搜档网
当前位置:搜档网 › 第3章 大肠杆菌基因工程

第3章 大肠杆菌基因工程

第3章 大肠杆菌基因工程

第3章 大肠杆菌基因工程

基因工程及其在大肠杆菌生产人干扰素中的应用

基因工程及其在大肠杆菌生产人干扰素中的应用 一、课程设计目的 了解工业生产中的新型育种技术并比较不同育种技术的优势; 学习理解基因工程育种技术及其操作原理; 研究基因工程育种技术在人干扰素生产中的创新。 二、课程设计题目描述与要求 本文介绍一种二十世纪七十年代发展起来的一种新型生物技术——基因工程,介绍其在育种中的应用。文中重点介绍了基因工程育种的一般步骤,以及近年来出现的运用基因工程进行定向育种的主要新技术:基因的定点突变,易错PCR,DAN重排及基因组重排。之后,应用基因工程育种技术重组大肠杆菌BL21(pBAI)生产人干扰素a2b, 通过优化补料分批培养时葡萄糖的流加策略,提高了hIFNa2b的表达量和表达速率。不同的葡萄糖流加方式有各自的优点,采用恒速流加葡萄糖的方式,hIFNa2b的表达量达到6 540 mg/L,高于目前已知文献中hIFNa2b的最高表达量5 200 mg/L。

三、课程设计报告内容 引言 基因工程是二十世纪七十年代发展起来的一种新型生物技术,其发展从根本上改变了生物技术的研究和开发应用模式。1972年美国的Berg和Jackson等人将猿猴病毒基因组SV 40DNA、λ噬菌体基因以及大肠杆菌半乳糖操纵子在体外重组获得成功。翌年,美国斯坦佛大学的Cohen和Boyer等人在体外构建出含有四环素和链霉素连个抗性基因的重组质粒分子,将之导入大肠杆菌后,该重组质粒得以稳定复制,并赋予受体细胞相应的抗生素抗性,由此宣告了基因工程的诞生。在二十世纪八十年代以来,随着大批大批成果的出现及应用,基因工程带来了一场新的革命。 利用这些技术,可以直接地、有针对性地在DNA分子水平上改造生物的遗传性状。通过转入外源基因,微生物和动、植物细胞可以产生出自身原来没有的蛋白质。同样,利用重组DNA技术,也可以使一些原来存在量极低但有重要工业或医学用途的小分子(抗生素)或蛋白质之外的大分子物质得以大量生产。特别是随着重组DNA技术的完善和发展,以基因水平为核心的现代分子定向育种技术越来越受到工业微生物育种学家的关注,并展示了良好的应用前景。 1、基因工程育种 基因工程育种是在基因水平上,运用人为方法将所需的某一供体生物的遗传物质提取出来,在离体条件下用适当的工具酶进行切割后,与载体连接,然后导入另一细胞,使外源遗传物质在其中进行正常复制和表达引,与前几种育种技术相比,基因工程育种技术是人们在分子生物学指导下的一种自觉的、能像工程一样可预先设计和控制的育种新技术,它可实现超远缘杂交,因而是最新最有前途的一种育种新技术。基因工程技术的全部过程一般包括目的基因DNA片段的取得、DNA片段与基因载体的体外连接、外源基因转入宿主细胞和目标基因的表达等主要环节。 1.1 基因工程育种的一般步骤是: (1)目的基因的获得:一般通过化学合成法、物理化学法(包括密度梯度离心法、单链酶法、分子杂交法)、鸟枪无性繁殖法、酶促合成法(逆转录法)、Norther

