搜档网
当前位置:搜档网 › 表观反射率反射率、反照率的计算

表观反射率反射率、反照率的计算

表观反射率反射率、反照率的计算
表观反射率反射率、反照率的计算

表观反射率(反射率、反照率)的计算

第一步、分别计算各个波段每个像元的辐射亮度L 值:

L=Gain*DN+Bias

或者

min min min

max min

max )(*L QCAL QCAL QCAL QCAL L L L +---=

式中,QcaL 为某一像元的DN 值,即QCAL=DN 。 QCALmax 为像元可以取的最大值255。QCALmin 为像元可以取的最小值。如果卫星数据来自LPGS(The level 1 product generation system),则QCAL=1(Landsat-7数据属于此类型)。如果卫星数据来自美国的NLAPS ( National Landsat Archive Production System ),则QCALmin=0 (Ldsat-5的TM 数据属于此类型)。

根据以上情况,对于Landsat-7来说,可以改写为(QCALmin=1):

min

min

max )1(*254L DN L L L +--=

对于Landsat-5来说,可以改写为(QCALmin=0):

min

min

max *255L DN L L L +-=

表1 Iandsa-7 ETM+各个反射波段的Lmax 和Lmin 值

Table1The values of Lmmax and Lmin for reflecting bands of Landsat-7

表2 Landsat-5 TM 各反射波段的Lmax 和Lmin 值

的陆地、沙漠、冰与雪、水体、海冰、火山等6大类型)和太阳高度角状况来确定采用高增益参数或是低增益参数。一般低增益的动态范围比高增益大1.5倍,因此当地表亮度较大时,用低增益参数;其它情况用高增益参数。在非沙漠和冰面的陆地地表类型中,ETM+的1一3和5,7波段采用高增益参数,4波段在太阳高度角低于45度(天顶角>45度)时也用高增益参数,反之则用低增益参数。详见文献(NASA Landsat Project ScienceOffice , 1998b )。

第二步、计算各波段反射率(反照率、反射率)ρ:

波段)

为第i i Cos ESUN D L i ()

(2

θπρ???=

式中,p 为人气层顶(TOA)表观反射率(无量纲),π为常量(球面度str),L 为大气层顶进人卫星传感器的光谱辐射亮度(W ˙m-2-sr-1˙μm-1),D 为日地之间距离(天文单位),ESUN 为大气层顶的平均太阳光谱辐照度(W ˙m-2-sr-1˙μm-1),θ为太阳的天顶角(θ=90?-β,β为太阳高度角, Cos(θ)也可以这样计算:Cos(θ)=Sin φ*Sin δ+Cos φ*Cos δ*Cosh,式中φ甲为地理纬度,φ为太阳赤纬,h 为太阳的时角。太阳赤纬是太阳光与地球赤道平面的夹角)。

也可以是:

2

)365)5.93(2sin 0167.01(cos )()(??????-+?=

D E L s sun T πθλλπρ

其中,θs 为太阳天顶角, D 为儒略历(Julian) 日期,这两个参数可由数据头文件读

出。L (λ) 为入瞳辐亮度, Esun 为外大气层太阳辐照度。

上式成立的条件是假设在大气层顶,有一个朗勃特(Laribcitian)反射面。太阳光以天顶角θ人射到该面,该表面的辐照度为E = ESUN*Cos(θ)/D 2(吕斯哗,1981)。该表面的辐射出射度M=πL(吕斯骤,1981)。根据Lanbertian 反射率定义,大气层顶的表观反射率P 等于M 和E 的比值,即

波段)

为第i i Cos ESUN D L E M i ()

(2

θπρ???=

=

表 3 随时间变化的日地距离(天文单位)

表 4 Landsat-7 和Landsat-5的大气层顶平均太阳光谱辐照度ESUN(W ˙m-2-sr-1˙μm-1)

波段)

为第i i L QCAL QCAL QCAL QCAL L L Cos ESUN D x ma i ()()(min min min max min 2

??

?

?

??+-?--??=

θπρ对于Landsat-7上试简化为:

???

???+-?-??=

min min max 2

)1(254)(L QCAL L L Cos ESUN D i θπρ

对于Landsat-5上试简化为:

??

?

???+?-??=

min min max 2

255)(L QCAL L L Cos ESUN D i θπρ 其中,QCAL 为图像灰度值DN 。

反照率的计算:

TM1~TM4波段所对应的宽波段反照率可表示为

个波段的反射率)第为i TM i i

ρρρ(4

1

∑=

Table 1. Characteristics of the Enhanced Thematic Mapper Plus (ETM+)

bands. Band Spatial resolution (m) Lower limit (μm) Upper limit (μm) Bandwidth

(nm)

Bits

per

pixel Gain Offset

1 28.50 0.45 0.5

2 70 8 0.786274521 -6.1999998 2 28.50 0.5

3 0.61 80 8 0.817254878 -6.0000000 3 28.50 0.63 0.69 60 8 0.639607867 -4.5000000

4 28.50 0.7

5 0.90 150 8 0.93921568

6 -4.5000000 5 28.50

1.55

1.75

200 8 0.128470589 -1.0000000 6 57.00 10.40 12.50 2100 8 0.066823533 0.00000000 7 28.50 2.10 2.35 250 8 0.044243138 -0.3499999 8

14.25

0.52

0.90

380

8 0.786274521 -6.1999998

11.3.1 Conversion to Radiance

During 1G product rendering image pixels are converted to units of absolute radiance using 32 bit floating point calculations. Pixel values are then scaled to byte values prior to media output. The following equation is used to convert DN's in a 1G product back to radiance units:

L

λ

= "gain" * QCAL + "offset"

which is also expressed as:

L

λ = ((LMAX

λ

- LMIN

λ

)/(QCALMAX-QCALMIN)) * (QCAL-QCALMIN) + LMIN

λ

where: L

λ= Spectral Radiance at the sensor? aperture in

watts/(meter squared * ster * μm)

"gain"= Rescaled gain (the data product "gain" contained in

the Level 1 product header or ancillary data record)

in watts/(meter squared * ster * μm)

"offset"= Rescaled bias (the data product "offset" contained

in the Level 1 product header or ancillary data

record ) in watts/(meter squared * ster * μm) QCAL= the quantized calibrated pixel value in DN

LMIN

λ

= the spectral radiance that is scaled to QCALMIN in

watts/(meter squared * ster * μm)

