sin 2lim -∞→.

解 (1) 112sin lim 2sin 2lim 00=-=-=-→→x

x x x x x (2) 202sin lim 2sin 2lim =-=-=-∞→∞→x

x x x x x

二 闭区间上连续函数的基本性质

前面我们研究了函数的局部性质,下面通过局部性质研究函数在闭区间上的整体性质。

定义1 设f 为定义在数集D 上的函数,若存在D x ∈0,使得对一切D x ∈0有

) f(x))f(x ( )()(00≤≥x f x f ,

则称f 在D 上有最大(最小值)值,并称)(0x f 为f 在D 上的最大(最小值)值. 例如 x sin 在],0[π上有最大值1,最小值0.但一般而言f 在定义域D 上不一定有最大值或最小值(即使f 在D 上有界)。如x x f =)(在)1,0(上既无最大值又无最小值,又如

, 1 0, 2, )1,0(, 1)(?????==∈=x x x x x g 或 (4)

在闭区间上也无最大、最小值。

定理4.6 (最大最小值定理) 若函数)(x f 在闭区间],[b a 上连续,则)(x f 在闭区间

],[b a 上有最大值与最小值。

该定理及以后的定理4.7 和定理4.9将在第七章§2给出证明.

推论:(有界性)若函数)(x f 在闭区间],[b a 上连续,则)(x f 在闭区间],[b a 上有界。

定理4.7(介值性定理) 若函数)(x f 在闭区间],[b a 上连续,且)()(b f a f ≠,若μ为)( )(b f a f 与介于之间的任何实数()()(b f a f <<μ或)()(a f b f <<μ),则在开区间),(b a 内至少存在一点0x ,使得 μ=)(0x f .

推论(根的存在定理)若函数)(x f 在闭区间],[b a 上连续,且)(,)(b f a f 异号,则至少存在一点),(0b a x ∈使得0)(0=x f .即)(x f 在),(b a 内至少有一个实根.

应用介值性定理,还容易推得连续函数的下述性质:若f 在区间[a,b]上连续且不是常量函数,则值域)(I f 也是一个区间;特别若I 为区间[a,b], f 在[a,b]上的最大值为M ,最小值为m ,则],[]),([M m b a f =;又若f 为[a,b]上的增(减)连续函数且不为常数,则) ])( , )([ ( )](),([]),([a f b f b f a f b a f =

例3 证明:若n r ,0>为正整数,则存在唯一正数0x ,使得 0r x n =. 证明 先证存在性。由于当+∞→x 时有+∞→n x ,故存在正数a ,使得r a n

>.因n x x f =)(在],0[a 上连续,并有)()0(a f r f <<,故有介值性定理,至少存在一点

),0(0a x ∈使得r x x f n ==00)(.

再证唯一性。设正数1x 使得r x n

=1

0))((11120101010=++-=----n n n n n x x x x x x x x 由于第二个括号内的数为正所以只能010=-x x ,即10x x =.

例4 设f 在[a,b]连续,满足

],[]),([b a b a f ? (5)

证明:存在],[0b a x ∈,使得 00)(x x f = (6)

证 条件(5)意味着:对任何],[0b a x ∈有b x f a ≤≤)(,特别有

)(a f a ≤ 以及 )(b f b ≤ .

若)(a f a =或)(b f b =,则取b a x 0或=,从而(6)式成立。现设)(a f a <与。)(b f b <。令

x x f x F -=)()(,

则0)()(>-=a a f a F ,0)()(<-=b b f b F . 有根的存在性定理,存在),(0b a x ∈ ,使得0)(0=x F 即00)(x x f =.

三 反函数的连续性。

定理4.8(反函数的连续性)若函数)(x f 在闭区间],[b a 严格递增(递减)且

连续,则其反函数)(1y f

-在相应的定义域 )](),([b f a f ()](),([a f b f )上递增(递 减)且连续。

证明 (只证明f(x)严格递增情况)由闭区间上连续函数的介值性,反函数存在,而且其定义域为 )](),([b f a f 。 设 ))(),((0b f a f y ∈,且)(010y f

x -= 则 ),(0b a x ∈,对任给的0>ε可在0x 的两

侧各取异于0x 的两点21,x x (201x x x <<),

使它们与0x 的距离小于ε(参见右图).

