搜档网
当前位置:搜档网 › DSP、MCU、CPLD、ARM、FPGA芯片的区别

DSP、MCU、CPLD、ARM、FPGA芯片的区别

DSP、MCU、CPLD、ARM、FPGA芯片的区别
DSP、MCU、CPLD、ARM、FPGA芯片的区别

DSP、MCU、CPLD、ARM、FPGA芯片的区别

1,单片机小型电脑处理器,最小可以到8个脚,价格便宜,最便宜2块钱

2,PLC可变逻辑控制器,主要用在工业控制,里面是类似一个加强的单片机。对输入输出均有做处理(抗干扰能力、带负载能力都增强)。

例如抗干扰,增加带负载驱动能力

3,DSP 数字信号处理芯片,这个用途可做信号处理,例如图像处理,数据采集处理,它比单片要快很多,比单片机功能要强大

4,FPGA、CPLD可变逻辑控制,这个做逻辑处理控制,小型的CPLD是没有中央处理器的,大型可以嵌入系统,功能在单片机之上,适合做大型的数据处理,逻辑控制。其价格不便宜。但是他和单片机有本质的区别。例如单片机有内嵌外设AD,DA转换等,CPLD则需要通过控制其他外设IC。

要想诠释清楚,也非三言两语能道明,还是多看看书本吧

学习可以以单片机为先,其次是FPGA,CPLD,DSP。PLC比较简单,学会前面后面只要了解一周一般都会了

一家之言,欢迎指证:

DSP:数字信号处理器,处理器采用哈弗结构,工作频率较高,能大幅度提高数字信号处理算法的执行效率。

MCU:微控制器,主要用于控制系统,工作频率一般来说比DSP低,硬件上具有多个IO 端口,同时也集成了多个外设,主要是便于在控制系统中的应用。至于ARM处理器,个人认为是MCU的高级版本,ARM本身只是一个内核,目前已经有多个版本。

CPLD:复杂可编程逻辑器件

FPGA:现场可编程门阵列

后两者都是可编程器件,CPLD目前一半采用FLASH技术,而FPGA采用SRAM技术,这就决定了FPGA需要采用特定的配置技术。同时FPGA的规模要比CPLD大得多,但CPLD应用起来相对要简单的多。

DSP主要用做运算,如语音,图像等信号的运算处理,但基本不用做控制。

MCU,FPGA,ARM主要用做控制,MCU低价低功耗,但门限很少,结构简单,不能实现复杂控制。

ARM控制能力较强,但运算能力相对较弱。因此现在很多手持设备是用ARM+DSP来实现的,就是所谓的“双核心”。

FPGA可做复杂的逻辑控制,功能很强大。

这么说吧,ASIC原本就是专门为某一项功能开发的专用集成芯片,比如你看摄像头里面的芯片,小小的一片,集成度很低,成本很低,可是够用了。一个山寨摄像头卖才卖30块,买一片ARM多少钱?后来ASIC发展了一些,称为半定制专用集成电路,相对来说更接近FPGA,甚至在某些地方,ASIC就是个大概念,FPGA属于ASIC之下的一部分。

FPGA基本就是高端的CPLD,两者非常接近。我现在用的是ALTERA DE2开发板的CYCLONE系列FPGA。这种器件是用逻辑门来表述性能的。本身他就是一堆的逻辑门,通过硬件描述语言,比如verilogHDL把它转成电路连接,从最基本的逻辑门层面上连接成电路(参见数字电路书上那些全加器触发器什么的)。应该说,虽然看起来像一块CPU,其实是完全硬件实现的。后来因为写代码麻烦,对控制部分比较薄弱,本来跟其他CPU配合使用,即麻烦的算法CPU提交给FPGA,FPGA算完把结果再返回给CPU。可是这样外围电路就变得麻烦。于是提出了SOC设计方法,就是直接在FPGA里写一个CPU出来,既然FPGA万能,做个CPU自然毫无压力。这其中还有软核和硬核的区别,不过除了性能,使用方法大同小异。所谓IP核,就是把各种专用集成电路用硬件描述语言描述,然后烧到FPGA里形成专门的电路,这样就不必另外搭芯片了,所有的电路在一片FPGA里面形成。

DSP实际应该称为DSPs,即用于DSP处理的专用芯片。跟普通计算机的区别一方面是他是哈佛结构的,也就是数据和程序空间分开。(普通计算机是冯诺依曼结构)另一方面他有流水线结构,不过现在其他也有了,见贤思齐。再一方面他有专用的硬件算法电路,用以完成DSP运算,比如最基本的乘法累加。上过DSP的就知道,蝶形算法FFT什么的,拆成最基本单元就是乘法累加,把这部分加速了,整体性能就有非常大的提高。DSP对于流媒体的处理能力远远的优于通用CPU。所以你看现在手机CPU,至少语音部分都是用DSP 的。后来DSP概念也复杂化,各家都把一个控制核心整合到DSP里面,比如现在的智能