最新1219遗传与基因工程测试卷汇总

20041219遗传与基因工程测试卷

第三章遗传与基因工程测试卷 选择题 1.“杂交水稻之父”袁隆平在20世纪60年代进行了六年的栽培水稻杂交试验,没有获得质核互作的雄性不育株,他从失败中得到的启示是() A.水稻是自花传粉植物,只能自交 B.进行杂交试验的栽培稻的性状不优良 C.进行杂交试验所产生的后代不适应当地的土壤条件 D.应该用远源的野生雄性不育稻与栽培稻进行杂交 2.某农场不慎把保持系和恢复系种到一块地里,则在恢复系上可能获得的种子的基因型是() A.N(RR)和N(Rr)B.S(rr)和S(Rr) C.N(Rr)和S(Rr) D.N(rr)和N(Rr) 3.人们在种植某些作物时,主要是为了获取营养器官,如甜菜,若利用雄性不育系培育这类作物的杂交种,母本和父本在育性上的基因型依次是() A.S(rr) N(RR) B.S(rr) N(rr) C.N(RR)S(rr)D.N(rr) S(rr) 4.甲性状和乙性状为细胞质遗传,下列四种组合中能说明这一结论的是() ①♀甲╳♂乙→F1呈甲性状②♀甲╳♂乙→F1呈乙性状 ③♀乙╳♂甲→F1呈甲性状④♀乙╳♂甲→F1呈乙性状 A.①② B.③④ C.①④ D.②③ 仅供学习与交流,如有侵权请联系网站删除谢谢2

5.在一块栽种红果番茄的田地里,农民发现有一株番茄的一枝条上结出黄色番茄,这是因为该枝条发生了() A.细胞质遗传 B.基因突变 C.基因重组 D.染色体变异 6.关于小麦和玉米雄性不育的叙述中不准确的是() A.雄性不育系和恢复系的后代都可作为杂交种 B.雄性不育系作母本和保持系产生的生代仍是不育系 C.雄性不育系在杂交育种中只能作为母本 D.雄性不育是细胞核基因和细胞质基因共同决定的 7.细胞质基因与细胞核基因的不同之处是() A.具有控制相对性状的基因B.基因按分离定律遗传 C.基因结构分为编码区和非编码区D.基因不均等分配 8.在形成卵细胞的减数分裂过程中,细胞质遗传物质的分配特点是() ①有规律分配②随机分配③均等分配④不均等分配 A.①③ B.②③ C.②④ D.①④ 9.下列说法不正确的是() A.细胞质遗传是由细胞质中的遗传物质控制的 B.在减数分裂中,细胞质中的基因遵循孟德尔发现的定律 C.在细胞质遗传中,风的性状完全是由母本决定的 D.线粒体和叶绿体中含有少量的遗传物质,其遗传属于细胞质遗传 10.真核生物的基因表达调控比原核生物复杂的原因是() A.必须对转录产生的mRNA进行加工 仅供学习与交流,如有侵权请联系网站删除谢谢3

03遗传与基因工程测试卷doc-第三章遗传与基因工程测试卷

第三章遗传与基因工程测试卷 选择题 1.“杂交水稻之父” 袁隆平在20 世纪60 年代进行了六年的栽培水稻杂交试验,没有获得质核互作的雄性不育株,他从失败中得到的启示是 ( ) A .水稻是自花传粉植物,只能自交 B ?进行杂交试验的栽培稻的性状不优良 C ?进行杂交试验所产生的后代不适应当地的土壤条件 D.应该用远源的野生雄性不育稻与栽培稻进行杂交 2 ?某农场不慎把保持系和恢复系种到一块地里,则在恢复系上可能获得的种子的基因型是() A ? N ( RR)和N (Rr) B. S(rr)和S(Rr) C.N ( Rr)和S(Rr) D . N (rr)和N (Rr) 3.人们在种植某些作物时,主要是为了获取营养器官,如甜菜,若利用雄性不育系培育这类作物的杂交种,母本和父本在育性上的基因型依次是( ) A.S(rr) N(RR) B.S( rr) N(rr) C.N(RR) S(rr) D.N(rr) S(rr) 4.甲性状和乙性状为细胞质遗传,下列四种组合中能说明这一结论的是( ) ①早甲X父乙T F l呈甲性状②早甲X父乙T F l呈乙性状 ③早乙X父甲T F i呈甲性状④早乙X父甲T F i呈乙性状 A .①② B .③④ C.①④ D .②③ 5.在一块栽种红果番茄的田地里,农民发现有一株番茄的一枝条上结出黄色番茄,这是因为该枝条发 生了 ( ) A .细胞质遗传 B .基因突变 C .基因重组D.染色体变异6.关于小麦和玉米雄性不育的叙述中不准确的是 ( ) A .雄性不育系和恢复系的后代都可作为杂交种 B .雄性不育系作母本和保持系产生的生代仍是不育系 C .雄性不育系在杂交育种中只能作为母本 D .雄性不育是细胞核基因和细胞质基因共同决定的