LMAX

λ

= the spectral radiance that is scaled to QCALMAX in

watts/(meter squared * ster * μm)

QCALMIN= the minimum quantized calibrated pixel value

(corresponding to LMIN

λ

) in DN

= 1 (LPGS Products)

= 0 (NLAPS Products)

QCALMAX= the maximum quantized calibrated pixel value

(corresponding to LMAX

λ

) in DN

= 255

The LMINs and LMAXs are the spectral radiances for each band at digital numbers 0 or 1 and 255 (i.e QCALMIN, QCALMAX), respectively. LPGS used 1 for QCALMIN while NLAPS used 0 for QCALMIN for data products processed before April 5, 2004. NLAPS from that date now uses 1 for the QCALMIN value. Other product differences exist as well. One LMIN/LMAX set exists for each gain state. These values will change slowly over time as the ETM+ detectors lose responsivity. Table 11.2 lists two sets of LMINs and LMAXs. The first set should be used for both LPGS and NLAPS 1G products created before July 1, 2000 and the second set for 1G products created after July 1, 2000. Please note the distinction between acquisition and processing dates. Use of the appropriate LMINs and LMAXs will ensure accurate conversion to radiance units. Note for band 6: A bias was found in the pre-launch calibration by a team of independent investigators post launch. This was corrected for in the LPGS processing system beginning Dec 20, 2000. For data processed before this, the image radiances given by the above transform are 0.31 w/m2 ster um too high. See the official announcement for more details.

Table 11.2 ETM+ Spectral Radiance Range

watts/(meter squared * ster * μm)

Band Number

Before July 1, 2000After July 1, 2000 Low Gain High Gain Low Gain High Gain LMIN LMAX LMIN LMAX LMIN LMAX LMIN LMAX

1 -6.

2 297.5 -6.2 194.

3 -6.2 293.7 -6.2 191.6

2 -6.0 303.4 -6.0 202.4 -6.4 300.9 -6.4 196.5

3 -4.5 235.5 -4.5 158.6 -5.0 234.

4 -5.0 152.9

4 -4.

5 235.0 -4.5 157.5 -5.1 241.1 -5.1 157.4

5 -1.0 47.70 -1.0 31.7

6 -1.0 47.5

7 -1.0 31.06

6 0.0 17.04 3.2 12.65 0.0 17.04 3.2 12.65

7 -0.35 16.60 -0.35 10.932 -0.35 16.54 -0.35 10.80

8 -5.0 244.00 -5.0 158.40 -4.7 243.1 -4.7 158.3

11.3.2 Radiance to Reflectance

For relatively clear Landsat scenes, a reduction in between-scene variability can be achieved through a normalization for solar irradiance by converting spectral radiance, as calculated above, to planetary reflectance or albedo. This combined surface and atmospheric reflectance of the Earth is computed with the following formula:

Where:

= Unitless planetary reflectance

= Spectral radiance at the sensor's aperture

= Earth-Sun distance in astronomical units from

nautical handbook or

interpolated from values listed in Table

11.4

= Mean solar exoatmospheric irradiances from

Table 11.3

= Solar zenith angle in degrees

Table 11.3 ETM+ Solar Spectral Irradiances

Band watts/(meter squared * μm)

1 1969.000

2 1840.000

3 1551.000

4 1044.000

5 225.700

7 82.07

8 1368.000

Table 11.4 Earth-Sun Distance in Astronomical Units

Julian Day Distance

Julian

Day

Distance

Julian

Day

Distance

Julian

Day

Distance

Julian

Day

Distance

1 .983

2 74 .9945 152 1.0140 227 1.0128 305 .9925 15 .9836 91 .999

3 166 1.0158 242 1.0092 319 .9892 32 .9853 106 1.0033 182 1.0167 258 1.0057 335 .9860 46 .9878 121 1.0076 196 1.0165 27

4 1.0011 349 .9843 60 .9909 13

5 1.0109 213 1.0149 288 .9972 365 .9833

11.3.3 Band 6 Conversion to Temperature

ETM+ Band 6 imagery can also be converted from spectral radiance (as described above) to a more physically useful variable. This is the

effective at-satellite temperatures of the viewed Earth-atmosphere

system under an assumption of unity emmissivity and using pre-launch calibration constants listed in Table 11.5. The conversion formula is:

Where:

T = Effective at-satellite temperature in Kelvin

K2 = Calibration constant 2 from Table 11.5 K1 = Calibration constant 1 from Table 11.5

L = Spectral radiance in watts/(meter squared * ster * ?m)

Table 11.5 ETM+ and TM Thermal Band Calibration Constants

表观反射率(反射率反照率)的计算

表观反射率(反射率、反照率)的计算 第一步、分别计算各个波段每个像元的辐射亮度L 值: L=Gain*DN+Bias 或者 min min min max min max )(*L QCAL QCAL QCAL QCAL L L L +---= 式中,QcaL 为某一像元的DN 值,即QCAL=DN 。 QCALmax 为像元可以取的最大值255。QCALmin 为像元可以取的最小值。如果卫星数据来自LPGS(The level 1 product generation system),则QCAL=1(Landsat-7数据属于此类型)。如果卫星数据来自美国的NLAPS ( National Landsat Archive Production System ),则QCALmin=0 (Ldsat-5的TM 数据属于此类型)。 根据以上情况,对于Landsat-7来说,可以改写为(QCALmin=1): min min max )1(*254L DN L L L +--= 对于Landsat-5来说,可以改写为(QCALmin=0): min min max *255L DN L L L +-= 表1 Iandsa-7 ETM+各个反射波段的Lmax 和Lmin 值 Table1The values of Lmmax and Lmin for reflecting bands of Landsat-7 表2 Landsat-5 TM 各反射波段的Lmax 和Lmin 值

