搜档网
当前位置:搜档网 › 差示扫描量热法DSC简介

差示扫描量热法DSC简介

差示扫描量热法DSC简介
差示扫描量热法DSC简介

聚合物的热分析------差示扫描量热法(DSC)

差示扫描量热法是在差热分析(DTA)的基础上发展起来的一种热分析技术。它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术。简称DSC(Diffevential Scanning Calovimltry)。DSC技术克服了DTA 在计算热量变化的困难,为获得热效应的定量数据带来很大方便,同时还兼具DTA的功能。因此,近年来DSC的应用发展很快,尤其在高分子领域内得到了越来越广泛的应用。它常用于测定聚合物的熔融热、结晶度以及等温结晶动力学参数,测定玻璃化转变温度T g;研究聚合、固化、交联、分解等反应;测定其反应温度或反应温区、反应热、反应动力学参数等,业已成为高分子研究方法中不可缺少的重要手段之一。

一、目的和要求

了解差示扫描量热法的基本原理及应用范围,掌握测定聚合物熔点、结晶度、结晶温度及其热效应的方法。

二、实验原理

DSC和DTA的曲线模式基本相似。它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据。于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。这两个量热器皿都置于程序控温的条件下。采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。DSC体系可分为两个控制回路。一个是平均温度控制回路,另一个是差示温度控制回路。

在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。现在看一下程序温度与两个测量池温度的比较和控制过程。比较是在平均放大器内进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平均温度计算器加以平均后,再输入平均温度放大器。经比较后,如果程序温度比两个测量池的平均温度高,则由放大器分别输入更多的电功率给装在两个测量池上的独立电热器以提高它们的温度。反之,则减少供给的电功率,把它们的温度降到与程序温度相匹配的温度。这就是温度程序控制过程。

DSC 与DTA 所不同的是在测量池底部装有功率补偿器和功率放大器。因此在示差温度回路里,显示出DSC 和DTA 截然不同的特征,两个测量池上的铂电阻温度计除了供给上述的平均温度信号外,还交替地提供试样池和参比池的温度差值△T 。输入温度差值放大器。当试样产生放热反应时,试样池的温度高于参比池,产生温差电势,经差热放大器放大后送入功率补偿放大器。

在补偿功率作用下,补偿热量随试样热量变化,即表征试样产生的热效应。因此实验中补偿功率随时间(温度)的变化也就反映了试样放热速度(或吸热速度)随时间(温度)的变化,这就是DSC 曲线。它与DTA

曲线基本相似,但其

纵坐标表示试样产生热效应的速度(热流率),单位为毫卡(毫焦)/秒,横坐标是时间或温度,即dH/dt —t (时间或温度T)曲线(见图6-2)。

图6-2 dH/dt—t (时间t或温度T)曲线

同样规定吸热峰向下,放热峰向上,对曲线峰经积分,可得试样产生的热量△H。

1.DSC与DTA的差别

DSC与DTA相比,虽然曲线相似,但表征有所不同。DTA测定的是试样与参比物的温度差,而DSC测定的是功率差△Hc,功率差直接反应了热量差△Hc,这是DSC进行定量测试的基础。

在DTA方法中,当试样产生热效应时,△T≠0,此时样品的实际温度已不是程序升温所控制的温度,这就产生了样品和基准物温度的不一致。由于样品池与参比池在一起,物质之间只要存在温度差,二差之间就会有热传递,因此给定量带来困难,在DSC方法中,样品的热量变化由于随时得到补偿。样品与参比

物无温差△T=0,二物质间无热传递。因此在DSC测试中不管样品有无效应,它都能按程序控制进行升、降温。

而最重要的是在DTA中仪器常数K(主要表征的是热传导率)是温度的函数,即仪器的量热灵敏度随温度的升高而降低,所以它在整个温度范围内是——变量,需经多点标定,而DSC中K值与温度无关,是单点标定。

2、DSC曲线的标定

(1)温度的标定

DSC与DTA一样,同样需要对温度进行标定,由于DSC求测的是样品产生的热效应与温度的关系,因此仪器温度示值的标准性非常重要。当然仪器在出厂之时进行过校正。但在使用过程中仪器的各个方面会发生一些变化,使温度的示值出现误差。为提高数据的可靠性,需要经常对仪器的温度进行标定,标定的方法是采用国际热分析协会规定的已知熔点的标准物质(见表1)。99.999%的高纯铟、高纯锡、高纯铅在整个工作温度范围内进行仪器标定,具体方法是将几种标准物分别在DSC仪上进行扫描。如果某物质的DSC曲线上的熔点与标准不相符。说明仪器温度示值在该温区出现误差。此时需调试仪器该温区温度,使记录值等于或近似于标准值(仪器调试方法见仪器说明书)。

表1标准物质的转变温度及热量

3. 影响DSC曲线的因素

DSC的原理及操作都比较简单,但要获得精确结果必需考虑诸多的影响因素。下面介绍一下主要的仪器因素及样品影响因素。

(1) 仪器影响因素

a.气氛的影响:

气氛可以是惰性的,也可以是参加反应的,视实验要求而定。测定时所用的气氛不同,有时会得到完全不同的DSC曲线。例如某一样品在氧气中加热会产生氧化裂解反应—先放热,后吸热;如在氯气中进行,产生的是分解反应—吸热反应。二者的DSC曲线就明显不同。