设)(,)(2211x f y x f y ==,由函数的严

格递增性,21,y y 必分别落在0y 的两侧,即

当 201y y y << .令),min(1002y y y y --=δ,

则当);(0δy U y ∈时,对应的)(1y f x -=的值必落在21,x x 之间,从而ε<-||0x x .

应用单侧极限的定义,同样可证)(1y f

x -=在区间端点也是连续的。 例5 由于x y sin =在区间]2

,2[ππ-

上严格单调且连续,故反函数x y arcsin =在区间[-1,1]上连续。 同理,由反函数连续性定理可得其他反三角函数arcctgx arctgx x ,,arccos 在其定义域内是连续的。

例6由于n x y = (n 为正整数)在),0[∞+严格上单调且连续,所以它的反函数n x y 1=在),0[∞+上连续。又若把n x

y 1 -=(n 为正整数)看作由 n u y 1= 与x u 1=的复合,。综上可知,q x y 1

=(q 为非零整数)其定义域内是连续的。

例7 证明:有理幂函数αx y =在其定义区间上连续.

证明:设有理数q

p =α,这里) 0 ( ,≠q p 为整数。因为q x y 1

=与p x y =均在其定义区间上连续,所以复合函数 αx x y q p ==1)(也是其定义区间上的连续函数。

四 一致连续性

前面介绍的函数)(x f 在某区间内的连续性,是指它在区间的每一点都连续。这只反映函数在区间内每一点附近的局部性质,就是说连续定义中的 0>δ 不仅与0>ε 有关,而且与0x 有关。下面介绍的一致连续性,则是函数在区间上的整体性质,其定义中的0>δ只与0>ε有关,而与0x 无关。

定义2(一致连续性)设函数)(x f 在区间I 上有定义,若,0>?ε0)(>=?εδδ只要I x x ∈21,, δ<-||21x x ,都有 ε<-|)()(|21x f x f ,则称)(x f 在区间I 上一致连续。

这里要特别注意逐点连续与一致连续的区别。直观的说)(x f 在区间I 一致连续意味着:不论两点21,x x 在I 中处于什么位置只要它们的距离小于δ,就可使

ε<-|)()(|21x f x f . 显然I 必然在I 上每一点连续,

反之,结论不一定成立(参见例9)。 按照一致连续的定义,)(x f 在区间I 不一致连续意味着:对于某个00>ε对任何的0>δ(无论δ多么小),总存在两点I x x ∈21,尽管δ<-||21x x ,但却有

021|)()(|ε<-x f x f

例8 证明 ax y sin = 在 ),(∞+-∞ 内一致连续。

证明 |2

)(cos 2)(sin |2|sin sin |212121x x a x x a ax ax +-=- || |||2

)(sin |22121x x a x x a -=≤-≤ 对0>?ε,取 ||a ε

δ=,不管21,x x 是 ),(∞+-∞ 中的怎样两点,只要

δ<-||21x x ,就有:ε<-|)()(|21x f x f

所以ax y sin = 在 ),(∞+-∞ 内一致连续。

例9证明x y 1=

在 )1,(δ内一致连续,但在)1,0(内不一致连续。 证明 x

y 1= 在 )1,(δ内一致连续: ||1|||11|122211221x x x x x x x x -≤-=-δ

对0>?ε,取 εδη2=,不管21,x x

是 )1,(δ 中的怎样两点,只要 η<-||21x x ,就有:ε<-|)()(|21x f x f

所以 x y 1= 在 )1,(δ内一致连续。 但在)1,0(内不一致连续。

|1/x 1 –1/x 2

取 10=ε, 对任意的 0>δ,都存在两点 n

x n x 21,121==, 尽管 )1(,21||21><=

-n n x x δ, 但 12|11|21>=-=-n n n x x 所以,x

y 1= 在)1,0(内不一致连续。 )(x f 在区间I 上的一致连续性是)(x f 又一个整体性质,可推出)(x f 在区间I 上每点都连续的这一局部性质(只要在一致连续的定义中把21,x x 看作定点和动点);但)(x f 区间上I 上每点连续并不能保证在区间I 上一致连续,两者在概念上有本质的差别。因为