第三章遗传与基因工程

第三章遗传与基因工程 教材分析 本章教材是学生在高中生物必修课中学习了有关遗传学基本知识的基础上讲述的。其中《细胞质遗传》是对必修教材中细胞核遗传部分知识的补充,可以使学生全面认识遗传物质是由核内和质内两部分构成,同时也为下面章节讲述细胞质中的遗传物质-----质粒,埋下了伏笔。《基因的结构》、《基因表达的调控》可以使学生对基因及其表达机理在高二基础上取得更深一层的认识和理解。而《基因工程简介》在本章中占有重要地位。由于基因工程技术是四大生物工程核心技术,本章又是讲述生物工程内容的开篇,所以无论从其内容,还是从其所处的地位来看,本章教学内容对理解下面各章内容具有重要作用。因此,本章是本册教材的重点。 第一节细胞质遗传 教学目标 1.知识方面 a).理解细胞质遗传的概念和特点以及形成这些特点的原因(识记)。 b)理解细胞质遗传的物质基础是细胞质中的DNA(识记)。 c)理解细胞质遗传在育种中应用(知道)。 2.态度观念方面 a)通过理解细胞核遗传与细胞质遗传的关系,使学生树立辩证唯物主义思想。 b)结合我国科学家利用三系配套法培育出了小麦、谷子、水稻等优势杂交种的实例,特别 是结合被世界誉为“杂交水稻之父”的袁隆平院士首创三系杂交水稻的实例,对学生进行创新精神和爱国主义教育,激发学生的民族自豪感,激励学生学习科学家孜孜不倦的探索精神。 c)通过对细胞质遗传在育种中应用的学习,培养学生将科学技术这“第一生产力”转化为 直接生产力和现实生产力的STS意识。 3.能力方面 a)通过对细胞质遗传特点及形成该特点原因的探究,培养学生观察、对比、分析、推理、 归纳、综合等抽象思维能力。 b)提高学生的探究能力和科学素养。 c)培养学生搜集资料、处理信息的能力。 重点、难点分析 细胞质遗传的特点和形成这些特点的原因以及细胞质遗传在育种中的应用是本节的教学重点。 由于细胞质遗传在育种中的应用这部分内容涉及到了核质互作的遗传原理、杂种优势以及三系配套等一些专业性很强的与育种有关的知识,而这部分知识又是学生过去很少接触的,因此它是本节的教育难点。 教学模式 引导-----探究式教学方法 教学手段 主要应用影像逼真的投影片加强直观教学。 课时安排 两课时 设计思路 在教学过程中,不是将知识直接传授给学生,而是采用引导----探究策略,创设情境,着眼于把学生领进探究知识的过程中去,让学生通过自己的观察、思考去探究知识的形