气氛还可分为动态和静态两种形式。静态气氛通常是密闭系统。反应发生后样品上空逐渐被分解出的气体所充满。这时由于平衡的原因会导致反应速度减慢。以致使反应温度移向高温。而炉内的对流作用使周围的气氛(浓度)不断的变化。这些情况会造成传热情况的不稳定。导致实验结果不易重复。反之在动态气氛中测定,所产生的气体能不断地被动态气氛带走。对流作用反而能保持相对的稳定,实验结果易重复。另外气体的流量应严格控制一致。否则结果将不会重复。

b.温度程序控制速度:

加热速度太快,峰温会偏高,峰面积偏大,甚至会降低两个相邻峰的分辨率。对聚合物的玻璃化的转变来说,是一个分子链段运动状态的松弛过程。对升(降)温速度有强烈依赖性。升温速度较慢时,大分子链段即可在较低的温度下吸热解冻。使T g向低温移动,当升温速度极慢时,则根本观察不到玻璃化转变。因此,通常采用10℃/分。

(2) 样品因素

a.试样量:

试样量同参比物的量要匹配,以免两者热容相差太大引起基线漂移。试样量少,峰小而尖锐,峰的分辨率高。重视性好。并有利于与周围控制气氛相接触。容易释放裂解产物,从而提高分析效果;试样量大,峰大而宽,峰温移向高温。但试样量大,对一些细小的转变,可以得到较好的定量效果。对均匀性差的样品,也可获得较好的重复结果。

b.试样的粒度及装填方式:

试样粒度的大小,对那些表面反应或受扩散控制反应(例如氧化)影响较大。粒度小、峰移向低温方向。装填方式影响到试样的传热情况,尤其对弹性体。因此最好采用薄膜或细粉状试样,并使试样铺满盛器底部,加盖封紧,试样盛器底部尽可能平整。以保证和样品池之间的加盖接触。

三、实验仪器及样品

DSC ----METTLER TOLEDO TA 公司生产

样品PET(聚对苯二甲酸乙二醇酯)

四、实验步骤

1、样品的准备与称量

先将样品用到片切碎,放入卷边铝锅内,用分析天平准确称量(10mg

±.1mg),同时称取等重的参比物α—Al2O3,加盖后分别在卷边机上卷边压紧(此环节要求仔细、清洁)。

2、接通室内总电源,打开稳定电源,一分钟后开高压开关,使电压稳定在220

伏。(需要氮气气氛时,可打开高压钢瓶,将气氛流量计调在一定的刻度,接通DSC炉气管)。

3、打开炉盖,放上安全板,将试样和参比物分别放入样品池和参比池中,加盖

盖好,关闭炉盖。同时,接通数学温度控制器,热量补偿测定器及记录仪的电源,将温度预置上、下限分别拔至160℃~50℃,升温速率选在10℃/分档。

热量量程拔至5mcal/秒档。走纸速度为16mm/分。

4、设置方法进行计算机实验。

五.数据处理

1、温度的确定

DSC曲线峰温的确定一般有三种方法,一是采用峰顶温度为峰温;二可从峰两侧最大斜度处引切线、相交点对应的温度为峰温;三则由峰的前部斜率最大处作切线与基线延长线相交的所谓外推始点的对应温度为峰温。

玻璃化转变是一个自由体积松弛过程,并非热力学的相交,故在升温的过程中没有热效应产生,只是由于运动单元的变化。使比热发生突变。使DSC曲线的基线向下偏移,形成一台阶形,玻璃化转变前的基线沿线与转折沿线的交点温度即为T g,或者在基线发生转折之处,即玻璃化转变前后的直线部分取切线。再在转折曲线上取一点,使其平分两切线间的距离,此点对应的温度为T g。

2、根据DSC图测定出熔融温度、结晶温度,计算出结晶度。

五.思考题

1、DSC测试中影响实验结果的因素有那些?

2、简述DSC与DTA的差别。

DSC的基本原理使什么?在聚合物研究中有那些用途?

六.DSC在高聚物研究中的应用

DSC 方法以其优越的热量定量性能,在高聚物研究中发展极为迅速,而且已经成为高聚物常规测试和基本研究手段,应用面较广,但限于篇幅,在此只将主要方面加以简介。

1、高聚物玻璃化转变温度T g的测定

T g是表征高聚物性能的重要参数,通过测定高聚物的T g可以获得多方面的性能与结构关系的信息。测定不同高聚物的T g可以判断分子柔顺性的差别,凡与分子运动有关的性能都可通过T g的测定来证实。对于同种交联高聚物,通过测定其T g的大小,可以推断交联程度的差异。也可通过T g的测定来研究高聚物共混结构。显微镜法可直接观察到共混物的形态结构,但不能准确地测得两种聚合物达到分子级混合的程度。但通过T g的测定可以判断分子级混合的程度。若两组分完全达到分子级的混合,形成均相体系,只有一个T g;如果两分组完全没有分子级的混合,界面明显,存在两个与原组分相同的T g;如果两组分之间具有一定程度的分子级混合时,界面层占有不可忽略的地位,这时仍有两个T g,