手机芯片。可以看一下高通或者TI的片,基本是一个ARM核控制整体运算,一个DSP处理语音编解码,一个GPU负责图像运算,一个基带和天线处理模块负责通信,再加一些七七八八的东东比如GPS模块什么的。

单片机就是一个百搭的通用CPU,提供各种接口来对整体进行控制,相当一个总调度,当然,简单的功能一片CPU独立工作也就完成了。原来的51系列就是一堆IO口,后来慢慢的把常用的PWM,AD之类的功能加入了单片机。主要包括用了无数年仍然牛逼各大学必教的51系列,还有AVR,PIC,ARM,HOTEK……其实ARM9以后,已经说不清ARM算哪类了,目前的架构来看,更接近DSP。

哈佛结构

哈佛结构是一种处理器结构。使用哈佛结构的处理器有:AVR、ARM9、ARM10、ARM11等。

简介

哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。哈佛结构是一种并行体系结构,它的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个独立的存储器,每个存储器独立编址、独立访问。与两个存储器相对应的是系统的4条总线:程序的数据总线与地址总线。这种分离的程序总线和数据总线可允许在一个机器周期内同时获得指令字(来自程序存储器)和操作数(来自数据存储器),从而提高了执行速度,提高了数据的吞吐率。又由于程序和数据存储在两个分开的物理空间中,因此取址和执行能完全重叠。中央处理器首先到程序指令存储器中读取程序指令内容,解码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度。

哈佛结构的计算机由CPU、程序存储器和数据存储器组成,程序存储器和数据存储器采用不同的总线,从而提供了较大的存储器带宽,使数据的移动和交换更加方便,尤其提供了较高的数字信号处理性能。

相关

哈佛结构的微处理器通常具有较高的执行效率。其程序指令和数据指令分开组织和存储的,执行时可以预先读取下一条指令。

哈佛结构是指程序和数据空间独立的体系结构,目的是为了减轻程序运行时的访存瓶颈。

例如最常见的卷积运算中,一条指令同时取两个操作数,在流水线处理时,同时还有一个取址操作,如果程序和数据通过同一条总线访问,取址和取数必会产生冲突,而这对大运算量的循环的执行效率是很不利的。

哈佛结构能基本上解决取指和取数的冲突问题。而对另一个操作数的访问,就只能采用Enhanced 哈佛结构了,例如像TI那样,数据区再split,并多一组总线。或向AD 那样,采用指令cache,指令区可存放一部分数据。

比较

哈佛结构与冯·诺依曼结构处理器相比,处理器有两个明显的特点:使用两个独立的存储器模块,分别存储指令和数据,每个存储模块都不允许指令和数据并存;使用独立的两条总线,分别作为CPU与每个存储器之间的专用通信路径,而这两条总线之间毫无关联。

改进的哈佛结构,其结构特点为:

使用两个独立的存储器模块,分别存储指令和数据,每个存储模块都不允许指令和数据并存,以便实现并行处理;具有一条独立的地址总线和一条独立的数据总线,利用公用地址总线访问两个存储模块(程序存储模块和数据存储模块),公用数据总线则被用来完成程序存储模块或数据存储模块与CPU之间的数据传输;两条总线由程序存储器和数据存储器分时共用。

基于FPGA的QPSK调制解调电路设计与实现

基于FPGA的QPSK调制解调电路设计与实现数字调制信号又称为键控信号,调制过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM)、频移键控(FSK)、相移键控(PSK).根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制).多进制数字调制与二进制相比,其频谱利用率更高.其中QPSK(即4PSK)是MPSK(多进制相移键控)中应用最广泛的一种调制方式。 1 QPSK简介 QPSK信号有00、01、10、11四种状态。所以,对输入的二进制序列,首先必须分组,每两位码元一组。然后根据组合情况,用载波的四种相位表征它们。QPSK信号实际上是两路正交双边带信号, 可由图1所示方法产生。 QPSK信号是两个正交的2PSK信号的合成,所以可仿照2PSK信号的相平解调法,用两个正交的相干载波分别检测A和B两个分量,然后还原成串行二进制数字信号,即可完成QPSK信号的解调,解调过程如图2所示。

图1 QPSK信号调制原理图 图2 QPSK信号解调原理图 2 QPSK调制电路的FPGA实现及仿真 2.1基于FPGA的QPSK调制电路方框图 基带信号通过串/并转换器得到2位并行信号,,四选一开关根据该数据,选择载波对应的相位进行输出,即得到调制信号,调制框图如图3所示。 图3 QPSK调制电路框图 系统顶层框图如下