的陆地、沙漠、冰与雪、水体、海冰、火山等6大类型)和太阳高度角状况来确定采用高增益参数或是低增益参数。一般低增益的动态范围比高增益大1.5倍,因此当地表亮度较大时,用低增益参数;其它情况用高增益参数。在非沙漠和冰面的陆地地表类型中,ETM+的1一3和5,7波段采用高增益参数,4波段在太阳高度角低于45度(天顶角>45度)时也用高增益参数,反之则用低增益参数。详见文献(NASA Landsat Project ScienceOffice , 1998b )。 第二步、计算各波段反射率(反照率、反射率)ρ: 波段) 为第i i Cos ESUN D L i () (2 θπρ???= 式中,p 为人气层顶(TOA)表观反射率(无量纲),π为常量(球面度str),L 为大气层顶进人卫星传感器的光谱辐射亮度(W ˙m-2-sr-1˙μm-1),D 为日地之间距离(天文单位),ESUN 为大气层顶的平均太阳光谱辐照度(W ˙m-2-sr-1˙μm-1),θ为太阳的天顶角(θ=90?-β,β为太阳高度角, Cos(θ)也可以这样计算:Cos(θ)=Sin φ*Sin δ+Cos φ*Cos δ*Cosh,式中φ甲为地理纬度,φ为太阳赤纬,h 为太阳的时角。太阳赤纬是太阳光与地球赤道平面的夹角)。 也可以是: 2 )365)5.93(2sin 0167.01(cos )()(??????-+?= D E L s sun T πθλλπρ 其中,θs 为太阳天顶角, D 为儒略历(Julian) 日期,这两个参数可由数据头文件读 出。L (λ) 为入瞳辐亮度, Esun 为外大气层太阳辐照度。 上式成立的条件是假设在大气层顶,有一个朗勃特(Laribcitian)反射面。太阳光以天顶角θ人射到该面,该表面的辐照度为E = ESUN*Cos(θ)/D 2(吕斯哗,1981)。该表面的辐射出射度M=πL(吕斯骤,1981)。根据Lanbertian 反射率定义,大气层顶的表观反射率P 等于M 和E 的比值,即 波段) 为第i i Cos ESUN D L E M i () (2 θπρ???= = 表 3 随时间变化的日地距离(天文单位) 表 4 Landsat-7 和Landsat-5的大气层顶平均太阳光谱辐照度ESUN(W ˙m-2-sr-1˙μm-1)

表观反射率

表观反射率 遥感反射率的定义:地物表面反射能量与到达地物表面的入射能量的比值。遥感表观反射率的定义:地物表面反射能量与近地表太阳入射能量的比值。大气校正就是将辐射亮度或者表观反射率转换为地表实际反射率,目的是消除大气散射、吸收、反射引起的误差。 1、反射率:是指任何物体表面反射阳光的能力。这种反射能力通常用百分数来表示。比如说某物体的反射率是45%,这意思是说,此物体表面所接受到的太阳辐射中,有45%被反射了出去.英文表示:Reflectance 2、地表反射率:地面反射辐射量与入射辐射量之比,表征地面对太阳辐射的吸收和反射能力。反射率越大,地面吸收太阳辐射越少;反射率越小,地面吸收太阳辐射越多,表示:surface albedo 3、表观反射率:表观反射率就是指大气层顶的反射率,辐射定标的结果之一,大气层顶表观反射率,简称表观反射率,又称视反射率。英文表示为:apparent reflectance (=地表反射率+大气反射率。所以需要大气校正为地表反射率)。 “6S”模型输入的是表观反射率而MODTRAN模型要求输入的是辐射亮“5S”和度。 4、行星反射率:从文献“一种实用大气校正方法及其在,,影像中的应用”中看到“卫星所观测的行星反射率(未经大气校正的反射率)”;在“基于地面耦合的TM 影像的大气校正-以珠江口为例”一文有“该文应用1998年的LANDSAT5 TM影像,对原始数据进行定标、辐射校正,求得地物的行星反射率”。因此行星反射率就是表观反射率。英文表示:planetary albedo

5、反照率:反照率是指地表在太阳辐射的影响下,反射辐射通量与入射辐射通量的比值。它是反演很多地表参数的重要变量,反映了地表对太阳辐射的吸收能力。英文表示:albedo 它与反射率的概念是有区别的:反射率(reflectance)是指某一波段向一定方向的反射,因而反照率是反射率在所有方向上的积分;反射率是波长的函数,不同波长反射率不一样,反照率是对全波长而言的。反照率的定义是地物全波段的反射比,反射率为各个波段的反射系数。因此,反照率为地物波长从0 到?的反射比。 6. 地表比辐射率(Surface Emissivity),又称发射率,指在同一温度下地表 发射的辐射量与一黑体发射的辐射量的比值,与地表组成成分,地表粗糙度,波长等因素有关。比辐射率的直接测量。理论上,比辐射率的测定有两种途径,一种是比色法,这种方法目前只能使用在被测物的温度大于50 ?的场合。因为信噪比太小, 不适合常温地球表面的测量。然而,随着传感器技术的发展,如果能测量零度以下物体的话,这种比色法似可取得突破性的发展; 另一种是亮度法。也是目前人们所采用的办法。在实验室里,利用封闭式黑体筒可以成功地测量地物的比辐射率。也可以利用主动和被动相结合的方法测量比辐射率,这种方法已在实验室里取得成功。利用二 氧化碳激光,可以远距离测量地物的比辐射率,目前,已经开始把这一技术向航 空和航天遥感扩展,它的可行性已经得到证实,其目标是对区 域范围的地物比辐射率进行直接测定。我们深信这种高技术的实现已为期不远了。这种比辐射率的直接测定,不仅可以直接获得比辐射率 区域分布,而且可以获得比辐射率的多角度以及地物性质的有关信息。这种研 究思路的实现,对定量热红外遥感的推动作用是巨大的。

玻璃的反射率和透光率计算

玻璃的反射率和透光率计算 设r 为每个界面反射率 r=((n-1)/(n+1))2 ,n 是玻璃的折射率,等于1.5,则r=4% 单片玻璃有两个界面,设其反射率为R ,PVB 的透过率为0.92 则 R=r e r r t ??-+-β22)1( 式中β 为吸收率系数,等于1M -1,t 为厚度。 (1)采光顶8+12A+6+1.52PVB+6mm 中空钢化夹胶玻璃 R= %00.792.004.0)04.01(04.02020.022=???-+-x e 单片玻璃的透过率为T ,t e r T β-?-=2)1( %1.8392.0)04.01(020.012=??-=-x e T (2)幕墙10+12A+10mm 中空钢化玻璃 R= %00.792.004.0)04.01(04.02020.022=???-+-x e %1.8392.0)04.01(020.012=??-=-x e T 综合以上计算,采光顶8+12A+6+1.52PVB+6mm 中空钢化夹胶玻璃,幕墙10+12A+10mm 中空钢化玻璃的反射率为7.00%,透光率为83.1%。 玻璃的热传导系数 66333.43.2111d G ++=εδ 66352.1733.452.13.2111+?+=εG 1111-+=i o εεε 式中: G 中空夹胶玻璃的导热系数,c h m kcal o 2/ δ 夹层的厚度(mm ) ε 有效放射率