但彼此靠近。分子级混合的程度越大,相互靠近的程度亦越大。同时,两相之间的界面层也可能表现出不太明显的第三个玻璃化转变区。需要指出的是橡胶的

T g一般在0℃以下,要带有低温装置的才能测定,而SR-1型DSC仪可测定室温以下的T g,一般测定非晶型塑料的T g,如PVC,PS以及未拉伸的非晶PET等。

2、DSC法测定橡胶的硫化,热固树脂的固化过程

DSC法可以测定出橡胶混炼胶的硫化峰温以及硫化热效应,通过硫化峰温的高低以及峰宽(半高宽或峰宽)来分析硫化体系的硫化温度,硫化反应速度等,对于筛选配方的硫化体系,研究促进剂的并用有着重要意义。例如促进剂CZ的硫化放热峰,峰温高、峰形窄(见图9-11)。说明其发生硫化反应的温度高,反应速度快,即所谓后效应性;而促进剂DM的硫化峰温低,峰形宽,则说明临界温度低,反应速度慢。另外还可求出硫化活化能E,对硫化体系进行理论分析。根据DSC曲线峰还可以得到硫化热效应,它是评价交联程度的依据,并可与交联密度,定伸应力等实验结合起来评价橡胶的交联情况。对于热固性树脂的固化反应也可用同样的方法进行研究。从固化反应的DSC曲线中可以得到固化反应的起始温度Ta,峰值温度Tb和终止温度Tc。还可得到固化反应热,以及固化后树脂的T g。另外通过固化剂的不同用量对固化热效应影响的研究。对选择合适的固化剂用量有着重要的指导意义。

此方法还可根据加了固化剂的树脂体系在室温下不同存放时间后的固化热效应,来研究稳定性,以此确定允许存放的时间。

3、高聚物热稳定性的研究

在DSC仪上可以快速地测出高聚物的氧化、环化、裂解峰温及热效应。从而方便地评价高聚物氧化性能及其热稳定性,并且同样可根据不同升温速度下的反应峰温作出图求出氧化、环化、分解反应的活化能E。还能通过添加不同防老剂试样的DSC曲线氧化峰温进行防老剂的筛选,其实验快速而方便。

4、高聚物结晶行为的研究

与DTA一样DSC法可以用来测定结晶高聚物的结晶温度和熔点及结晶度(见实验原理),可以为其加工工艺,热处理条件提供依据。例如,用DSC测得未拉伸非晶聚酯得DSC曲线。根据曲线即可确定其薄膜的;拉伸加工条件,拉伸温度必须选择在T g以上,117℃以下之间的温度内,以免发生结晶而影响拉

伸,拉伸后热定型温度则一定要高于152℃,使之冷结晶完全;但又不能太靠近熔点,以免结晶熔融。这样就能获得性能好的薄膜。另外,还可以利用DSC法在等温结晶条件下研究高聚物结晶速度。如结晶起始时间t id;最大结晶时间t max;结晶终止时间t∞。

5、DSC在高聚物剖析鉴定上的应用

DSC法能够快速、简便地对为知样进行剖析鉴定。特别是结晶高聚物,可根据其熔点的不同来加以鉴别。例如,几种尼龙的熔点不同,通过DSC测定它们的熔点,就可能将几种尼龙区别开来。利用DSC法还可以粗略地鉴定结晶共混物的组成,从曲线中结晶熔融峰的高低可以粗略地估计共混物的比例。对橡胶的鉴别可以通过DSC曲线上T g,氧化峰温、环化、裂解峰温的差异加以区别。如果有条件,DSC仪可与其它仪器(如裂解色谱、红外光谱)配合,鉴定效果更加准确。

差示扫描量热仪的工作原理(DSC)

差示扫描量热仪的工作原理 差示扫描量热仪作为常见的煤炭化验设备—量热仪系列产品中 的一员,在整个的量热仪家族中占据这举足轻重的地位,一直以来,工作人员都在熟练的操作这些仪器进行工作,但是,同样也存在不少个的人对这种量热仪究竟是怎样工作的还不是很明白,本文特汇总部分资料说明下差示扫描量热仪的工作原理。 一、示差扫描量热法我们必须的明白这种量热仪运用的原理其实就是示差扫描量热法:示差扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差腡时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差腡消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。 二、差示扫描量热仪差示扫描量热仪就是运用了以上的系统原理,现在我们找一款类似的设备看下这种类型的量热仪都有哪些配

置及特点? (一)、主要配置制冷系统除霜功能动态调制DSC功能(二)、主要特点功率补偿型设计原理,直接测定能量和温度而非温度差,灵敏度为微型炉设计,仪器升降温速度快,热慢性小,平衡时间短量热精度±温度精度±温度范围-170℃~+550℃动态量耗(三)、主要用途: 、高分子材料的定性,定量分析、熔点、玻璃化温度、结晶度、熔融热和结晶热、纯度、反应动力学、比热、相转变温度、相容性面向学科: 广泛应用于塑料,橡胶,涂料,胶粘剂,医药,石油化工等不同领域熟悉这种差示扫描量热仪的各种原理及配置后,以后我们在操作这种量热仪的时候就能够做到真正的熟练顺手,同时我们也将更多的一下类似于智能一体定硫仪、定硫仪、自动量热仪、微机全自动量热仪等各种煤炭化验设备,欢迎大家共同参与讨论学习 差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T 或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。适用于无机物、有机化合物及药物分析。 分类