图中输入信号clk为调制模块时钟,start为调制模块的使能信号,x为基带信号,y是qpsk调制信号的输出端,carrier【3..0】为4种不同相位的载波,其相位非别为0、90、180、270度,锁相环模块用来进行相位调节,用来模拟通信系统中发送时钟与接收时钟的不同步start1为解调模块的使能信号。y2为解调信号的输出端。 2.2调制电路VHDL程序 程序说明

ARM、DSP、FPGA的特点和区别

说明ARM、DSP、FPGA的异同点 ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。ARM架构是面向低预算市场设计的第一款RISC微处理器,基本是32位单片机的行业标准,它提供一系列内核、体系扩展、微处理器和系统芯片方案,四个功能模块可供生产厂商根据不同用户的要求来配置生产。由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行。目前ARM在手持设备市场占有90以上的份额,可以有效地缩短应用程序开发与测试的时间,也降低了研发费用。 DSP(digital signal processor)是一种独特的微处理器,有自己的完整指令系统,是以数字信号来处理大量信息的器件。一个数字信号处理器在一块不大的芯片内包括有控制单元、运算单元、各种寄存器以及一定数量的存储单元等等,在其外围还可以连接若干存储器,并可以与一定数量的外部设备互相通信,有软、硬件的全面功能,本身就是一个微型计算机。DSP采用的是哈佛设计,即数据总线和地址总线分开,使程序和数据分别存储在两个分开的空间,允许取指令和执行指令完全重叠。也就是说在执行上一条指令的同时就可取出下一条指令,并进行译码,这大大的提高了微处理器的速度。另外还允许在程序空间和数据空间之间进行传输,因为增加了器件的灵活性。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。由于它运算能力很强,速度很快,体积很小,而且采用软件编程具有高度的灵活性,因此为从事各种复杂的应用提供了一条有效途径。 当然,与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。(缺点)

FPGA与CPLD

FPGA(Field-Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。 CPLD与FPGA的关系 早在1980年代中期,FPGA已经在PLD设备中扎根。CPLD和FPGA包括了一些相对大数量的可以编辑逻辑单元。CPLD逻辑门的密度在几千到几万个逻辑单元之间,而FPGA通常是在几万到几百万。 CPLD和FPGA的主要区别是他们的系统结构。CPLD是一个有点限制性的结构。这个结构由一个或者多个可编辑的结果之和的逻辑组列和一些相对少量的锁定的寄存器。这样的结果是缺乏编辑灵活性,但是却有可以预计的延迟时间和逻辑单元对连接单元高比率的优点。而FPGA却是有很多的连接单元,这样虽然让它可以更加灵活的编辑,但是结构却复杂的多。 CPLD和FPGA另外一个区别是大多数的FPGA含有高层次的内置模块(比如加法器和乘法器)和内置的记忆体。一个因此有关的重要区别是很多新的FPGA支持完全的或者部分的系统内重新配置。允许他们的设计随着系统升级或者动态重新配置而改变。一些FPGA可以让设备的一部分重新编辑而 FPGA采用了逻辑单元阵列LCA(Logic Cell Array)这样一个概念,内部包括可配置逻辑模块CLB(Configurable Logic Block)、输出输入模块IOB(Input Output Block)和内部连线(Interconnect)三个部分。FPGA的基本特点 1)采用FPGA设计ASIC电路(特定用途集成电路),用户不需要投片生产,就能得到合用的芯片。 2)FPGA可做其它全定制或半定制ASIC电路的中试样片。 3)FPGA内部有丰富的触发器和I/O引脚。 4)FPGA是ASIC电路中设计周期最短、开发费用最低、风险最小的器件之一。 5) FPGA采用高速CHMOS工艺,功耗低,可以与CMOS、TTL电平兼容。 可以说,FPGA芯片是小批量系统提高系统集成度、可靠性的最佳选择之一。 FPGA是由存放在片内RAM中的程序来设置其工作状态的,因此,工作时需要对片内的RAM进行编程。用户可以根据不同的配置模式,采用不同的编程方式。 加电时,FPGA芯片将EPROM中数据读入片内编程RAM中,配置完