i o εε 外、内側玻璃的放射率,0.896 d 原板玻璃公称厚度之和,( mm ) (1)采光顶8+12A+6+1.52PVB+6mm 中空钢化夹胶玻璃 23956.066352.33812.033.412 3.2111=+?+=G 中空夹胶玻璃的热传导系数 o i h h G K 1111++= 式中: o h 外侧空气对流系数,17.5 c h m k c a l o 2/ i h 内侧空气对流系数,7.4 c h m k c a l o 2/ 31568.25 .1714.7123956.01=++=K c h m k c a l o 2/ K m W K 2/702..23600 420031568.2=?= (2)幕墙10+12A+10mm 中空钢化玻璃 228..066332812.033.412 3.2111=+?+=G 夹胶玻璃的热传导系数 o i h h G K 1111++= 式中: o h 外侧空气对流系数,17.5 c h m k c a l o 2/ i h 内侧空气对流系数,7.4 c h m k c a l o 2/ 37938.25 .1714.71228.01=++=K c h m k c a l o 2/ K m W K 2/776..23600 420037938.2=?=

地表反射率计算

算计射率石市地表反黄 一、数据预处理 1、打开:用 ENVI5.1 将黄石市 2000 年遥感影像数据的 3,、4、5 波段打开 (1)用鼠标左键双击 ENVI5.1 图标,打开 ENVI5.1 程序; (2)打开黄石市 2000 年遥感影像数据的 3,、4、5 波段。 File→Open Image File→选择黄石市 2000 年遥感影像数据的 3、4、5 波段→打开。

波段进行合成。 4、5年遥感影像数据的 3、 2、合成:对黄石市 2000 感遥2000 年 File Basic Tools→LayerStacking→Import →选择黄石市 →2000_band543_hecheng→波段543影像数据的、、→Ok→Choose 命名() 打开→Ok 黄石市遥感影像。、裁剪:用黄石市边界矢量数据裁剪合成后的20003 波段;5 3、4、遥感影像数据的(1)打开合成后的黄石市2000 年

)→打开→Ok2000_band543_hecheng File→OpenImage File→选图()打开黄石市边界矢量数据;2( →选图(黄石市边界范围.evf)→打开File Vector→OpenVector 备注:建立掩膜时一定要将 2000_band543_hecheng 和黄石市矢量边界的影像 打开。 (3)以黄石市边界矢量数据建立掩膜; Basic Tools→Masking→Bulid Mask→Display #1→Options →Import EVFS→选图(111)→Ok→Choose→命名 (2000_band543_hecheng_yanmo)→ 打开→Apply

行星反射率的计算

行星反射率的计算 1.打开ENVI软件→File→Open External File→Landsat→Geo TIFF→文件夹里 的图像 2.选择742波段为RGB值打开图像 3.将六个波段的DN值转化为亮度值:Basic Tools→Band Math→在Enter an expression的框里输入(b1-1)*(193.0+1.52)/254-1.52→Add to list→Ok→选定第一波段→Choose建立一个文件夹保存 4.重复步骤2,将第1至第7(第6除外)波段的DN值全部转化为亮度值,每 次代入相应波段对应的公式(见最后) 5.将六个波段的亮度值转化为反射率:Basic Tools→Band Math→在在Enter an expression的框里输入!pi*b1*1^2/(1957*cos(!pi*(90-65.3691418)/180))→Add to list→Ok →选定第一波段的亮度值(带公式的那个)→Choose建立一个文件夹保存6.重复步骤4,将第1至第7(第6除外)波段的亮度值全部转化为反射率, 每次代入相应波段对应的公式(见最后) 7.打包:File→Save as→ENVI standard→选择六个波段的反射率→Reorder 重排一下 8.打开保存好的反射率的文件选择742波段为RGB值打开图像 New Display 9.连接俩图像:在图像窗口Tools→Link→Link Displays→Dynamic选择Off 10.在图像上双击左键查看RGB的值 用ENVI的band math功能,将DN值向亮度值转换部分。 (b1-1)*(193.0+1.52)/254-1.52 (b1-1)*(365.0+2.84)/254-2.84 (b1-1)*(264.0+1.17)/254-1.17 (b1-1)*(221.0+1.51)/254-1.51 (b1-1)*(30.2+0.37)/254-0.37 (b1-1)*(16.5+0.15)/254-0.15 亮度值向反射率转换部分 !pi*b1*1^2/(1957*cos(!pi*(90-65.3691418)/180)) !pi*b1*1^2/(1829*cos(!pi*(90-65.3691418)/180)) !pi*b1*1^2/(1557*cos(!pi*(90-65.3691418)/180)) !pi*b1*1^2/(1047*cos(!pi*(90-65.3691418)/180)) !pi*b1*1^2/(219.3*cos(!pi*(90-65.3691418)/180)) !pi*b1*1^2/(74.52*cos(!pi*(90-65.3691418)/180))

地表反射率,温度,植被指数

地表反射率、温度、植被指数、几何精纠正和Landsat影像

Basic Tools|Band Math,在Band Math对话框中输入公式,公式中的b3和b4分别选取第3和第4波段的地表反射率。然后导出结果。 二、地表温度反演 1、计算辐射亮度。加载htm影像,根据头文件中的数据,得到1、2波段的辐射亮度的计算公式0.067086617777667001*b1+(-0.067086617777667001)和0.037204722719868001*b2+(3.1627953249638470),步骤同上,得出辐射量度的计算结果。 2、辐射反演。利用公式T=k2/ln(k1/Lλ+1)算地物的辐射反演,其中T为开尔温度;查找参数值:k1=666.09; k2=1282.71;Lλ分别利用步骤1中的波段1和波段2的辐射量度。 3、统计反演后的地物的温度值,并比较其差异。打开反演后的温度影像,右击影像选择ROI Tool,统计各种地物值的最大值,最小值,均值,标准差,将其统计到Excel中,比较其差异。 结果与分析 一、DNVI建模 【地表反射率】