1_差示扫描量热法的原理

1 差示扫描量热法的原理 DSC(differential scanning calorimetry)差示扫描量热法,是在程序控制温度下,测量输出物质与参比物的功率差与温度关系的一种技术。其主要特点是使用的温度范围比较宽(-175~725°C)、分辨能力高和灵敏度高。差示扫描量热仪得到的曲线以每秒钟的热量变化(热流率dH/dt)为纵坐标, 温度为横坐标, 称为DSC曲线, 与DTA 曲线形状相似,但峰向相反。在具体分析中图谱中峰的方向表示吸热或放热(通常峰表示放热,谷表示吸热);峰的数目表示在测定温度范围内待测药物样品发生变化的次数;峰的位置表示发生转化的温度范围;峰的面积反映热效应数值的大小;峰高峰宽及对称性与测定条件有关外,往往还与样品变化过程的动力学因素有关。根据测量方法的不同,又分为两种类型:功率补偿型DSC 和热流型DSC。 1.1功率补偿型DSC 功率补偿型DSC的主要特点是试样和参比物分别具有独立的加热器和传感器,其结构如图1-1所示。 图1-1 试样与参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时使参比物一边电流增大,直到两边达到热平衡,温差消失为止。也就是说,试样在热反应中发生热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面的两只电热补偿的热功率之差随时间的变化关系。如果恒速升温,记录的也就是热功率之差随温度的变化。 1.2 热流型DSC 在热流型DSC中试样和参比物在同一个加热炉内,它们受同一温度-时间程序的监控。热流型DSC的结构如图1-2所示,该仪器的特点是利用鏮铜盘把热量传输到试样和参比物的,并且鏮铜盘还作为测量温度的热电偶结点的一部分。传输到试样和参比物的热流差通过试样和参比物平台下的镍铬板与鏮铜盘的结点所构成的镍铬-鏮铜热电偶进行监控。试样温度由镍铬板下方的镍铬-镍铝热电偶直接监控。试样和参比物的温差DT与两者的热流差成正比。为了获得一条水平的理想基线,在热流型DSC的构造中,结构对称性必须很高,温度滞后应该很小,炉温要均匀且总的传热系数必须很大。

差示扫描量热仪DSC的原理及应用范围

差示扫描量热仪的原理 应用范围及用途 ◆公司名称:南京汇诚仪器仪表有限公司◆品牌:汇诚仪器

差示扫描量热仪DSC-600 一、仪器介绍 差示扫描量热仪测量的是与材料内部热转变相关的温度、热流的关系。应用范围非常广,特别是材料的研发、性能检测和质量控制。应用于高分子材料的固化反应温度和热效应,物质相转变温度及其热效应的测定、高聚物材料的结晶、熔融温度、玻璃化转变温度等。 二、差示扫描量热仪的基本原理 差示扫描量热法DSC是在程序控制温度下,测量输给物质和参比物的功率和温度关系的一种技术。当试样在加热过程中由于热效应与参比物之间出现温差?T时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大,反之,当试样放热时,使参比物一边的电流增大,直到两边热量平衡,温差?T消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间T的变化关系。如升温速率恒定,记录的也就是热功率之差随温度T的变化关系。

三、差示扫描量热仪的用途 1、成分分析:有机物、无机物、药物、高聚物等的鉴别及相图研究。 2、稳定性测定:物质的稳定性、抗氧化性能的测定等。 3、化学反应研究:研究固体物质与气体反应的研究、催化性能测定、反应动力学研究、反应热测定、相变和结晶过程研究。 4、材料质量检定:纯度测定、固体脂肪指数测定、高聚物质量检验、物质的玻璃化转变和居里点、材料的使用寿命等。 5、材料力学性质测定:抗冲击性能、粘弹性、弹性模量、损耗模数等测定。

差示扫描量热法DSC说明介绍

聚合物的热分析------差示扫描量热法(DSC) 差示扫描量热法是在差热分析(DTA)的基础上发展起来的一种热分析技术。它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术。简称DSC(Diffevential Scanning Calovimltry)。DSC技术克服了DTA 在计算热量变化的困难,为获得热效应的定量数据带来很大方便,同时还兼具DTA的功能。因此,近年来DSC的应用发展很快,尤其在高分子领域内得到了越来越广泛的应用。它常用于测定聚合物的熔融热、结晶度以及等温结晶动力学参数,测定玻璃化转变温度T g;研究聚合、固化、交联、分解等反应;测定其反应温度或反应温区、反应热、反应动力学参数等,业已成为高分子研究方法中不可缺少的重要手段之一。 一、目的和要求 了解差示扫描量热法的基本原理及应用范围,掌握测定聚合物熔点、结晶度、结晶温度及其热效应的方法。 二、实验原理 DSC和DTA的曲线模式基本相似。它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据。于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。这两个量热器皿都置于程序控温的条件下。采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。DSC体系可分为两个控制回路。一个是平均温度控制回路,另一个是差示温度控制回路。

在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于 试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。现在看一下程序温度与两个测量池温度的比较和控制过程。比较是在平均放大器内进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平均温度计算器加以平均后,再输入平均温度放大器。经比较后,如果程序温度比两个测量池的平均温度高,则由放大器分别输入更多的电功率给装在两个测量池上的独立电热器以提高它们的温度。反之,则减少供给的电功率,把它们的温度降到与程序温度相匹配的温度。这就是温度程序控制过程。 DSC 与DTA 所不同的是在测量池底部装有功率补偿器和功率放大器。因此在示差温度回路里,显示出DSC 和DTA 截然不同的特征,两个测量池上的铂电阻温度计除了供给上述的平均温度信号外,还交替地提供试样池和参比池的温度差值△T 。输入温度差值放大器。当试样产生放热反应时,试样池的温度高于参比池,产生温差电势,经差热放大器放大后送入功率补偿放大器。 在补偿功率作用下,补偿热量随试样热量变化,即表征试样产生的热效应。因此实验中补偿功率随时间(温度)的变化也就反映了试样放热速度(或吸热速度)随时间(温度)的变化,这就是DSC 曲线。它与DTA 曲线基本相似,但其