)(x f 函数)(x f 在区间I 上每点连续是指:

对于 每一点I x ∈及0),(,0>=?>?x εδδε ,当 δ<-'||x x (I x ∈)时,有 ε<-'|)()(|x f x f

注意这里的δ不仅与0>ε有关,还与x 的位置有关,如果能做到δ只与ε有关即能找不到适合I 上所有点的公共0)(>=εδδ,则)(x f 在I 上每点连续,且一致连续;否则)(x f 在I 上每点连续,但不一致连续。

一般说来对I 上无穷多个点,存在无穷多个δ,这无穷多个δ的下确界可能为零,也可能大于零。如果这无穷多个δ的下确界为零,则不存在适合I 上所有点的公共0)(>=εδδ,这种情况)(x f 在I 上连续,但不一致连续;如果这无穷多个δ的下确界大于零,则必存在对I 上每一点都适用的公共0)(>=εδδ,比如我们可取取 δδmin =,则对I 上任意两点x x ', ,只要 δ<-'||x x 时,便有 ε<-'|)()(|x f x f .这种情况,)(x f 在I 上不仅逐点连续,而且是一致连续。

定理4.9 (一致连续性)若函数)(x f 在闭区间],[b a 上连续,则)(x f 在],[b a 上一致连续。

例10 设区间1I 的右端点为1I c ∈,区间2I 的左端点也为2I c ∈(21,I I 可为有限或无限区间)。试证明:若)(x f 分别在21I I 和上一致连续,则)(x f 在区间21I I I =上也一致连续。

证明:任给0>ε,由f 在21I I 和上的一致连续性,分别存在正数1δ和2δ使得对任何121,I x x ∈,只要121δ<-x x ,就有

ε<-)()(21x f x f ; (7)

又对任何221,I x x ∈,只要221δ<-x x 也有上面(7)式成立。

点c x =作为1I 右端点,f 在点c 为左连续,作为2I 左端点,f 在点c 为右连续,所以f 在点c 为连续。故对上述0>ε,存在03>δ,当 3δ<-c x 时有

2)()(ε

<-c f x f . (8)

令),min(3,21δδδδ=,对任何的I x x ∈21,,δ<-21x x ,分别考虑下列两种情形: (i )若121,I x x ∈或221,I x x ∈则(7)式成立;

(ii )21,x x 分别属于1I 和2I ,不妨设11I x ∈和22I x ∈,则 31211δδ≤<-<-=-x x x c c x ,

故有(8)式得2)()(1ε

<-c f x f . 同理得2)()(2ε

<-c f x f . 从而也有(7)式成立。

这便证明了f 在I 上一致连续。

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数的概念和性质

专题讲座 高中数学“函数的概念与性质”教学研究 李梁北京市西城区教育研修学院 函数就是中学数学中的重点内容,它就是描述变量之间依赖关系的重要数学模型、 本专题内容由四部分构成:关于函数内容的深层理解;函数概念与性质的教学建议;学 生学习中常见的错误分析与解决策略;学生学习目标检测分析、 研究函数问题通常有两条主线:一就是对函数性质作一般性的研究,二就是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数、研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等、 一、关于函数内容的深层理解 (一)函数概念的发展史简述 数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几 何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入 常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数就是一个解析表达式[代数角度];Dirichlet,1805—1859提出就是与之间的一种对应的观点[对应关系角度] ;Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度]、 Dirichlet:认为怎样去建立与之间的关系无关紧要,她拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数、”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义)、 Veblen,1880-1960用“集合”与“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量就是数”的限制,变量可以就是数,也可以就是其它对象、 (二)初高中函数概念的区别与联系 1.初中函数概念:

函数的连续性极其性质

了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 无穷大量和无穷小量 无穷大量 我们先来看一个例子: 已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为此我 们可定义如下:设有函数y=,在x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当 时,成立,则称函数当时为无穷大量。 记为:(表示为无穷大量,实际它是没有极限的) 同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函 数当x→∞时是无穷大量,记为:。 无穷小量 以零为极限的变量称为无穷小量。 定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量. 记作:(或) 注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.。 关于无穷小量的两个定理 定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。 定理二:无穷小量的有利运算定理 a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量. 无穷小量的比较 通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

函数的概念及性质

函数的概念及性质 概览:概念,表示方法,图象和性质 1. 概念 函数的定义:传统定义(初中的),近代定义。自变量,对应法则,定义域,值域〖两域都是集合,回答时要正确表示。〗 对应法则f 是函数的核心,是对自变量的“操作”,如)(x f 是对x 进行“操作”,而)(2x f 是对2x 进行“操作”,)2(f 是对2进行“操作” 函数的三要素,或两要素:定义域、对应法则 判定两个函数是否相同。〖定义域和值域分别相同的两个函数不一定是同一函数,例x y x y 2,==;又如])1,0[(,2∈==x x y x y 定义域都取〗 区间 定义,名称,符号,几何(数轴)表示 映射 定义,符号,与函数的异同 2. 函数的表示方法 列表法,图象法,解析法 分段函数 定义域、值域、最值 求函数解析式的常用方法:配凑,换元,待定系数,函数方程(消去法) 3. 函数的图象 作图的步骤:定义域,列表,描点,连线〖注意抓住特征点,如边界点,与两轴的交点等;边界点注意空心/实心〗 带有绝对值符号的函数 定义域,分段脱去绝对值,作图 4. 函数的性质 求定义域 分式,偶次根式,对数的真数和底数,复合函数,实际问题中的实际意义。 求值域 由定义域和对应法则决定,故应先考虑定义域。方法:观察分析,例 函数211)(x x f +=;配方;换元;判别式;单调性;数形结合(图象);基本不等式;反求法(反函数法)等。 单调性 对于定义域内的某个区间而言。 单调区间若不含端点,则必须写成开区间,若含端点,则写成闭区间,通常写成开区间也可。 一个函数可能有多个独立的单调区间,应用逗号相隔回答,不用并集,而函数的两域都是整体性的集合,若有必要则要用并集回答。 图象特征:从左到右升/降。 证明步骤:设值,作差,定号,作答。 判断函数单调性的有关规律。 如增加增得增,减加减得减;注意:增乘增未必增,减乘减未必减(还要看各自的函数值是否同正或同负) 奇偶性

函数概念与性质练习题目大全

函数概念与性质练习题大全 函数定义域 1、函数x x x y +-=)1(的定义域为 A . {}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x 2、函数x x y +-=1的定义域为 A . {}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x 3、若函数)(x f y =的定义域是[]2,0,则函数1 ) 2()(-= x x f x g 的定义域是 A . []1,0 B .[)1,0 C .[)(]4,11,0 D .()1,0 4、函数的定义域为)4323ln(1 )(22+--++-= x x x x x x f A . (][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 - 5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A . ()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,9 6、函数4 1lg )(--=x x x f 的定义域为 A . ()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41, 7、函数2 1lg )(x x f -=的定义域为 A . []1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11, 8、已知函数 x x f -= 11)(的定义域为M ,)1ln() (x x g +=的定义域为N ,则=N M A . {}1->x x B .{}1

高中数学函数的概念与性质(T)

函数的概念与性质 【知识要点】 1.函数的概念及函数的三要素 2.怎么判断函数的单调性 3.怎么判断函数的奇偶性 【典型例题】 例1.求下列函数的解析式,并注明定义域. (1)若x x x f 2)1(+=-,求)(x f . (2)若31 )1(44-+=+x x x x f ,求)(x f . 例2.求下列函数的值域. (1))1(1 3 2≥++=x x x y (2)1)(--=x x x f (3)232--=x x y (4)246 (),[1,4]1 x x f x x x ++= ∈+