第3波段第4波段【DNVI】 【3、4波段表观反射率和地表反射率的线性关系】

【表观反射率和地表反射率的线性关系数学表达式】 波段关系式波段关系式 1波段y=0.8933*x+0.0473 4波段y=0.9401*x+0.0065 2波段y=0.8801*x+0.0242 5波段y=0.9399*x+0.001 3波段y=0.9161*x+0.0143 7波段y=0.9584*x+0.0004 【部分地物的DNVI值】 地物DNVI值min max mean stdev Reservior 0.057713 0.338587 0.145087 0.038598 Snow -0.12395 0.152669 0.025088 0.031572 Bare Land 0.105628 0.374843 0.192701 0.043621 Urban -0.356923 0.038094 -0.273288 0.045284 Plant 0.333387 0.786695 0.656094 0.081619 Desert 0.071897 0.155663 0.100783 0.014291 River 0.043469 0.429917 0.127503 0.08131 【结果与分析】:通过对提取地物的DNVI值的可以发现,绿色的DNVI值比较高,原因是绿色植物叶绿素引起的红光吸收和叶肉组织引起的近红外光反射使得植被在近红外波段和红光波段有很大的差异;水体和

地表反射率、温度、植被指数教学教材

地表反射率、温度、 植被指数

地表反射率、温度、植被指数、几何精纠正和Landsat影像

结果与分析 一、DNVI建模 【地表反射率】 第3波段第4波段【DNVI】

【3、4波段表观反射率和地表反射率的线性关系】 【表观反射率和地表反射率的线性关系数学表达式】 波段关系式波段关系式 1波段y=0.8933*x+0.0473 4波段y=0.9401*x+0.0065 2波段y=0.8801*x+0.0242 5波段y=0.9399*x+0.001 3波段y=0.9161*x+0.0143 7波段y=0.9584*x+0.0004 【部分地物的DNVI值】 地物DNVI值min max mean stdev Reservior 0.057713 0.338587 0.145087 0.038598 Snow -0.12395 0.152669 0.025088 0.031572 Bare Land 0.105628 0.374843 0.192701 0.043621

Urban -0.356923 0.038094 -0.273288 0.045284 Plant 0.333387 0.786695 0.656094 0.081619 Desert 0.071897 0.155663 0.100783 0.014291 River 0.043469 0.429917 0.127503 0.08131 【结果与分析】:通过对提取地物的DNVI值的可以发现,绿色的DNVI值比较高,原因是绿色植物叶绿素引起的红光吸收和叶肉组织引起的近红外光反射使得植被在近红外波段和红光波段有很大的差异;水体和裸地在红光波段和近红外波段反射率相当,因此水库和裸地的NDVI值接近0;雪地NDVI最低值中出现负值,是由于在近红外波段比可见光波段有较低的反射率;沙漠中植被很少,因此其近红外波段和红光波段的反射情况和裸地类似,因此其NDVI值接近于0;河流的NDVI值稍大于由于河流中存在一定的含沙量,使得地物在近红外波段的反射率大于近红外波段。 二、温度反演 【温度反演】 低增益温度反演高增益温度反演 【第1波段部分地物低增益温度反演数据】 开尔文温度摄氏温度 反演温度 地物min max mean stdev min max mean Reservior 287.47641 289.289886 288.13127 0.388036 14.32641 16.13989 14.98127 Snow 273.154785 293.990417 278.177771 3.788266 0.004785 20.84042 5.027771 Bare Land 295.989319 310.676086 303.445647 2.819391 22.83932 37.52609 30.29565 Urban 300.165253 310.928528 307.469228 1.530421 27.01525 37.77853 34.31923 Plant 294.278015 305.525879 298.698402 2.333251 21.12802 32.37588 25.5484 Desert 302.605286 309.915955 306.491575 1.39902 29.45529 36.76596 33.34158 River 300.438721 313.922485 305.865796 4.320705 27.28872 40.77249 32.7158

地表反射率的计算

地表覆盖反射率的计算(6s软件的应用) 9月23日首先在envi软件中打开已经处理好的真彩色影像(TM543波段),我的影像因为没有居中,所以首先进行了裁剪,让影像满幅居中再操作。 1、打开遥感影像,并裁减居中: 先打开7个波段影像,, 选中543,。合成,,,在弹出的对话框中点,按住ctrl再选中这3项 ,点ok,命名为。 打开矢量边界,,,选中。建立掩膜, ,,,,,重命名为,点,形成掩膜文件。再应用掩膜,选文件,点 ,选,,,重命名为,形成影像

。所以接下来对背景进行裁剪,,,选,,,选,,,,, 重命名为,形成影像。 2、让#1和Scroll中的红方框大致居中,在#1中任意位置双击弹出“光标位置评估”,或者右键找出也可。

(可是我不太清楚调出这个的目的?) 3、寻找我们应用的黄石市遥感影像中头文件为MTL.txt的文件,以写字板的形式打开,方便查看遥感影像的具体信息。 找到影像获取的时间即“DATE _ACQUIRED”,这个原始的影像获取时间才是我们需要的,不要被其他的信息误导。 因为6s识别不了具体的时分秒,所以我们需要将具体时间换算成小时,即此处的02:26:32应转换成2.43小时。 4、打开中的,

我们在运行6s的一切操作,都是按着这个步骤来的,但是期间会出现一些专业术语的特定要求,所以我们需要打开另外的文件,书名如下: 打开到35页,IGEOM,从对应上我们找到TM影像,即Landset对应的数字为7, 接下来,我们运行6s软件。打开中的,

Geometrical conditions (几何条件) igeom [0-7]:7(因为IGEOM,从对应上我们找到TM影像,即Landset对应的数字为7); 输好后只按一次enter键; 4、接下来输入时间:

地表反照率

收稿日期:2004207225;修订日期:2004208228 基金项目:国家重点基础研究发展规划项目(“973”项目)(G 2000077908)资助。 作者简介:王介民(1937-),男,研究员,博士生导师,主要从事大气科学与遥感应用研究。 关于地表反照率遥感反演的几个问题 王介民1,高 峰1,2 (11中国科学院寒区旱区环境与工程研究所,甘肃兰州 730000;21中国科学院资源环境科学信息中心,甘肃兰州 730000)) 摘要:分析了地表反照率对陆面辐射能收支以及区域和全球气候的影响,强调了地表反照率是遥感反演陆面参数时的第一重要参数,地表反照率或多波段遥感中不同谱段的地表反射率的准确反演常常是准确估算其它陆面参数如植被和土地利用 土地覆盖等状况的先决条件。在对当前关于反照率的概念及容易混淆的术语进行阐述和说明的基础上,简述了遥感反演地表反照率的步骤和主要难点的解决方法,进而对常用陆面过程模式计算地表反照率的过程作了分析,并将其结果与M OD IS 有关产品进行了比较,强调了遥感与陆面过程模式和气候模式的结合。关 键 词:地表反照率;二向反射分布函数;地面能量收支;陆面过程模式;遥感中图分类号:T P 79 文献标识码:A 文章编号:100420323(2004)0520295206 1 引 言 反照率似乎是一个教科书上早已讲述过的基本概念,然而在卫星遥感日新月异地发展和广泛应用的今天,却时时出现许多混淆和困惑。地表反照率的遥感反演,经过多年的实验研究已经有了一些成熟的算法,但其精确估算依然存在诸多困难。 概念上,反照率(albedo )是对某表面而言的总的反射辐射通量与入射辐射通量之比。一般应用中,指的是一个宽带,如太阳光谱段(~013-410Λm )。对多波段遥感的某个谱段而言,称为谱反照率(sp ectral albedo )。这都是指向整个半球的反射。对某波段向一定方向的反射,则称为反射率(reflectance )。 以下是关于地表反照率(反射率)的几个问题的讨论。 2 为什么把地表反照率称为遥感反演 中的第一重要参数? 狭义上说,地表反照率或多波段遥感中不同谱段的地表反射率的准确反演,常常是准确估算其它陆面参数如植被和土地利用 土地覆盖等状况的先决条件。以下关于地表反照率反演方法的介绍中对 此还会有进一步说明。 其实,地表反照率的重要性远不止此。从影响局地乃至全球气候的陆面过程分析,地表反照率是对陆面辐射能收支影响最大的一个参数。地面吸收的净辐射能(R n )可以表示为:  R n =R S ↓(1-Α)+(R L ↓-ΕΡT 4 s ) (1) 其中:R S ↓为太阳总辐射,与当地的经纬度、时间以及天空云状况等有关。Α为地表反射率,是太阳谱段的地表反射率的积分。R L ↓为大气向下的长波辐射,是大气温湿廓线和云状况的函数。ΡT 4s 为地面向上的长波辐射,其中Ε为地表比辐射率,Ρ为斯忒藩-波尔兹曼常数,T s 为地表温度。 (1)式右边第一项是短波净辐射(R nS ),第二项是长波净辐射(R nL )。为了解各有关量的大小,图1给出一个有代表性的实例。这是高原地区短草地上夏季一个晴天(下午略有云)的日变化观测。由图1可见,由于大气和地表的温度差异相对较小,大气向 下的长波辐射和地面向上的长波辐射(R L ↓=ΕΡT 4 s )量值接近。长波净辐射总的来说是一个小量(绝对值不大于短波净辐射的1 5)。地面所吸收的净辐射主 要由短波净辐射R S ↓?(1-Α )提供。很明显,地表反照率的影响是第一重要的。对这 块草地,白天的绝大多数时段,Α≈0115,即净辐射大 第19卷 第5期2004年10月 遥 感 技 术 与 应 用 REMO TE SEN SI N G TECHNOLO GY AND A PPL ICA T I O N V ol .19 N o .5O ct .2004

地表反射率计算

黄石市地表反射率计算 一、数据预处理 1、打开:用ENVI5.1将黄石市2000年遥感影像数据的3,、4、5波段打开(1)用鼠标左键双击ENVI5.1图标,打开ENVI5.1程序; (2)打开黄石市2000年遥感影像数据的3,、4、5波段。 File→Open Image File→选择黄石市2000年遥感影像数据的3、4、5波段→打开。 2、合成:对黄石市2000年遥感影像数据的 3、 4、5波段进行合成。 Basic Tools→Layer Stacking→Import File→选择黄石市2000年遥感影像数据的3、4、5波段→Ok→Choose→命名(2000_band543_hecheng)→

打开→Ok 3、裁剪:用黄石市边界矢量数据裁剪合成后的2000黄石市遥感影像。(1)打开合成后的黄石市2000年遥感影像数据的3、 4、5波段; File→Open Image File→选图(2000_band543_hecheng)→打开→Ok (2)打开黄石市边界矢量数据; Vector→Open Vector File→选图(黄石市边界范围.evf)→打开

备注:建立掩膜时一定要将2000_band543_hecheng和黄石市矢量边界的影像打开。 (3)以黄石市边界矢量数据建立掩膜; Basic Tools→Masking→Bulid Mask→Display #1→Options →Import EVFS→选图(111)→Ok→Choose→命名(2000_band543_hecheng_yanmo)→打开→Apply (4)应用掩膜; Basic Tools→Masking→Apply Mask→2000_band543_hecheng→ Select Mask Bang→2000_band543_hecheng_yanmo→Ok→Ok→Choose→命名(2000_band543_hecheng_clip)→打开→Ok

表观反射率(反射率、反照率)的计算(完整资料).doc

此文档下载后即可编辑 表观反射率(反射率、反照率)的计算 第一步、分别计算各个波段每个像元的辐射亮度L 值: L=Gain*DN+Bias 或者 min min min max min max )(*L QCAL QCAL QCAL QCAL L L L +---= 式中,QcaL 为某一像元的DN 值,即QCAL=DN 。 QCALmax 为像元可以取的最大值255。QCALmin 为像元可以取的最小值。如果卫星数据来自LPGS(The level 1 product generation system),则QCAL=1(Landsat-7数据属于此类型)。如果卫星数据来自美国的NLAPS ( National Landsat Archive Production System ),则QCALmin=0 (Ldsat-5的TM 数据属于此类型)。 根据以上情况,对于Landsat-7来说,可以改写为(QCALmin=1): min min max )1(*254L DN L L L +--= 对于Landsat-5来说,可以改写为(QCALmin=0): min min max *255L DN L L L +-= 表1 Iandsa-7 ETM+各个反射波段的Lmax 和Lmin 值 Table1The values of Lmmax and Lmin for reflecting bands of Landsat-7 ETM+(W ˙m-2-sr-1˙μm-1) 表2 Landsat-5 TM 各反射波段的Lmax 和Lmin 值