qpsk调制解调——基于fpga

一实验概述 本实验包括:分频器设计、计数器设计、串行移位输出器设计、伪码发生器设计、QPSK I/Q调制器设计、QPSK I/Q解调器设计,基于选项法中频调制器设计并将其综合起来组成一个系统。 二实验仪器 计算机ALTER公司的Quartus8.0 EDA试验箱。 三EDA及实验工具简介 EDA技术就是以计算机为工具,设计者在EDA软件平台上,用硬件描述语言VHDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。EDA技术的出现,极提高了电路设计的效率和可操作性,减轻了设计者的劳动强度。从应用领域来看,EDA技术已经渗透到各行各业,如上文所说,包括在机械、电子、通信、航空航航天、化工、矿产、生物、医学、军事等各个领域,都有EDA应用。 quartus II 是Altera公司的综合性PLD开发软件,支持原理图、VHDL、VerilogHDL以及AHDL(Altera Hardware Description Language)等多种设计输入形式,嵌自有的综合器以及仿真器,可以完成从设计输入到硬件配置的完整PLD设计流程。quartus II可以在XP、Linux以及Unix上使用,除了可以使用Tcl脚本完成设计流程外,提供了完善的用户图形界面设计方式。具有运行速度快,界面统一,功能集中,易学易用等特点。Altera quartus II 作为一种可编程逻辑的设计环境, 由于其强大的设计能力和直观易用的接口,越来越受到数字

系统设计者的欢迎。 四 实验步骤及实验模块参数 (一)设计一个分频器,要求29 分频。 (二)设计计数器,计数值16。 (三)设计串行移位输出器,移位级数14。 (四)设计伪码发生器,伪码产生的数据数率要8Kb/s ,特征方程13 59+++x x x 。 (五)设计QPSK I/Q 调制器,调制载波288KHZ ,基带速率576KHZ ,系统时 钟4068KHZ 。 (六)设计QPSK I/Q 解调器,调制载波576KHZ ,基带速率288KHZ ,系统时钟4068KHZ 。 (七)设计选项法中频调制,调制载波是基带载波的16倍。 (八)设计中频调制对应的解调器,解调出I/Q 两路信号,并合成原始信号。 (九)系统综合,用模块构建整个系统,实现调制解调功能。 实验项目设计要求: 利用自己前列试验项目设计结果,构建如下框图所示的调制、解调系统。完成对下述系统的构建、调试、仿真,使之达到运行正确。 D

FPGA与ARM的关系

区别: ⒈我做个比喻吧,ARM呢就像是一个设计好的办公楼,那个部门负责什么事情都是定好的,你要做的就是合理调配部门资源合理搭配来完成你的目的。FPGA呢就是给你一大堆建筑材料和人员,你要它建成什么样子它就是什么样子 ⒉FPGA就像是一张白纸,里面可以写自己想要的逻辑,只要FPGA的逻辑门数够多,里面跑个ARM核还是很简单的。ARM是ASIC吧,专用芯片,只能使用。 ⒊DSP主要用做运算,如语音,图像等信号的运算处理,但基本不用做控制。 MCU,FPGA,ARM主要用做控制,MCU低价低功耗,但门限很少,结构简单,不能实现复杂控制。 ARM控制能力较强,但运算能力相对较弱。因此现在很多手持设备是用ARM+DSP来实现的,就是所谓的“双核心”。 FPGA可做复杂的逻辑控制,功能很强大。 ⒋单片机(MCU),又称为微控制器,在一块半导体芯片上集中了CPU,ROM,RAM,I/O Interface, timer/counter, interrupt system, 构成一台完整的数字计算机 ARM(Advanced RISC Machines)是微处理器行业的一家知名ARM企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。ARM架构是面向低预算市场设计的第一款RISC微处理器,基本是32位单片机的行业标准,它提供一系列内核、体系扩展、微处理器和系统芯片方案,四个功能模块可供生产厂商根据不同用户的要求来配置ARM生产。由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行。目前ARM在手持设备市场占有90以上的份额,可以有效地缩短应用程序开发与测试的时间,也降低了研发费用。这里有一篇介绍ARM结构体系发展介绍。 DSP(digital singnal processor)是一种独特的微处理器,有自己的完整指令系统,是以数字信号来处理大量信息的器件。一个数字信号处理器在一块不大的芯片内包括有控制单元、运算单元、各种寄存器以及一定数量的存储单元等等,在其外围还可以连接若干存储器,并可以与一定数量的外部设备互相通信,有软、硬件的全面功能,本身就是一个微型计算机。DSP采用的是哈佛设计,即数据总线和地址总线分开,使程序和数据分别存储在两个分开的空间,允许取指令和执行指令完全重叠。也就是说在执行上一条指令的同时就可取出下一条指令,并进行译码,这大大的提高了微处理器的速度。另外还允许在程序空间和数据空间之间进行传输,因为增加了器件的灵活性。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。由于它运算能力很强,速度很快,体积很小,而且采用软件编程具有高度的灵活性,因此为从事各种复杂的应用提供了一条有效途径。 FPGA既现场可编程门阵列:可由最终用户配置、实现许多复杂的逻辑功能的通用逻辑器件。常用于原型逻辑硬件设计。