大肠杆菌基因工程菌常用类型

1、大肠杆菌DH5a菌株 DH5a是世界上最常用的基因工程菌株之一。由于DH5α是DNA酶缺陷型菌株,有利于基因克隆,保存质粒,但该菌株的蛋白酶没有缺陷,表达的蛋白容易被降解,因此通常不作为表达菌株。E.coli DH5a在使用pUC系列质粒载体转化时,可与载体编码的β-半乳糖苷酶氨基端实现α-互补。可用于蓝白斑筛选鉴别重组菌株。 基因型:F-,φ80dlacZΔM15,Δ(lacZYA-argF)U169,deoR,recA1,endA1,hsdR17(rk-,mk+),phoA,supE44,λ-,thi-1,gyrA96,relA1 2、大肠杆菌BL21(DE3) 菌株 该菌株用于高效表达克隆于含有噬菌体T7启动子的表达载体(如pET系列)的基因。T7噬菌体RNA聚合酶位于λ噬菌体DE3区,该区整合于BL21的染色体上。该菌适合表达非毒性蛋白。 基因型:F-,ompT,hsdS(rBB-mB-),gal,dcm(DE3) 3、大肠杆菌BL21(DE3) pLysS菌株 该菌株含有质粒pLysS,因此具有氯霉素抗性。PLysS含有表达T7溶菌酶的基因,能够降低目的基因的背景表达水平,但不干扰目的蛋白的表达。该菌适合表达毒性蛋白和非毒性蛋白。 基因型:F-,ompThsdS(rBB-mB-),gal,dcm(DE3,pLysS,Camr 4、大肠杆菌JM109菌株 该菌株在使用pUC系列质粒载体进行DNA转化或用M13 phage载体进行转染时,由于载体DNA产生的LacZa多肽和JM09编码的LacZΔM15进行α-互补,从而显示β-半乳糖苷酶活性,由此很容易鉴别重组体菌株。 基因型:recA1,endA1,gyrA96,thi-1,hsdR17,supE44,relA1,Δ(lac-proAB)/F’[traD36,proAB+,lacIq,lacZΔM15] 5、大肠杆菌TOP10菌株 该菌株适用于高效的DNA克隆和质粒扩增,能保证高拷贝质粒的稳定遗传。 基因型:F- ,mcrAΔ(mrr-hsd RMS-mcrBC),φ80 ,lacZΔM15,△lacⅩ74,recA1 ,araΔ139Δ(ara-leu)7697,galU,galK,rps,(Strr) endA1,nupG 6、大肠杆菌HB101菌株 该菌株遗传性能稳定,使用方便,适用于各种基因重组实验。 基因型:supE44,hsdS20(rB-mB-),recA13,ara-14,proA2,lacY1,galK2,rpsL20,xyl-5,mtl-1,leuB6,thi-1 7.XL10-Gold菌株:所制备的感受态细胞是目前转化效率最高的感受态细胞,缺失几乎所有已知的限制酶切系统;同时缺失核酸内切酶(endA),提高了质粒DNA的产量和质量;重组酶缺陷型(recA)减少插入片段的同源重组概率,保证了插入DNA的稳定性,提高感受态转化效率及大质粒转化能力的宿主菌基因型。