Table 2 The values of Lmax and Lmin for reflecting bands of Landsat-5 TM (W ˙m-2-sr-1˙μm-1) 表类型(非沙漠和冰面的陆地、沙漠、冰与雪、水体、海冰、火山等6大类型)和太阳高度角状况来确定采用高增益参数或是低增益参数。一般低增益的动态范围比高增益大1.5倍,因此当地表亮度较大时,用低增益参数;其它情况用高增益参数。在非沙漠和冰面的陆地地表类型中,ETM+的1一3和5,7波段采用高增益参数,4波段在太阳高度角低于45度(天顶角>45度)时也用高增益参数,反之则用低增益参数。详见文献(NASA Landsat Project ScienceOffice , 1998b )。 第二步、计算各波段反射率(反照率、反射率)ρ: 波段)为第i i Cos ESUN D L i ()(2θπρ???= 式中,p 为人气层顶(TOA)表观反射率(无量纲),π为常量(球面度 str),L 为大气层顶进人卫星传感器的光谱辐射亮度(W ˙m-2-sr-1˙μm-1),D 为日地之间距离(天文单位),ESUN 为大气层顶的平均太阳光谱辐照度(W ˙m-2-sr-1˙μm-1),θ为太阳的天顶角(θ=90?-β,β为太阳高度角, Cos(θ)也可以这样计算:Cos(θ)=Sin φ*Sin δ+Cos φ*Cos δ*Cosh,式中φ甲为地理纬度,φ为太阳赤纬,h 为太阳的时角。太阳赤纬是太阳光与地球赤道平面的夹角)。 也可以是: 2)365)5.93(2sin 0167.01(cos )()(??????-+?=D E L s sun T πθλλπρ 其中,θs 为太阳天顶角, D 为儒略历(Julian) 日期,这两个参数可 由数据头文件读出。L (λ) 为入瞳辐亮度, Esun 为外大气层太阳辐照

各种反射率

遥感反射率的定义:地物表面反射能量与到达地物表面的入射能量的比值。 遥感表观反射率的定义:地物表面反射能量与近地表太阳入射能量的比值。 大气校正就是将辐射亮度或者表观反射率转换为地表实际反射率,目的是消除大气散射、吸收、反射引起的误差。 1、反射率:是指任何物体表面反射阳光的能力。这种反射能力通常用百分数来表示。比如说某物体的反射率是45%,这意思是说,此物体表面所接受到的太阳辐射中,有45%被反射了出去.英文表示:Reflectance 2、地表反射率:地面反射辐射量与入射辐射量之比,表征地面对太阳辐射的吸收和反射能力。反射率越大,地面吸收太阳辐射越少;反射率越小,地面吸收太阳辐射越多,表示:surface albedo 3、表观反射率:表观反射率就是指大气层顶的反射率,辐射定标的结果之一,大气层顶表观反射率,简称表观反射率,又称视反射率。英文表示为:apparent reflectance (=地表反射率+大气反射率。所以需要大气校正为地表反射率)。“5S”和“6S”模型输入的是表观反射率而MODTRAN模型要求输入的是辐射亮度。 4、行星反射率:从文献“一种实用大气校正方法及其在TM影像中的应用”中看到“卫星所观测的行星反射率(未经大气校正的反射率)”;在“基于地面耦合的TM影像的大气校正-以珠江口为例”一文有“该文应用1998年的LANDSAT5 TM影像,对原始数据进行定标、辐射校正,求得地物的行星反射率”。因此行星反射率就是表观反射率。英文表示:planetary albedo 5、反照率:反照率是指地表在太阳辐射的影响下,反射辐射通量与入射辐射通量的比值。它是反演很多地表参数的重要变量,反映了地表对太阳辐射的吸收能力。英文表示:albedo 它与反射率的概念是有区别的:反射率(reflectance)是指某一波段向一定方向的反射,因而反照率是反射率在所有方向上的积分;反射率是波长的函数,不同波长反射率不一样,反照率是对全波长而言的。反照率的定义是地物全波段的反射比,反射率为各个波段的反射系数。因此,反照率为地物波长从0 到∞的反射比。 6. 地表比辐射率(Surface Emissivity),又称发射率,指在同一温度下地表发射的辐射量与一黑体发射的辐射量的比值,与地表组成成分,地表粗糙度,波长等因素有关。比辐射率的直接测量。理论上,比辐射率的测定有两种途径,一种是比色法,这种方法目前只能使用在被测物的温度大于50o C的场合。因为信噪比太小,不适合常温地球表面的测量。然而,随着传感器技术的发展,如果能测量零度以下物体的话,这种比色法似可取得突破性的发展; 另一种是亮度法。也是目前人们所采用的办法。在实验室里,利用封闭式黑体筒可以成功地测量地物的比辐射率。也可以利用主动和被动相结合的方法测量比辐射率,这种方法已在实验室里取得成功。利用二氧化碳激光,可以远距离测量地物的比辐射率,目前,已经开始把这一技术向航空和航天遥感扩展,它的可行性已经得到证实,其目标是对区域范围的地物比辐射率进行直接测定。我们深信这种高技术的实现已为期不远了。这种比辐射率的直接测定,不仅可以直接获得比辐射率区域分布,而且可以获得比辐射率的多角度以及地物性质的有关信息。这种研究思路的实现,对定量热红外遥感的推动作用是巨大的.