例3.已知函数f (x )=m (x +x 1)的图象与函数h (x )=41(x +x 1 )+2的图象关于点A (0,1)对称. (1)求m 的值; (2)若g (x )=f (x )+ x a 4在区间(0,2]上为减函数,求实数a 的取值范围. 例4.判断下列函数的奇偶性 (1)334)(2-+-=x x x f (2)x x x x f -+?-=11)1()( 例5.设定义在[-2,2]上的偶函数,)(x f 在区间[0,2]上单调递减,若)()1(m f m f <-,求实为数m 的取值范围。

例6.已知函数f (x )=x + x p +m (p ≠0)是奇函数. (1)求m 的值. (2)当x ∈[1,2]时,求f (x )的最大值和最小值. 例7.(2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值; (2)判断f (x )的奇偶性并证明; (3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.

浅论闭区间上连续函数的性质.doc

浅论闭区间上连续函数的性质 中山大学数学与应用数学04级数统基地班黎俊彬 摘要:本文就闭区间上连续函数的性质进行了一定程度上的探讨,从直观感觉和理论论证两面方面论述了有界性,最值定理,介值定理和一致连续性定理,并且将之与开区间上连续函数及不连续函数作一定的对比. 关键字:闭区间连续函数实数的连续性和闭区间的紧致性 实数的连续性和闭区间的紧致性,使闭区间上的连续函数有丰富的性质,而且可由实数的各等价命题推出?本文主要从对连续函数的直观理解深入到纯分析的论证?在论证过程屮,严格地不出现微分学和积分学的内容,只是从连续函数本身的性质及实数系的性质入手. 从直观上理解,连续函数的图像是一条连续不断的曲线,这对于一?般初等函数來说都是成立的?而闭区间b"]上的连续函数/(X)的图像两端必须紧紧地连接着定义在端点处的点(67,/?)),(/>,/⑹X-8 v ./(Q),/⑹V +8)上形成一条封闭的曲线,即与直线x = a,x = b.y =0形成一个或多个封闭的区域.直观理解虽然不完全正确,但却能帮助我们了解和发现闭区间连续函数的性质,某些时候还能帮助我们找到证明.但直观的认识不一定是正确的,的确存在一些连续函数,其图像并不能作岀来?直观认识,在科学里面只是充当一个开路先锋的角色,到最后,一定要用严格的推理来证明. 先看何谓闭区间上的连续函数?连续的定义首先是点连续的定义. 称/(X)在兀=兀0连续,如果lim /(%) = /(x0), 2X() B|j/(x)4x o附近有定义W > 0,? > 0,当X G u(x°0)时有|/(x)-/(x°)| < 称/⑴在兀=兀0左连续,如果w > o,? > 0,当兀w (兀0 - 兀0 ]时有(兀)-f(兀0 )| < £? 称 f(x)在兀=%右连续,如果>0,3^ >0,当x w [x0,x0 +5)时有|/(兀)-/(%)| < 若函数该点的极限值不等于函数值,经验告诉我们函数在该点必定断开,连续的定义与我们的直观认识相符合?而若函数在[G,b]连续,是指函数在区间的每点都连续,在左端点右连续,右端点左连续.下面讨论闭区间连续函数的相关性质, 并从直观和理论上与非闭区间的情况作比较,体会闭区间的独特的性质.

(整理)函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ? ?? ?? ? ? ? +? -?? () 2 11c o s ~2(1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