CPLD与FPGA区别

CPLD和FPGA区别 可编程逻辑器件主要包括FPGA和CPLD,FPGA是Field Programmable Gate Array缩写,CPLD是Complex Promrammable Logic Device的缩写。 从可编程逻辑器件的发展历史上来讲,CPLD一般是指采用乘积相结构的基于EEPROM的器件,所以具 有非挥发的,不需要外部配置ROM,具有保密性和有限次编程次数(根据不同的结构,从100次到1万次不等)等特点,适合用在胶合逻辑(glue logic,如DSP芯片外围的译码逻辑),IO扩展,IO电平转换,FPGA 芯片配置等应用场合。如Altera的MAX7000和MAX3000系列芯片,Xilinx的XC9500和CoolRunner/II 系列芯片,Lattice的ispMACH4000/Z系列芯片都是CPLD器件,容量从32宏单元到512宏单元不等。 FPGA主要是指采用四输入查找表(LUT4)的基于SRAM的器件,因为SRAM是挥发的,掉电丢失数据, 所以FPGA需要外部配置ROM,上电的时候,从外部的ROM把FPGA的配置数据导入到FPGA芯片内部后工作。具有SRAM的FPGA采用标准的CMOS制造工艺,可以随着最新的工艺而更新还代,给用户带来了实惠;衡量FPGA容量的一个基本指标是逻辑单元(Logic cell或者Logic element),由一个可编程得LUT4和一个可编程的DFF组成,LUT4完成组合逻辑功能, 而DFF用来实现时序功能。FPGA的容量从几千的逻辑单元到几十万的逻辑单元不等。如Altera的Cyclone/II/III和Stratix/II/III系列芯片,Xilinx Spartan3/3E/3A/3AN和Virtex4/5系列芯片都是FPGA器件。 随着芯片技术的发展,CPLD和FPGA的概念已经模糊在一起,如Altera和Lattice公司把小容量(小于2K 左右逻辑单元)非挥发的可编程器件归到CPLD里,如Altera的MAXII系列和Lattice的MACH XO系列芯片,把基于SRAM的FPGA和FLASH的储存单元做到一个芯片里面,以及跟传统的CPLD不一样了; 总之,我们可以简单的区分FPGA和CPLD,CPLD:小容量(<2K左右LE)的非挥发的可编程器件;其它 的可编程器件都可归到FPGA。 系统的比较: 尽管FPGA和CPLD都是可编程ASIC器件,有很多共同特点,但由于CPLD和FPGA结 构上的差异,具有各自的特点: ①CPLD更适合完成各种算法和组合逻辑,FPGA更适合于完成时序逻辑。换句话说,FPGA更适合于触发器丰富的结构,而CPLD更适合于触发器有限而乘积项丰富的结构。 ②CPLD的连续式布线结构决定了它的时序延迟是均匀的和可预测的,而FPGA的分段式布线结 构决定了其延迟的不可预测性。 ③在编程上FPGA比CPLD具有更大的灵活性。CPLD通过修改具有固定内连电路的逻辑功能 来编程,FPGA主要通过改变内部连线的布线来编程;FPGA可在逻辑门下编程,而CPLD是在逻辑块下编程。 ④FPGA的集成度比CPLD高,具有更复杂的布线结构和逻辑实现。 ⑤CPLD比FPGA使用起来更方便。CPLD的编程采用E2PROM或FASTFLASH技术,无需外部存储器芯片,使用简单。而FPGA的编程信息需存放在外部存储器上,使用方法复杂。 ⑥CPLD的速度比FPGA快,并且具有较大的时间可预测性。这是由于FPGA是门级编程,并 且CLB之间采用分布式互联,而CPLD是逻辑块级编程,并且其逻辑块之间的互联是集总式的。