化合物纯度测定 差示扫描量热(DSC)法

《化合物纯度测定差示扫描量热(DSC)法》编制说明 1. 制标任务来源 本标准系国家认证认可监督管理委员会2009年标准制修订项目计划2009B051《化合物纯度测定差示扫描量热(DSC)法》的制订,现已完成。 2. 标准制定的目的、意义和国内外同类研究概况 差示扫描量热技术(DSC Differential Scanning Calorimetry)对低分子化合物进行纯度测定在上世纪六十年代就提出来,在八十年代逐渐发展成熟,并得到广泛应用。它是测量在程序控温下,输入到样品和参比物的功率差与温度的关系的技术。又分为功率补偿式(Power Compensation)和热流式(Heat Flux)两种。与其它测定纯度的方法相比,DSC 法测定纯度具有许多优点:试样用量少,快速,操作简便,不需要标准品,不需分离杂质,能测定物质的绝对纯度,由DSC曲线计算出的杂质含量重现性好,准确度高,适合于测定高纯度化工医药产品。ASTM在上世纪80年代中期陆续颁布了一系列有关DSC技术测定物质纯度的标准,为DSC技术的应用奠定了基础。美国药典在1980年20版开始确定DSC法作为药品纯度检验的标准方法推荐使用, 并推荐DSC为药品纯度检验及生产质量控制方面的首选方法。DSC法也被标准定值机构列为可供使用的标准定值方法。 本项标准制修订项目计划是国家认证认可监督管理委员会2009年标准制修订项目计划2009B051《化合物纯度测定差示扫描量热(DSC)法》的制订,部分工作承接山东检验检疫局1999年度科研项目《差示扫描热分析(DSC)对固体有机化工品纯度、熔点测定的研究》(SK9903)的研究内容,并于2001年完成山东省地方标准《邻苯二甲酸酐的差示扫描量热法(DSC)纯度测定》的制订。本标准的制订参考了ASTM E 928-01《纯度的差示扫描热法测定标准试验方法》。 本标准立项后,课题组积极组织攻关研究,建立了差示扫描热分析法(DSC)对化合物纯度的测定方法,并对影响检测结果的重要实验条件进行了实验,得到纯度测定的优化条件;同时,组织了多个实验室参加的一致性水平试验,获得了方法的精密度、重现性及再现性数据。 3. 原理 用DSC测定纯度的方法在六十年代中期提出,后经许多研究者对数百种物质进行纯度测

15.-实验二-差示扫描量热法(DSC)

实验二差示扫描量热法(DSC) 在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。试样对热敏感的变化能反映在差热曲线上。发生的热效大致可归纳为: (1)发生吸热反应。结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。 (2)发生放热反应。气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。(3)发生放热或吸热反应。结晶形态转变、化学分解、氧化还原反应、固态反应等。 用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。 由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。简称DSC(Differential Scanning Calorimetry)。因此DSC直接反映试样在转变时的热量变化,便于定量测定。 DTA、DSC广泛应用于: (1)研究聚合物相转变,测定结晶温度T c 、熔点T m 、结晶度X D 。结晶动力学参数。 (2)测定玻璃化转变温度T g 。 (3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。 一、目的要求: 1.了解DTA、DSC的原理。 2.掌握用DSC测定聚合物的T g 、T c 、T m 、X D 。 二、基本原理: 1.DTA 图(11-1)是DTA的示意图。通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。比较先进的仪器还有数据处理部分。温度程序控制是使试样在要求的温度范围内进行温度控制,如升温、降温、恒温等,它包括炉子(加热器、制冷器等)、

梅特勒DSC差示扫描量热仪安全操作规程

U66实验工厂梅特勒DSC1差示扫描量热仪安全操作规程 1、差示扫描量热仪操作安全事项 (1)确保所有插座电缆接地良好。 (2)坩锅必须加盖,除非有特殊的测试要求。 (3)炉内必须保持清洁,放置和取出样品时避免硬器碰及炉底。 (4)不得使用易形成爆炸气体混合物的气体。 (5)当测量仪器温度高于100℃时,绝不要断开仪器电源。冷却风扇会因此关闭。 (6)不要触碰炉体、炉盖或刚从炉体中拿出的样品。炉体温度可能高达500℃或700℃,必须使用镊子移动。 (7)不得使用腐蚀性或可燃性的气体吹扫仪器。 (8)关闭电源前,要取出最后的样品坩埚。 (9)不得独自搬动仪器,DSC1重达30公斤。 (10)仪器出现异常,应及时与供应商联系,不得擅自拆卸仪器和维修。 2、差示扫描量热仪操作规程 (1)开机:先打开主机及制冷机电源,打开氮气钢瓶总阀,将干燥气流量阀打开。打开计算机,再打开工作软件。 (2)样品准备:将样品放入坩锅在天平称重,然后盖上锅盖(锅盖根据需要可打若干小孔)用压盖机压封,然后放入主机炉内左侧的传感器上,盖上炉 盖。 (3)工作软件操作程序:点击STARe软件图标,在USER NAME对话框内输入密码,点击确认 (4)在主菜单上下拉SESSION,点击INSTALL WINDOW (5)在弹出的窗口中选中DSC1/500/…….,点击ACTIVE (6)在弹出的窗口点击ROUTINE EDITOR (7)选中METHOD中的NEW (8)选击ADD DYN或ADD ISO (9)输入测试参数 (10)点击SEND EXPERIMENT (11)选中ON MODULE (12)点击OK (13)主机指示灯由绿转红,测试开始。