函数的连续性的例题与习题集

函数的连续性的例题与习题 函数连续性这个内容所涉及到的练习与考试题目,大致有3大类。第一类是计算或证明连续性;第二类是对间断点(或区间)的判断,包括间断点的类型;第三类是利用闭区间上的连续函数的几个性质(最值性质,零点存在性质),进行理论分析。 下面就这三大类问题,提供若干例题和习题。还是那句老话:看到题目不要看解答,而是先思考先试着做!这是与看文学小说的最大区别。 要提醒的是,例题里有不少是《函数连续性(一)(二)》中没有给出解答的例题,你事先独立做了吗?如果没有做,是不会做好是根本不想做,还是没有时间? 一.函数的连续 例1.1(例1.20(一),这个序号值的是《函数连续性(一)中的例题号,请对照) 设()f x 满足()()()f x y f x f y +=+,且()f x 在0x =连续。证明:()f x 在任意点x 处连续。 分析:证明题是我们很多同学的软肋,不知道从何下手。其实,如果你的基本概念比较清晰,证明题要比计算题号做,因为它有明确的方向,不像计算题,不知道正确的答案是什么 在本题里,要证的是“()f x 在任意点x 处连续”,那么我们就先固定一个点x ,用函数连续的定义来证明在x 处连续。你可能要问:函数连续的定义有好几个,用哪一个? 这要看已知条件,哪个容易用,就用那一个。在本题中,提供了条件()()()f x y f x f y +=+,也就是()()()f x y f x f y +-=,你的脑海里就要想到,如果设y x =?,那么就有 ()()()y f x x f x f x ?=+?-=?;这个时候,你应该立即“闪过”,要用题目给的第二个条件了:()f x 在0x =连续!它意味着:0 lim (0)(0)x f x f ?→+?=。 证明的思路就此产生! 证明:因为 ()()()f x y f x f y +=+,取0y =,则有 ()()(0)f x f x f =+,所以(0)0f =。 (#) 对于固定的x (任意的!),若取y x =?,有 ()()()y f x x f x f x ?=+?-=?, (+) 在(+)式两边取0x ?→的极限,那么

半连续函数的性质与应用

摘要 函数的种类极为复杂. 在函数论中, 连续函数的性质和应用占有相当重要的地位. 有一类函数虽然不连续, 但却具有一些与连续函数相近的性质, 即连续函数的一个推广——半连续函数. 从而得到了比连续函数更广泛的一类函数的性质. 通过对半连续函数的研究, 对半连续函数在数学分析中的应用奠定了理论基础. 首先简述连续函数的性质与应用, 之后重点讨论半连续函数的性质, 详细介绍运算性, 保号性, 以及拓扑空间上半连续函数性质定理. 推广到紧致空间中半连续函数的应用. 最后辨析连续函数与半连续函数性质、应用, 最终应用连续函数性质解决半连续函数的问题.实际上半连续函数理论在古典分析和现代分析中都有着较为广泛的应用. 比如在最优化问题、变分不等式问题、相补问题及对策论问题都有着举足轻重的作用. 关键词:半连续;连续;函数

Abstract Category of function is very complicated. Characterization and application of continuous functions are very important in the function theory. Although a kind of function is also continuous, its characterization is similar with the continuous functions, which is called extension of the continuous functions semi-continuous functions, thus a kind of function with more winder characterization is obtained. Through the study, half of the continuous function in the mathematical analysis continuous function which lay a theoretical foundation for the application. First, this paper expounds the nature of the continuous function and application, and then discusses the nature of the semi-continuous functions, detailed mathematical and application, introduced the number of topological space, and the first half of the continuous function theorem of generalized to nature. Tight space in the application of semi-continuous functions. Finally differentiate continuous function and semi-continuous functions properties, application, and finally application continuous function semi-continuous functions nature solution of the problem. Half a continuous function in the classical theory analysis and modern analysis has a wide range of applications. For example, in the most problems, variational inequalities, phase problems and countermeasures for the theory of and so on all has a pivotal role. Key words:semi-continuous;continuous;functions;

高一函数的概念与性质

函数概念与性质 一、选择题(每小题5分,共50分) 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =2y = (D )y =2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D )1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在),(b a 上是

(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-< (C )()()f x f x <- (D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