仔猪大肠杆菌基因工程疫苗

仔猪大肠杆菌病基因工程灭活疫苗 K88ac-ST1-LTB) 新生仔猪大肠杆菌病是由产肠毒素性大肠埃希氏菌(Enterotoxigenic E.coli ,ETEC)引起的一种高度接触性、急性、致死性腹泻,特征是排黄色或黄白色稀粪。临床上以1? 7 日龄新生仔猪下痢为主要特征,其中1—3 日龄最多见。个别耐过仔猪经较长时间才能正常生长,但病愈存活后其生长发育和生产性能指标受到严重影响。 大肠杆菌性腹泻在我国广泛流行,新生仔猪大肠杆菌性腹泻的发病率和死亡率在不同地区各有差异,发病率为5.69%?86.5%,死亡率为17.0%?73.0% 。本病是影响养猪业发展的主要疾病之一。 产肠毒素性大肠杆菌(ETEC)有两类致病因子:一类为黏附素(或称定居因子,起吸附固定作用,主要分为K88 K99 987P、F41等,其中以心为主。另一类为肠毒素(耐热性肠毒素ST和不耐热性肠毒素LT),是直接导致腹泻的因子。细菌通过黏附素固定在肠黏膜表面,大量繁殖后产生ST与LT两种肠毒素,引起剧烈腹泻,脱水、酸中毒、低血钾等。 辽宁益康生物股份有限公司科研人员经过大量的流行病学调查,病原菌的分离鉴定,致病因子的研究,从细菌致病机理出发,成功地研发出免疫谱宽,免疫效果好,使用安全的仔猪大肠杆菌基因工程疫苗,从根本上解决了新生仔猪大肠杆菌性腹泻免疫预防这一难题,现将有关情况报告如下。 一、疫苗免疫机理 妊娠母猪临产前进行大肠杆菌基因工程灭活疫苗免疫接种,产生三种抗体(抗ST1抗 体、抗LT抗体、抗K88抗体),仔猪出生后吮食初乳,获得母源抗体产生被动免疫,从而抵抗大肠杆菌在肠道定居增殖,有效中和肠毒素,获得保护力。 二、产品特点 1、具有良好的免疫原性。 针对致泻因子耐热肠毒素(ST)、不耐热肠毒素(LT)和主要黏附因子瓯,采用基因工程技术构建的GE-3菌株,可以有效表达K88ac-ST i-LT B融合蛋白,并辅以氢氧化铝胶佐剂,在保留了K88ac和LTB 良好免疫原性基础上,赋予了ST1免疫原性。 2、构建菌株优良稳定。通过对菌株的安全性、有效性、菌种限定代次及保存条件、疫苗保存条件及保 存期等 试验,证实了该菌株是一株良好的疫苗候选株。 3、该疫苗生产工艺科学、质量稳定。通过对菌株发酵培养的培养基、诱导剂及其诱导条件、通气量及 菌液灭活等进行了筛 选和优化,确定了工业化生产工艺,并通过安全性、效力检验等试验,批次间稳定。 4、本疫苗安全性可靠、无毒副作用。采用实验动物模型接种,田间与区域本动物接种等试验进行安 全性评价,表明本疫 苗无肠毒素活性、无致病性,妊娠母猪临床母猪全部存活,均无流产、死胎和胎儿畸形等现象,分娩正常,所产仔猪生长发育良好。 5、免疫效果确实。经仔猪免疫保护试验证实,灭活疫苗免疫初产怀孕母猪两次,新生仔猪吮食一天初 乳后,用大肠杆菌强毒C83902 (K88ac+、ST+和LT+)株攻击新生仔猪,均获得了较好的免疫保护:保护率为90~97.4%,比未免疫组高16.17% ,平均日增重提高40g 。 三、安全试验、效力试验及推广应用效果情况 1安全试验 (1)倍量接种安全试验

(高考生物)试题高中生物必修全一册第三章遗传与基因工程

(生物科技行业)试题高中生物必修全一册第三章遗 传与基因工程

第三章遗传与基因工程 一、选择题 1.“杂交水稻之父”袁隆平在20世纪60年代进行了六年的栽培水稻杂交试验,没有获得质核互作的雄性 不育株,他从失败中得到的启示是() A.水稻是自花传粉植物,只能自交 B.进行杂交试验的栽培稻的性状不优良 C.进行杂交试验所产生的后代不适应当地的土壤条件 D.应该用远源的野生雄性不育稻与栽培稻进行杂交 2.某农场不慎把保持系和恢复系种到一块地里,则在恢复系上可能获得的种子的基因型是() A.N(RR)和N(Rr)B.S(rr)和S(Rr) C.N(Rr)和S(Rr)D.N(rr)和N(Rr) 3.人们在种植某些作物时,主要是为了获取营养器官,如甜菜,若利用雄性不育系培育这类作物的杂交种,母本和父本在育性上的基因型依次是() A.S(rr)N(RR)B.S(rr)N(rr) C.N(RR)S(rr)D.N(rr)S(rr) 4.甲性状和乙性状为细胞质遗传,下列四种组合中能说明这一结论的是() ①♀甲╳♂乙→F1呈甲性状②♀甲╳♂乙→F1呈乙性状 ③♀乙╳♂甲→F1呈甲性状④♀乙╳♂甲→F1呈乙性状 A.①②B.③④C.①④D.②③ 5.在一块栽种红果番茄的田地里,农民发现有一株番茄的一枝条上结出黄色番茄,这是因为该枝条发生了() A.细胞质遗传B.基因突变C.基因重组D.染色体变异 6.关于小麦和玉米雄性不育的叙述中不准确的是() A.雄性不育系和恢复系的后代都可作为杂交种 B.雄性不育系作母本和保持系产生的生代仍是不育系 C.雄性不育系在杂交育种中只能作为母本 D.雄性不育是细胞核基因和细胞质基因共同决定的 7.细胞质基因与细胞核基因的不同之处是() A.具有控制相对性状的基因B.基因按分离定律遗传 C.基因结构分为编码区和非编码区D.基因不均等分配 8.在形成卵细胞的减数分裂过程中,细胞质遗传物质的分配特点是() ①有规律分配②随机分配③均等分配④不均等分配 A.①③B.②③C.②④D.①④ 9.下列说法不正确的是() A.细胞质遗传是由细胞质中的遗传物质控制的 B.在减数分裂中,细胞质中的基因遵循孟德尔发现的定律 C.在细胞质遗传中,风的性状完全是由母本决定的 D.线粒体和叶绿体中含有少量的遗传物质,其遗传属于细胞质遗传 10.真核生物的基因表达调控比原核生物复杂的原因是() A.必须对转录产生的mRNA进行加工 B.转录和翻译在时间和空间上有分隔