差示扫描量热法的应用

差示扫描量热法的应用 差示扫描量热技术在高分子材料与工程中的具体应用,将和差热分析技术一起讨论。为此,光将这两种技术作一比较,以便了解实际应用时究竟采用哪种技术更为有益.DTA和DSC的主要区别:DTA测定的是试样与参比物之间的温度差△T了,而DSC 测定的是热流率dH/dt,定量方便。因此,DSC的主要优点就是热量定量方便,分辨率高,灵敏度好.其缺点是使用温度低。以美国SII公司生产的DSC7020,最高温度只能到725℃.一般用到600℃以上,基线便明显变环,已不能使用最高灵敏度档.对于DTA,因为没有补偿加热器,目前超高温DTA,可做到2400℃,一般高温炉也能作到l 500一]700℃.所以,需要用高温的矿物、冶金等领域还只能用DTA.对于需要温度不高,而灵敏度要求很高的有机物高分子及生物化学领域,DSC则是一种很有用的技术,正因如此,其发展也非常迅速.本书列举的DSC曲线,就是用美国Perkin—Elmer公司生产的DSC—7型仪器测定的,见附录2. 近年来,DTA和DSC在高分子方面的应用特别广泛,如研究聚合物的相转变,测定结晶温度T c。结晶度θ,熔点T m,等温结晶动力学参数,破璃化转变温度了T g,以及研究聚合、固化、交联、氧化、分解等反应,并测定反应温度成反应温区、反应热、反应动力学参数等.图1.29说明这两种技术在聚合物科学上的应用.图1.30例说明聚合物材料各种热行为在DTA(DSC)曲线上的表现形式. 这里仅就应用DTA(DSC)曲线测定熔点、比热容、玻璃化转变温度、纯度、结晶变、固化反应工艺参数相固化反动力学参数,以及聚合物材料组成的剖析等作简要的介绍.

聚合物的热分析------差示扫描量热法(DSC)

化学化工学院材料化学专业实验报告实验实验名称:聚合物的热分析------差示扫描量热法(DSC) 年级:2011级材料化学日期:2013-10-17 姓名:学号:同组人: 一、预习部分 1、差热分析 差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、有机、特别是高分子聚合物、玻璃钢等领域。差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。峰的最高温度、形状、面积和峰值大小都会发生一定变化。其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。虽然过去许多人在利用DTA进行量热定量研究方面做过许多努力,但均需借助复杂的热传导模型进行繁杂的计算,而且由于引入的假设条件往往与实际存在差别而使得精度不高,差示扫描热法(简称DSC)就是为克服DTA在定量测量方面的不足而发展起来的一种新技术。20世纪60年代,差示扫描量热法(Differential Scanning Calorimetry,DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。 差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。差示扫描量热法有补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。由于具有以上优点,DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。由于其在定量上的方便更适于测量结晶度、结晶动力学以及聚合、固化、交联氧化、分解等反应的反应热及研究其反应动力学。 2、DSC的工作原理 DSC和DTA的曲线模式基本相似。它们都是以样品在温度变化时产生的热效应为检测基础的,由于一般的DTA方法不能得到能量的定量数据。于是人们不断地改进设计,直到有人设计了两个独立的量热器皿的平衡。从而使测量试样对热能的吸收和放出(以补偿对应的参比基准物的热量来表示)成为可能。这两个量热器皿都置于程序控温的条件下。采取封闭回路的形式,能精确、迅速测定热容和热焓,这种设计就叫做差示扫描量热计。DSC体系可分为两个 控制回路。一个是平均温度控制回路,另一个是差示温度控制回路。 在平均温度控制回路中,由程序控温装置中提供一个电信号,并将此信号于试样池和参比池所需温度相比较,与之同时程度控温的电信号也接到记录仪进行记录。现在看一下程序温度与两个测量池温度的比较和控制过程。比较是在平均放大器内进行的,程序信号直接输入平均放大器,而两个测量池的信号分别由固定在各测量池上的铂电阻温度计测出,通过平

差示扫描量热法(DSC)测定聚合物热性能

差示扫描量热法(DSC )测定聚合物热性能 一、实验目的 1. 了解DSC 的基本原理,通过DSC 测定聚合物的加热及冷却谱图; 2. 通过DSC 测定聚合物的玻璃化转变温度)(g T 、熔点)(m T 和结晶温度)(c T 二、实验原理 (1)原理 DSC 分为功率补偿式DSC 和热流式DSC 。图1是功率补偿式DSC 示意图。 图1 功率补偿式DSC 示意图 当试样发生热效应时,如放热,试样温度高于参比物温度,放置在它们下面的一组差示热电偶产生温差电势,经差热放大器放大后送入功率补偿放大器,功率补偿放大器自动调节补偿加热丝的电流,使试样下面的电流减小,参比物下面的电流增大。降低试样的温度,增高参比物的温度,使试样与参比物之间的温差△T 趋于零。上述热量补偿能及时、迅速完成,使试样和参比物的温度始终维持相同。 (2)DSC 曲线 图2是聚合物DSC 曲线的模式图。当温度升高,达到玻璃化转变温度T g 时,

试样的热容由于局部链节移动而发生变化,一般为增大,所以相对于参比物,试样要维持与参比物相同温度就需要加大试样的加热电流。由于玻璃化温度不是相变化,曲线只产生阶梯状位移,温度继续升高,试样发生结晶则会释放大量结晶热而出现吸热峰。再进一步升温,试样可能发生氧化、交联反应而放热,出现放热峰,最后试样则发生分解、吸热、出现吸热峰。并不是所有的聚合物试样都存在上述全部物理变化和化学变化。 图2 聚合物DSC 曲线的模式图 确定T g 的方法是由玻璃化转变前后的直线部分取切线,再在实验曲线上取一点,使其平分两切线间的距离A ,这一点所对应的温度即为T g 。 T m 的确定,由峰的两边斜率最大处引切线,相交点所对应的温度取作为T m ,或取峰顶温度作为T m 。 T m 通常也是取峰顶温度。如果100%试样的熔融热*f H ?已知,则试样的结晶度可以用下式计算: 结晶度%100/* ???=f f D H H X (3)影响实验结果的因素 DSC 的原理和操作都比较简单,但取得精确的结果却很不容易,因为影响因素太多,这些因素有仪器因素、试样因素。仪器因素主要包括炉子大小和形状、热电偶的粗细和位置、加热速度、测试时的气氛、盛放样品的坩埚材料和形状等。试样因素主要包括颗粒大小、热导性、比热、装填密度、数量等。在固定一台仪器时,仪器因素中的主要影响因素是加热速度,样品因素中主要是样品的数量和