连续函数性质

§ 连续函数的性质 ? 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值0()f x 。从而,根据函数极限的性质能推断出函数f 在0()U x 的性态。 定理1(局部有界性) 若函数f 在点0x 连续,,则f 在某0()U x 内有界。 定理2(局部保号性) 若函数f 在点0x 连续,且0()0f x >(或0<),则对任何正数0()r f x < (或0()r f x <-),存在某0()U x ,使得对一切 0()x U x ∈有()f x r >(或()f x r <-)。 注: 在具体应用局部保号性时,常取01 ()2 r f x =, 则当0()0f x >时,存在某0()U x ,使在其内有01 ()()2 f x f x > 。 定理3(四则运算) 若函数f 和g 在点0x 连续,则,, f f g f g g ±?(这里0()0g x ≠)也都在点0x 连续。 关于复合函数的连续性,有如下定理: 定理4 若函数f 在点0x 连续,g 在点0u 连续,00()u f x =,则复合 函数g f 在点0x 连续。 证明:由于g 在点0u 连续,10,0εδ?>?>,使得当01||u u δ-<时有 0|()()|g u g u ε-<。 (1)

又由00()u f x =及()u f x =f 在点0x 连续,故对上述1δ,存在0δ>, 使得当0||x x δ-<时有001|||()()|u u f x f x δ-=-<,联系(1)式得:对任 给的0ε>,存在0δ>,使得当0||x x δ-<时有 0|(())(())|g f x g f x ε -<。 这就证明了g f 在点0x 连续。 注:根据连续必的定义,上述定理的结论可表为 0lim (())(lim ())(())x x x x g f x g f x g f x →→== 定理 5 ()x f x x 0 lim →存在的充要条件是()() 0lim 00 0+=+→x f x f x x 与 ()()0lim 00 0-=-→x f x f x x 存在并且相等. 证明:必要性显然,仅须证充分性.设()A x f x x =+→0 0lim ()x f x x 00 lim -→=,从 而对任给的0>ε,存在01>δ和02 >δ,当 100δ<-=δδδ 时,当δ<-<00x x 时,则 δ <-<00x x 和 00<-<-x x δ 二者必居其一,从而满足①或②,所以 ()ε<-A x f . 定理 6 函数()x f 在0x 点连续的充要条件是()x f 左连续且右连续. 证明:()x f 在0x 点连续即为()()00 lim x f x f x x =→.注意左连续即为()()000x f x f =-,右连续即为()()000x f x f =+,用定理5即可证. 此外,在讨论函数的极限时往往必须把连续变量离散化,下面我们来讨论这方面的问题.

连续函数的性质1

§2连续函数的性质 Ⅰ. 教学目的与要求 1.理解连续函数的局部有界性、局部保号性、保不等式性. 2.掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续性,会利用其讨 论函数的连续性. 3.掌握闭区间上连续函数的性质,会利用其讨论相关命题. 4.理解函数一致连续性的概念. Ⅱ. 教学重点与难点: 重点: 闭区间上连续函数的性质. 难点:. 闭区间上连续函数的性质,函数一致连续性的概念. Ⅲ. 讲授内容 一 连续函数的局部性质 若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值()0x f .从而,根据 函数极限的性质能推断出函数f 在()0x U 的性态. 定理4.2(局部有界性) 若函数f 在点0x 连续,则f 在某()0x U 内有界. 定理4.3(局部保号性) 若函数f 在点0x 连续,且()0x f 0> (或0<),则对任何正 数()0x f r < (或()0x f r -<),存在某()0x U ,使得对一切∈x ()0x U 有 ()r x f >,()r x f -<或(). 注 在具体应用局部保号性时,常取()021x f r = 则(当()0x f 0>时)存在某()0x U 使在其内有()>x f ()02 1x f . 定理4.4(四则运算) 若函数f 和g 在点0x 连续,则g f g f g f ,,?±(这里 ()00≠x g )也都在点0x 连续. 以上三个定理的证明,都可从函数极限的有关定理直接推得. 对常量函数c y =和函数x y =反复应用定理4.4,能推出多项式函数 ()n n n n a x a x a x a x P +++=--1110 和有理函数()()() x Q x P x R =(Q P ,为多项式)在其定义域的每一点都是连续的. 同样,由x sin 和x cos 在R 上的连续性,可推出x tan 与x cot 在其定义域的每一点 都连续. 关于复合函数的连续性,有如下定理: 定理4.5 若函数f 在点0x 连续,g 在点0u 连续,()00x f u =,则复合函数f g 在点