2020年[试题]高中生物必修全一册第三章 遗传与基因工程参照模板

第三章遗传与基因工程 一、选择题 1.“杂交水稻之父”袁隆平在20世纪60年代进行了六年的栽培水稻杂交试验,没有获得质核互作的雄性不育株,他从失败中得到的启示是() A.水稻是自花传粉植物,只能自交 B.进行杂交试验的栽培稻的性状不优良 C.进行杂交试验所产生的后代不适应当地的土壤条件 D.应该用远源的野生雄性不育稻与栽培稻进行杂交 2.某农场不慎把保持系和恢复系种到一块地里,则在恢复系上可能获得的种子的基因型是()A.N(RR)和N(Rr)B.S(rr)和S(Rr) C.N(Rr)和S(Rr)D.N(rr)和N(Rr) 3.人们在种植某些作物时,主要是为了获取营养器官,如甜菜,若利用雄性不育系培育这类作物的杂交种,母本和父本在育性上的基因型依次是() A.S(rr)N(RR)B.S(rr)N(rr) C.N(RR)S(rr)D.N(rr)S(rr) 4.甲性状和乙性状为细胞质遗传,下列四种组合中能说明这一结论的是() ①♀甲╳♂乙→F1呈甲性状②♀甲╳♂乙→F1呈乙性状 ③♀乙╳♂甲→F1呈甲性状④♀乙╳♂甲→F1呈乙性状 A.①② B.③④ C.①④ D.②③ 5.在一块栽种红果番茄的田地里,农民发现有一株番茄的一枝条上结出黄色番茄,这是因为该枝条发生了() A.细胞质遗传B.基因突变C.基因重组D.染色体变异 6.关于小麦和玉米雄性不育的叙述中不准确的是() A.雄性不育系和恢复系的后代都可作为杂交种 B.雄性不育系作母本和保持系产生的生代仍是不育系 C.雄性不育系在杂交育种中只能作为母本 D.雄性不育是细胞核基因和细胞质基因共同决定的 7.细胞质基因与细胞核基因的不同之处是() A.具有控制相对性状的基因B.基因按分离定律遗传 C.基因结构分为编码区和非编码区D.基因不均等分配 8.在形成卵细胞的减数分裂过程中,细胞质遗传物质的分配特点是() ①有规律分配②随机分配③均等分配④不均等分配 A.①③ B.②③ C.②④ D.①④ 9.下列说法不正确的是() A.细胞质遗传是由细胞质中的遗传物质控制的 B.在减数分裂中,细胞质中的基因遵循孟德尔发现的定律 C.在细胞质遗传中,风的性状完全是由母本决定的 D.线粒体和叶绿体中含有少量的遗传物质,其遗传属于细胞质遗传 10.真核生物的基因表达调控比原核生物复杂的原因是() A.必须对转录产生的mRNA进行加工 B.转录和翻译在时间和空间上有分隔 C.某些基因只能特异地在某些细胞中表达 D.包括ABC在内的多方面原因 11.以下说法正确的是()