DSC 聚合物的差示扫描量热分析

实验报告 课程名称:高分子物理指导老师:成绩: 实验名称:聚合物的差示扫描量热分析实验类型:物性分析实验组别:第一组 一、实验目的和要求(必填)三、主要仪器设备(必填)五、实验数据记录和处理七、讨论、心得二、实验内容和原理(必填)四、操作方法和实验步骤六、实验结果与分析(必填) 一、实验目的和要求 1、掌握差示扫描量热法(DSC)的基本原理及仪器使用方法; 2、测量聚乙烯的DSC曲线,并求出其Tm等。 二、实验内容和原理 差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。差示扫描量热法有补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。由于具有以上优点,DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。由于其在定量上的方便更适于测量结晶度、结晶动力学以及聚合、固化、交联氧化、分解等反应的反应热及研究其反应动力学。 DSC在聚合物中的应用:DSC在聚合物中领域有广泛的应用:①物性(如玻璃化转变温度、熔融温度、结晶温度、结晶度、比热容等)测定;②材料测定;③混合物组成的含量测定;④吸附、吸收和解吸过程研究;⑤反应性研究(聚合、交联、氧化、分解,反应温度或温区等);⑥动力学研究。 三、主要仪器设备 差动热分析仪;电子天平;PET样品 四、操作方法和实验步骤 1、开机预热30min。转动手柄将电炉的炉体升到顶部,然后将炉体向前方转出。 2、制样:准确称量5-6mg PET样品于坩埚中,放在样品支架的左侧托盘上,α-Al2O3参比坩埚放在右侧的托盘上。小心地合上炉体,转动手柄将电炉的炉体降回到底部。 3、将“差动/差热”开关置于“差动”的位置,量程开关置于±100μV的位置。设定升 温范围为0-300℃,升温时间为1h,并在软件中设定相关参数。

差示扫描量热仪DSC Q20-具体操作规程

差示扫描量热仪操作规程 DSC 开机 1. 打开氮气阀,确认输出压力为0.08MPa 左右。 2. 打开制冷机电源开关。 3. 打开仪器电源开关,仪器开始自检,大约两分钟后,仪器前面的绿色 指示灯亮,自检完成。 4. 打开电脑,点击桌面上“仪器控制图标”,点击仪器图标,连机完成。 5. 采用RCS 制冷系统,请按下面的步骤启动制冷机。 ① 点击“控制Control ”下拉菜单中的“事件Event ”, ② 并选中“打开On “,将听到制冷机启动声音 ③ 点击“控制Control ”菜单中的“转至待机温度Go To Standby Temp ”, 大约十五钟后可以开始实验或校准 DSC 校准步骤 DSC Q20校准共分为两部分:基线校准和炉子常数及温度校准。 一. 基线校准: A.检查右上角信号栏中“温度”是否在40度左右,相差不大于5度。 B.打开炉盖,用炉子刷清除炉中脏物,注意中心两小热电偶点不要碰到。 C. 确信炉子中没有任何样品及盘,并盖上所有外盖,然后按下图操作。 1.点击校准向导图 标 2.在提示的“是否要保存当前序列?”中选择“否” 3.选择“基线”,点击“下一步”。 4.取消前面的钩 5.如果制冷头是RCS (90), 请填入-90; 6.如果制冷头是RCS (90), 请填入400; 7.点击“下一步” 8. 继续点击“下一步” 9.输入“0.00” 11.点击“下一步” 10.选择适当的数据保存路径。并取名为 “Baseine”,文件名只能是英文 12.输入操作者名字 13.坩埚类型选“无” 14.点击“下一步” 15.点击“开始实验”。 16.基线运行完成后,点击控制软件“校准”菜单中的“分析”进行分析。 17.点击左边的“打开文件” 19.点击“打开” 18.选中“先前所保存的校正数据” 21. 图像出现后点击左边栏“分析”。 22.移动两个红色“十”叉,如果RCS (90)左 边大约-80度,右边大约380度。 23.点击左边的“限制合法” 24.点击“接受” 25.点击“关闭”,基线校正完成 二.温度及炉子常数校准 1. 确信右边信号栏中“温度”在40度左右,打开炉子盖; 2. 放入压好的空盘在参照台上; 3. 放入装有金属铟样品的同样盘在样品台上; 4. 盖上所有炉子盖; 5. 点击校准向导图标; 6. 在提示的“是否要保存当前序列?”中选择“否”; 7. 选择“炉子常数/温度”; 8. 点击“下一步”,继续点击“下一步”,在此点击“下一步”; 9. 输入待测样品“铟”的重量,一般大约5毫克; 10. 输入数据保存路径,并取名为“induim”,只能是英文,点击“下一步”; 11. 选择坩埚类型“Tzero 铝”,点“下一步”,点“开始实验”; 12. 点击软件“校准”菜单中的“分析”进行炉子常数及温度校正分析; 13. 点击“打开文件”,选中上面做的数据,点击“打开”; 14. 点击“接受”,点击“关闭”,校正完成。 DSC 实验步骤 1. 首先点击“Summary”; 2. Mode 选择“Standard”; 3. test 选择“Custom”; 4. 在Sample Name 后输入待测样品名; 5. 在Pan Type 选择待样品盘类型; 6. 在Sample 输入样品重量,在Pan 后选择样品盘编号,Ref 后选择 对照盘编号; 7. 点Date File Name 后的图标,输入数据保存路径,注意文件名不能是中文及特殊字符; 8. 点击“Procedure”; 9. Test 中选择“Custom”; 10. 点击“Editor”,会出现方法编辑器; 11. 点击右边的方法命令,命令将出现左边的程序栏中; 12. 编辑程序栏中的步骤,不用的步骤请用红色叉删除; 13. 最后点击“OK”; 14. 点击绿色启动按钮,程序开始运行。 DSC 关机: 1. 点击Control 中Event 下的“Off”; 2. 点击Control 中的Go To Standby Temp”; 3. 待温度(Temperature)到40度时,点击Control 中Lid 下的“Open”, 取出坩埚; 4. 点击Control 中Lid 下的“Close”,关闭炉子; 5. 等待信号栏中“Flange Temperature”高于室温(实际房间温度,最好 20℃左右); 6. 点击Control 中的“Shutdown Instrument”; 7. 弹出对话框中选择“Shutdown”; 8. 点击“Start”; 9. 主机提示灯熄灭后,关闭仪器背后的电源开关; 10. 关闭制冷机电源; 11. 关闭氮气; 12. 关闭计算机。