COMSOL-RF模块计算光学器件透射率的方法—探讨

COMSOL-RF模块计算光学器件透射率的方法—探讨 透/反射率的计算在电磁波研究中非常常见,计算结果的准确性与材料参数定义,边界条件的选择,网格剖分有十分紧密的关系。以下是关于电磁波透/反射率计算问题的经验整理,如有错漏欢迎指正和补充。需要计算透/反射率的器件通常可分为几种类型: 1. 波导器件 如各类波导分路器,光纤Bragg光栅,其入射端及出射端都满足波导模式。 当入射及出射端波导满足端口(Port)内置结构(同轴/矩形),可直接选择内置的波导类型,如RF案例库中的H弯波导(h_bend_waveguide)及环形器(lossy_circulator)案例。 当波导结构与内置类型不同时,需要首先通过模场分析计算出波导模式,通过Port边界的Numeric类型耦合到频域分析中,作为入射条件。如V3.5a及V4中的波导适配器(Wave_adapter)案例,以及在V4.2a中更新的dielectric_slab_waveguide案例。 波导常常支持多个模式,为了保证作为频域分析边界条件的模场分布是正确的,可以先进行边界模式分析,设定查找多个模式,根据模场分布从结果中找到作为入射条件的模式对应的模指数,然后在进行整个模型分析时,把此模指数作为参考值(Search for modes around:),查找模式数(Desired number ofmodes:)设定为1。以此保证入射条件正确。 对于以上两种情况,Port边界内置的S参数可计算出透/反射率,其中S11对应端口1的振幅反射率,S21对应从端口1至端口2的振幅透射率,以此类推。 2. 周期性散射体 如金属纳米天线阵列,光栅,光子晶体,在一或两个维度上具有周期性。 在RF模块中,完美电/磁导体(PEC/PMC)是完全反射边界,散射边界(SBC)、端口(Port)边界仅对某些角度或分布的光波透明,其他角度的光波均会有一定程度的反射,而PML如果设置恰当可以保证各角度入射波均被吸收。可以想像,如果散射场在边界上有反射,最终计算出的透射场及反射场会受到影响。边界的选择十分重要。 此类结构,可用周期性边界条件,或是根据电/磁场的对称性用PMC/PEC边界进行简化,仅对重复单元进行模拟。目前的解决方案主要有两种: a). 入射及出射端采用完美吸收层PML 当入射和出射端均设置为PML时,怎样定义光源? 在V3.5a版本中,可以通过Port边界内部一致对作为入射条件,在入射端和出射端进行能流积分来计算透射率及反射率。典型案例是Grating。 在V4版本中,内部一致对方法不可行(https://www.sodocs.net/doc/875704410.html,/community/forums/general/thread/11030/) ,光源可通过背景场定义。透射功率可通过出射端总场能流积分算出,而反射功率可通过入射端散射场能流积分算出。 如果所研究的结构在入射端和出射端是同一种介质,背景场可直接定义为平面波。但是当入射与出射端处于两种介质中时,比如一个石英板与空气界面上排列着金属颗粒,电磁波从空气入射到界面上,采用一个单独的平面波作为背景场时,会在出射端的PML边界上出现不合理的反射这时需要根据Fresnel公式定义出符合界面反射的场分布,或是添加计算背景场的步骤,见 (https://www.sodocs.net/doc/875704410.html,/community/forums/general/thread/16715/, https://www.sodocs.net/doc/875704410.html,/forum/post/show.html?tid=8444)。

COMSOL-RF模块计算光学器件透射率的方法探讨

COMSOL-RF模块计算光学器件透射率的方法探讨 透/反射率的计算在电磁波研究中非常常见,计算结果的准确性与材料参数定义,边界条件的选择,网格剖分有十分紧密的关系。以下是关于电磁波透/反射率计算问题的经验整理,如有错漏欢迎指正和补充。需要计算透/反射率的器件通常可分为几种类型: 1. 波导器件 如各类波导分路器,光纤Bragg光栅,其入射端及出射端都满足波导模式。 当入射及出射端波导满足端口(Port)内置结构(同轴/矩形),可直接选择内置的波导类型,如RF案例库中的H弯波导(h_bend_waveguide)及环形器(lossy_circulator)案例。 当波导结构与内置类型不同时,需要首先通过模场分析计算出波导模式,通过Port边界的Numeric类型耦合到频域分析中,作为入射条件。如V3.5a及V4中的波导适配器(Wave_adapter)案例,以及在V4.2a中更新的dielectric_slab_waveguide案例。 波导常常支持多个模式,为了保证作为频域分析边界条件的模场分布是正确的,可以先进行边界模式分析,设定查找多个模式,根据模场分布从结果中找到作为入射条件的模式对应的模指数,然后在进行整个模型分析时,把此模指数作为参考值(Search for modes around:),查找模式数(Desired number ofmodes:)设定为1。以此保证入射条件正确。 对于以上两种情况,Port边界内置的S参数可计算出透/反射率,其中S11对应端口1的振幅反射率,S21对应从端口1至端口2的振幅透射率,以此类推。 2. 周期性散射体 如金属纳米天线阵列,光栅,光子晶体,在一或两个维度上具有周期性。 在RF模块中,完美电/磁导体(PEC/PMC)是完全反射边界,散射边界(SBC)、端口(Port)边界仅对某些角度或分布的光波透明,其他角度的光波均会有一定程度的反射,而PML如果设置恰当可以保证各角度入射波均被吸收。可以想像,如果散射场在边界上有反射,最终计算出的透射场及反射场会受到影响。边界的选择十分重要。 此类结构,可用周期性边界条件,或是根据电/磁场的对称性用PMC/PEC边界进行简化,仅对重复单元进行模拟。目前的解决方案主要有两种: a). 入射及出射端采用完美吸收层PML 当入射和出射端均设置为PML时,怎样定义光源? 在V3.5a版本中,可以通过Port边界内部一致对作为入射条件,在入射端和出射端进行能流积分来计算透射率及反射率。典型案例是Grating。 在V4版本中,内部一致对方法不可行 (https://www.sodocs.net/doc/875704410.html,/community/forums/general/thread/11030/)

地表反射率反演

MODIS 反照率反演算法 1 基本概念 1地表反射率(albedo)指地表向各个方向反射的全部光通量与总入射光通量的比。 2 辐射亮度指面辐射源上某点在一定方向上的辐射强弱的物理量 3 BRDF (二向反射率) 理想光滑表面的反射是镜面反射,理想粗糙表面的反射是漫反射(朗伯反射),而自然地表往往既不满足镜面反射也不满足漫反射的条件。 二向反射的概念是指物体表面反射光线的能力与入射和反射光线的方向有关,二向性反射分布函数(Bidirectional Reflectance Distribution Function, BRDF )定义如下: 它是光线入射方向、反射方向和波长的函数,是基于微分面元和微分立体角定义的。 2 反照率反演算法流程 2.1核驱动模型和反演 核驱动的线性BDRF 模型,是用核的线性组合来拟合地表的二向反射特征。简单地说,可以用下面的公式表示: ),,,(∧φ?θR =),,()(k φ?θk k k f ∧∑ 其中 , R 为二向反射; K k 为各类核 , f K 为相应各个核所占的比例(权重),θ为 太阳入射天顶角,?为观测天顶角,φ为相对方位角;Λ为波段宽。 拟合观测数据()∧ρ,通过最小二乘法,反演拟合观测数据的最优的k f ,也就是说,已知l l φ?θ,,l 角度的反射观测()∧ρ,最小化 得到,各个核的权重k f 其中,d 为自由度,也就是观测样本数减去核系数k f 的个数;()∧l w 为第l 个观 (,;,;)(,;,;)(,;,;) r i i r r r i i r r i i i r r dL f dE θφθφλθφθφλθφθφλ=

相关主题