基因工程部分复习题

第一章绪论 1、什么是基因工程?其理论依据如何? 基因工程是指按照人们的意愿,依据严密的设计,通过体外DNA重组和转基因等技术,有目的地改造生物物种特性,创造出更符合人们需求的新的生物类型的过程。 2、简述基因工程的基本技术路线? 3、简述基因工程的基本过程。 基因工程的整个过程由上游技术和下游技术两大部分组成。 上游技术指的是外源基因重组、克隆和表达的设计与构建。 下游技术则涉及到含有重组外源基因的生物细胞(基因工程菌或细胞)的大规模培养以及外源基因表达产物的分离纯化过程。 4、基因工程研究的主要内容? (1)基因工程工具 (2)基因克隆技术 (3)目的基因 (4)基因工程产品 5、如何看待基因工程的安全性问题? 主要有以下几个方面: 第一,对环境的影响---- 重新组合一种在自然见尚未发现的的生物性状有可能给现有的生态环境带来不良影响; 第二,新型病毒的出现----制造带有抗生素抗性基因或有产生病毒能力的基因的新型微生物有可能在人类或其它生物体内传播。 第三,癌症扩散----将肿瘤病毒或其它动物病毒的DNA引入细菌有可能扩大癌症的发生范围。 第四,人造生物扩散----新组成的重组DNA生物体的意外扩散可能会出现不同程度的潜在危险 第五,基因工程被用于军事目的,用来制造生物武器,有可能危及大批生命或遗留严重的后遗症。 第二章核酸的制备 1、名词解释: 脱氧核糖核酸, 核糖核酸,

DNA变性:在某些理化因素作用下,溶液中的DNA双链氢键解开成两条单链的过程。 DNA复性:高温变性的DNA逐渐冷却时,分开的两条单链又可重新结合成双链。 PCR:一个在模板DNA、引物和4种脱氧核苷酸、DNA聚合酶、Mg2+等存在的情况下,DNA聚合酶依赖的酶促聚合反应,扩增特异性取决于引物与模板DNA的特异结合。 2、目前常用的从细胞裂解液中分离和提取DNA的方法有哪些?并解释各种方法的依 据。 ①苯酚抽提法:苯酚是蛋白质变性剂,酸性条件下,蛋白质-酚形成复合物,氯仿同样可 以使蛋白变性沉淀,同时苯酚有抑制DNase对DNA的降解作用。 ②CsCl密度梯度离心:细胞裂解液通过CsCl密度梯度离心,待提取的DNA样品就会 按一定的沉降系数在CsCl一定密度的区域聚集成带。 3、在RNA制备时应如何消除RNA酶的污染? ①容器用0.1%焦碳酸二乙酯(DEPC)处理。然后经过高温处理。 DEPC能使蛋白质乙基化而破坏RNase活性; ②加入强变性剂(如胍盐:可使所有蛋白质变性)使RNase失活; ③在RNA的反应体系内加入RNase的抑制剂。 4、用于检测核酸样品浓度和纯度的方法有哪些? ①紫外吸收法②EB-琼脂糖凝胶电泳 5、Sanger双脱氧联末端终止法测序的基本原理? 利用2’,3’-双脱氧核苷三磷酸(ddNTP)来终止DNA的复制反应。 第三章基因工程的酶学基础 1、限制性核酸内切酶定义、基本特性。 是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链的核苷酸内切酶。 特性:识别双链DNA分子中的特定序列 2、名词: 粘性末端:切口一般错开2个或4个核苷酸,产生的片段在末端有一条链伸出。 平末端:限制性内切酶将DNA-链仅在识别序列的中间切开。 同尾酶:来源不同,识别的靶序列也各不相同,但都能产生相同的粘性末端,特称为同尾酶。 3、末端核苷酸转移酶、碱性磷酸酶、反转录酶、DNA连接酶、DNA聚合酶I的Klenow 大片断酶的性质。 4、了解用同聚物加尾法、衔接物连接法、DNA接头连接法进行的DNA体外连接方式。

相关主题