差示扫描量热法(DSC)测定聚合物的热性能

华南师范大学实验报告 学生姓名 学 号 专 业 年级、班级 课程名称 实验项目 实验类型 验证 设计 综合 实验时间 年 月 日 实验指导老师 实验评分 一、实验目的 1.了解热分析的概念; 2.了解DSC的基本原理; 3.掌握DSC测试聚合物Tg的方法。 二、实验原理 差示扫描量热法(DSC, Differential Scanning Calorimetry)是在程序温度控制下,测量试样与参比物之间单位时间内能量差(或功率差)随温度变化的一种技术。它是在差热分析(DTA, Differential Thermal Analysis)的基础上发展而来的一种热分析技术,DSC在定量分析方面比DTA要好,能直接从DSC曲线上峰形面积得到试样的放热量和吸热量。 差示扫描量热仪可分为功率补偿型和热流型两种,两者的最大差别在于结构设计原理上的不同。一般试验条件下,都选用的是功率补偿型差示扫描量热仪。仪器有两只相对独立的测量池,其加热炉中分别装有测试样品和参比物,这两个加热炉具有相同的热容及导热参数,并按相同的温度程序扫描。参比物在所选定的扫描温度范围内不具有任何热效应。因此在测试的过程中记录下的热效应就是由样品的变化引起的。当样品发生放热或吸热变化时,系统将自动调整两个加热炉的加热功率,以补偿样品所发生的热量改变,使样品和参比物的温度始终保持相同,使系统始终处于“热零位”状态,这就是功率补偿DSC仪的工作原理,即“热零位平衡”原理。如下图为功率补偿式DSC示意图。

三.实验仪器与试剂 仪器:耐驰公司400PC DSC仪;铝坩埚;电子天平;镊子;高纯氮气 试剂:PVC粉末;PMMA;PP 四、实验条件 PVC粉末:室温~150℃ PMMA:室温~150℃ PP: 五、实验步骤 1. 打开气源; 2.开启仪器主机电源; 3.开启电脑主机; 4.找到DSC测试软件并打开; 5.在窗体选项栏点击诊断,在出现的菜单中选择气体与开关选项; 6.在出现的气体与开关小窗体中勾选保护气2与吹扫气2选项,然后点击确定; 7.称量5-10mg样品,用铝坩埚装好样品,盖上盖子压好; 8. 在窗体选项栏点击文件-新建,在出现的DSC200PC测试参数中点击样品选项,填好名称与样品质量,点击继续; 9.在出现的打开温度较正窗口点击选取温度校正文件打开;再在出现的打开灵敏度较正窗口点击选取灵敏度校正文件打开; 10.进入DSC温度设定程序窗口按照样品测试条件设定温度,点击继续; 11.在设定测量文件名窗口为将要测试的样品的数据结果命名,点击保存; 12.点击“开始”,开始测量样品。 13.测试结束后,使用Proteus Analysis软件对数据进行分析。

差示扫描量热仪实验报告

4.差示扫描量热仪 一、实验目的及要求 1.了解差示扫描分析法的基本原理和差热扫描量热仪的基本构造; 2.掌握差热扫描量热仪的使用方法 二、实验原理 差示扫描量热仪DSC是在程序控温下,测量物质和参比物之间的能量差随温度变化关系的一种技术。根据测量方法的不同,又分为功率补偿型DSC和热流型DSC两种类型。常用的功率补偿DSC是在程序控温下,使试样和参比物的温度相等,测量每单位时间输给两者的热能功率差与温度的关系的一种方法。DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。 当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化的关系。 三、实验仪器 差示扫描量热仪Q100(DSC)测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是DSC的研究领域。美国TA仪器公司生产。 主要附件:Q系列Advantage操作软件及分析软件λ,压片机λ 技术参数: 温度范围:-90℃~ 550℃(压缩机制冷);温度准确度:±0.1℃;温度精度:±0.01℃;量热精度(基于标准金属):±1 %;最大量热灵敏:0.2μW;基线弯曲(-50℃~300℃):10μW;基线重现性:10μW;动态范围:+/-500mW;线性升温速率:0.01 ~ 200℃/min;峰高/半峰高:2.2mW/℃ 功能应用:高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度。

相关主题