qpsk调制解调——基于fpga

一 实验概述 本实验包括:分频器设计、计数器设计、串行移位输出器设计、伪码发生器设计、QPSK I/Q 调制器设计、QPSK I/Q 解调器设计,基于选项法中频调制器设计并将其综合起来组成一个系统。 二 实验仪器 计算机ALTER 公司的Quartus8.0 EDA 试验箱。 三 EDA 及实验工具简介 EDA 技术就是以计算机为工具,设计者在EDA 软件平台上,用硬件描述语言VHDL 完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。EDA 技术的出现,极大地提高了电路设计的效率和可操作性,减轻了设计者的劳动强度。从应用领域来看,EDA 技术已经渗透到各行各业,如上文所说,包括在机械、电子、通信、航空航航天、化工、矿产、生物、医学、军事等各个领域,都有EDA 应用。 quartus II 是Altera 公司的综合性PLD 开发软件,支持原理图、VHDL 、VerilogHDL 以及AHDL (Altera Hardware Description Language )等多种设计输入形式,内嵌自有的综合器以及仿真器,可以完成从设计输入到硬件配置的完整PLD 设计流程。quartus II 可以在XP 、Linux 以及Unix 上使用,除了可以使用Tcl 脚本完成设计流程外,提供了完善的用户图形界面设计方式。具有运行速度快,界面统一,功能集中,易学易用等特点。Altera quartus II 作为一种可编程逻辑的设计环境, 由于其强大的设计能力和直观易用的接口,越来越受到数字系统设计者的欢迎。 四 实验步骤及实验模块参数 (一)设计一个分频器,要求29 分频。 (二)设计计数器,计数值16。 (三)设计串行移位输出器,移位级数14。 (四)设计伪码发生器,伪码产生的数据数率要8Kb/s ,特征方程13 59+++x x x 。 (五)设计QPSK I/Q 调制器,调制载波288KHZ ,基带速率576KHZ ,系统时 钟4068KHZ 。 (六)设计QPSK I/Q 解调器,调制载波576KHZ ,基带速率288KHZ ,系统时钟4068KHZ 。 (七)设计选项法中频调制,调制载波是基带载波的16倍。 (八)设计中频调制对应的解调器,解调出I/Q 两路信号,并合成原始信号。 (九)系统综合,用模块构建整个系统,实现调制解调功能。

FPGA、CPLD、ASIC、DSP、单片机的区别

1. FPGA FPGA(Field-Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。以硬件描述语言(Verilog或VHDL)所完成的电路设计,可以经过简单的综合与布局,快速的烧录至FPGA 上进行测试,是现代IC设计验证的技术主流。这些可编辑元件可以被用来实现一些基本的逻辑门电路(比如AND、OR、XOR、NOT)或者更复杂一些的组合功能比如解码器或数学方程式。在大多数的FPGA里面,这些可编辑的元件里也包含记忆元件例如触发器(Flip-flop)或者其他更加完整的记忆块。系统设计师可以根据需要通过可编辑的连接把FPGA内部的逻辑块连接起来,就好像一个电路试验板被放在了一个芯片里。一个出厂后的成品FPGA的逻辑块和连接可以按照设计者而改变,所以FPGA可以完成所需要的逻辑功能。 什么是FPGA? 简单来说,FPGA就是“可反复编程的逻辑器件”。FPGA取自 Field Programmable Gate Array的首个字母,代表现场(Field)可编程(Programmable)逻辑阵列(Gate Array)。 由于在产品发售后您仍然可以对产品设计作出修改,因此我们可以顺利地对产品进行更新以及针对新的协议标准作出相应改进。相对于对售后产品设计无法进行修改的ASIC和ASSP来说,这是FPGA特有的一个优势。由于FPGA 可编程的灵活性以及近年来科技的快速发展,FPGA也正向高集成,高性能,低功耗,低价格的方向发展,并具备了与ASIC和ASSP 同等的性能,被广泛地使用在各行各业的电子及通信设备里。 FPGA与CPLD的区别 尽管很多人听说过CPLD,但是关于CPLD与FPGA之间的区别,了解的人可能不是很多。虽然FPGA与CPLD都是“可反复编程的逻辑器件”,但是在技术上却有一些差异。简单地说,FPGA就是将CPLD的电路规模,功能,性能等方面强化之后的产物。 一般而言,CPLD与FPGA之间的区别的如下所示(当然也有例外)。

基于FPGA的QPSK调制解调电路设计与实现

基于FPGA的QPSK调制解调电路设计与实现 数字调制信号又称为键控信号,调制过程可用键控的方法由基带信号对载频信号的振幅、频率及相位进行调制,最基本的方法有3种:正交幅度调制(QAM)、频移键控(FSK)、相移键控(PSK).根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制).多进制数字调制与二进制相比,其频谱利用率更高.其中QPSK(即4PSK)是MPSK(多进制相移键控)中应用最广泛的一种调制方式。 1 QPSK简介 QPSK信号有00、01、10、11四种状态。所以,对输入的二进制序列,首先必须分组,每两位码元一组。然后根据组合情况,用载波的四种相位表征它们。QPSK信号实际上是两路正交双边带信号, 可由图1所示方法产生。 QPSK信号是两个正交的2PSK信号的合成,所以可仿照2PSK信号的相平解调法,用两个正交的相干载波分别检测A和B两个分量,然后还原成串行二进制数字信号,即可完成QPSK信号的解调,解调过程如图2所示。

图1 QPSK 信号调制原理图 图2 QPSK 信号解调原理图 2 QPSK 调制电路的FPGA 实现及仿真 2.1基于FPGA 的QPSK 调制电路方框图 基带信号通过串/并转换器得到2位并行信号,,四选一开关根据该数据,选择载波对应的相位进行输出,即得到调制信号,调制框图如图3所示。 基带信号clk start 串/并转换四选一开关 分 频 0°90°180°270° 调制信号 FPGA 图3 QPSK 调制电路框图 系统顶层框图如下