函数的概念与性质

第三章函数 第一单元函数的概念与性质 第一节函数的概念 一、选择题 1.下列对应中是映射的是() A.(1)、(2)、(3)B.(1)、(2)、(5) C.(1)、(3)、(5) D.(1)、(2)、(3)、(5) 2.下面哪一个图形可以作为函数的图象() 3.(2009年茂名模拟)已知f:A→B是从集合A到集合B的一个映射,?是空集,那么

下列结论可以成立的是( ) A .A = B =? B .A =B ≠? C .A 、B 之一为? D .A ≠B 且B 的元素都有原象 4.已知集合M ={}?x ,y ?|x +y =1,映射f :M →N ,在f 作用下点(x ,y )的元素是(2x,2y ),则集合N =( ) 5.现给出下列对应: (1)A ={x |0≤x ≤1},B =R - ,f :x →y =ln x ; (2)A ={x |x ≥0},B =R ,f :x →y =±x ; (3)A ={平面α内的三角形},B ={平面α内的圆},f :三角形→该三角形的内切圆; (4)A ={0,π},B ={0,1},f :x →y =sin x . 其中是从集A 到集B 的映射的个数( ) A .1 B .2 C .3 D .4 二、填空题 6.(2009年珠海一中模拟)已知函数f (x )=x 2-1x 2+1,则f ?2?f ??? ?12=________. 7.设f :A →B 是从集合A 到B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(kx ,y +b ),若B 中元素(6,2)在映射f 下的元素是(3,1),则k ,b 的值分别为________. 8.(2009年东莞模拟)集合A ={a ,b },B ={1,-1,0},那么可建立从A 到B 的映射个数是________.从B 到A 的映射个数是________. 三、解答题 9.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,求f (72)的值. 10.集合M ={a ,b ,c },N ={-1,0,1},映射f :M →N 满足f (a )+f (b )+f (c )=0,那么映射f :M →N 的个数是多少?

高中数学必修1函数概念及性质知识点总结

数学必修1函数概念及性质(知识点总结) (一)函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 2.构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础. (3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等. 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成. (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质; 2、利用数形结合的方法分析解题的思路。提高解题的速度。

(整理)闭区间上连续函数的性质

§4.2 闭区间上连续函数的性质 一、 性质的证明 定理1.(有界性)若函数)(x f 在闭区间[a,b]连续,则函数)(x f 在闭区间[a,b]有界,即?M >0,∈?x [a,b],有|)(x f |≤M . 证法:由已知条件得到函数)(x f 在[a,b]的每一点的某个邻域有界.要将函数 )(x f 在每一点的邻域有界扩充到在闭区间[a,b]有界,可应用有限覆盖定理,从 而得到M >0. 证明:已知函数)(x f 在[a,b]连续,根据连续定义, ∈?a [a,b],取0ε=1,0δ?>0,∈?x (00,δδ+-a a )?[a,b],有 |)(x f )(a f -|<1.从而∈?x (00,δδ+-a a )?[a,b]有 |)(x f |≤|)(x f )(a f -|+|)(|a f <|)(|a f +1 即∈?a [a,b],函数)(x f 在开区间(00,δδ+-a a )有界。显然开区间集 { (00,δδ+-a a )|∈a [a,b] }覆盖闭区间[a,b].根据有限覆盖定理(4.1定理3),存在有限个开区间,设有n 个开区间 {(k k a k a k a a δδ+-,)|∈k a [a,b] },k=1,2,3,…,n 也覆盖闭区间[a,b] ,且 ∈?x (k k a k a k a a δδ+-,)|∈k a [a,b],有|)(x f |≤|)(|k a f +1,k=1,2,3,…,n 取M =max{|)(||,......,)(||,)(|21n a f a f a f }+1. 于是∈?x [a,b],∈?i {1,2,…,n},且∈x (i i a i a i a a δδ+-,)?[a,b], 有|)(x f |≤|)(|i a f +1≤M 定理2(最值性):若函数()f x 在闭区间[],a b 连续,则函数()f x 在区间

相关主题