图中输入信号clk为调制模块时钟,start为调制模块的使能信号,x为基带信号,y是qpsk调制信号的输出端,carrier【3..0】为4种不同相位的载波,其相位非别为0、90、180、270度,锁相环模块用来进行相位调节,用来模拟通信系统中发送时钟与接收时钟的不同步start1为解调模块的使能信号。y2为解调信号的输出端。 2.2调制电路VHDL程序 程序说明 信号yy 载波相位载波波形载波符号 “00”0°f3 “01”90°f2 “10”180°f1 “11”270°f0

ARM、DSP、FPGA的特点和区别

ARM、DSP、FPGA的特点和区别 2008年05月09日星期五 16:33 ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。ARM架构是面向低预算市场设计的第一款RISC 微处理器,基本是32位单片机的行业标准,它提供一系列内核、体系扩展、微处理器和系统芯片方案,四个功能模块可供生产厂商根据不同用户的要求来配置生产。由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行。目前ARM在手持设备市场占有90以上的份额,可以有效地缩短应用程序开发与测试的时间,也降低了研发费用。 DSP(digital signal processor)是一种独特的微处理器,有自己的完整指令系统,是以数字信号来处理大量信息的器件。一个数字信号处理器在一块不大的芯片内包括有控制单元、运算单元、各种寄存器以及一定数量的存储单元等等,在其外围还可以连接若干存储器,并可以与一定数量的外部设备互相通信,有软、硬件的全面功能,本身就是一个微型计算机。DSP采用的是哈佛设计,即数据总线和地址总线分开,使程序和数据分别存储在两个分开的空间,允许取指令和执行指令完全重叠。也就是说在执行上一条指令的同时就可取出下一条指令,并进行译码,这大大的提高了微处理器的速度。另外还允许在程序空间和数据空间之间进行传输,因为增加了器件的灵活性。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。由于它运算能力很强,速度很快,体积很小,而且采用软件编程具有高度的灵活性,因此为从事各种复杂的应用提供了一条有效途径。根据数字信号处理的要求,DSP芯片一般具有如下主要特点: (1)在一个指令周期内可完成一次乘法和一次加法; (2)程序和数据空间分开,可以同时访问指令和数据; (3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问; (4)具有低开销或无开销循环及跳转的硬件支持; (5)快速的中断处理和硬件I/O支持; (6)具有在单周期内操作的多个硬件地址产生器; (7)可以并行执行多个操作; (8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。 当然,与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。 FPGA是英文Field Programmable Gate Array(现场可编程门阵列)的缩写,它是在PAL、

论文 基于FPGA的QPSK解调器的设计与实现

基于FPGA 的QPSK 解调器的设计与实现 Design and Realization of QPSK Demodulation Based on FPGA Technique 赵海潮(Zhao ,Haichao ) 周荣花(Zhou ,Ronghua ) 沈业兵(Shen ,Yebing ) 北京理工大学 (北京 100081) 摘要:根据软件无线电的思想,用可编程器件FPGA 实现了QPSK 解调,采用带通采样技术对中频为70MHz 的调制信号采样,通过对采样后的频谱进行分析,用相干解调方案实现了全数字解调。整个设计基于XILINX 公司的ISE 开发平台,并用Virtex-II 系列FPGA 实现。用FPGA 实现调制解调器具有体积小、功耗低、集成度高、可软件升级、扰干扰能力强的特点,符合未来通信技术发展的方向。 关键词:QPSK ;FPGA ;软件无线电;带通采样 中图分类号:TN91 文献标识码:A Abstract : This paper describes the design of QPSK demodulator based on the Xilinx's FPGA device. It is in accord with software radio, bandpass sampling and coherent demodulation techniques are used in the demodulation, and also make analysis with the spectrum. key words : QPSK ;FPGA ;software radio ;bandpass sampling 1、引言 四相相移键控信号简称“QPSK ”。它分为绝对相移和相对相移两种。由于绝对移相方式存在相位模糊问题,所以在实际中主要采用相对移相方式QDPSK 。它具有一系列独特的优点,目前已经广泛应用于无线通信中,成为现代通信中一种十分重要的调制解调方式。FPGA 器件是八十年代中期出现的一种新概念,是倍受现代数字系统设计工程师欢迎的新一代系统设计方式。FPGA 器件可反复编程,重复使用,没有前期投资风险,且可以在开发系统中直接进行系统仿真,也没有工艺实现的损耗。因此在小批量的产品开发、研究场合,成本很低。 本文按照软件无线电的设计思想,先进行计算机模拟仿真,具体实现中充分利用FPGA 的特点,并通过带通采样技术,成功的实现了对70MHz 中频QPSK 信号的解调。 2、解调器的设计与实现 在全数字实现QDPSK 解调的过程中,与AD 接口的前端需要很高的处理速度,但是这些处理的算法又比较简单,FPGA 器件独特的并行实时处理的特点刚好可以在这里得到体现,因此,ADC 以后的数字信号处理全部由FPGA 来实现。考虑到QDPSK 相干检测比差分检测有 2.3dB 功率增益,选择用相干解调算法实现解调。解调方框图如下: 图1解调框图 本文采用的解调方案是将AD 量化得到的数字信号)(n x 与NCO 产生的一对相互正交的本

FPGA和ARM和STM32和DSP区别

FPGA和ARM和STM32和DSP区别 2012-12-02|分享 越详细越好,谢谢大侠们 10分钟内有问必答前往下载 满意回答 1.FPGA:是可编程逻辑阵列,常用于处理高速数字信号,不过随着科技的发展,现在很多FPGA CPLD可以集成mcu内核,甚至具备了ARM DSP的功能 2.ARM,是一类内核的称谓,就像51一样,具体到芯片的话,会有很多不同的厂家不同等级,诸如三星、易法、飞利浦、摩托罗拉等等,其中STM32是易法半导体的一款面向工控低功耗内核为Cortex M3内核的ARM芯片 3.DSP顾名思义就是数字信号处理,厂家主要是德州仪器(TI)主要用于数字型号处理等对运算速度有特殊要求的场合,诸如音频视频算法,军工等领域,但同时dsp有2000 5000 6000等系列也可满足不场合需要! 其他想要了解,可以追问,相互探讨哈! 追问 他们主要的应用领域,那个应用广泛点呢 回答 应用领域的话 1.FPGA一般不会用来做复杂的系统,只用来做些简单的系统如状态机实现的自动售货机...展开>等,多少还是用来做信号的高速变换和处理,毕竟它只是可编程逻辑阵列。 2.ARM和DSP就各有千秋了; ARM的系列从V3 V5 V7 V9 XSCALE,从thumb指令到arm指令(thumb arm也可同时实现),可以说遍布机会所有的领域,只要你接的价格可以接受(其实许多arm并不是很贵的),单片机所有的功能基本他都能实现,我就不用举例子,特别是现在与各种RTOS结合更是开发方便功能强大。 DSP相对arm价格要贵些,这也是可能个体厂家使用较少的一个原因吧,2000系列主要用于工控特别是2812这个用的人比较多,5000 6000主要用于手持设备、PDA、通信等领域; DSP还有一个特色就是对一些特殊算法的支持如快速福利叶变换等,所以对运算速度有特殊要求的场合一般会选择DSP; DSP因其性能和功能比较好,还广泛用于军工领域!<收起

单片机、DSP、PLC、CPLD、FPGA、嵌入式的区别

所谓嵌入式,专指嵌入到其它系统内部,满足特定需求的专用计算机系统。它的概念非常广泛,只要是具有包含软硬件等计算机专有属性的系统都可以称之为嵌入式系统。 单片机是指把CPU、存储器、输入输出设备或接口集成到一片芯片内,加少量的外围电路就可以构成计算机系统的器件,目前常用的有MCS-51系列、PIC系列等器件,生产厂家很多、以8位、16位为主,一般没有操作系统,主要满足简单的控制需求。 目前以ARM为代表的32位CPU严格意义上说是一个单板机系统,可以加载Linux、WinCE等复杂的操作系统,可以满足复杂的需求。 PLC是可编程控制器,也是嵌入式系统的一种,但是一般用于电气控制,已经预制了很多程序,用梯形图等简单的编程语言就能构成系统。PLC价格昂贵、应用简单、容易上手,一般用来实现工业现场复杂情况下的控制,应用领域有限。 CPLD和FPGA以往大多用于可编程数字电路的实现,使数字电路设计趋于简单和可更改设计。这几年随之FPGA的发展,内部可以嵌入微控制器核,来构建SoC(System on Chip),但是开发难度相当大。 DSP的优势在于信号处理,运算能力强大,但控制能力一般,一般往往用于视频分析等需要进行信号复杂运算的场合。 DSP:数字信号处理器,处理器采用哈弗结构,工作频率较高,能大幅度提高数字信号处理算法的执行效率。 MCU:微控制器,主要用于控制系统,工作频率一般来说比DSP低,硬件上具有多个IO 端口,同时也集成了多个外设,主要是便于在控制系统中的应用。至于ARM处理器,个人认为是MCU的高级版本,ARM本身只是一个内核,目前已经有多个版本。 CPLD:复杂可编程逻辑器件 FPGA:现场可编程门阵列 后两者都是可编程器件,CPLD目前一半采用FLASH技术,而FPGA采用SRAM技术,这就决定了FPGA需要采用特定的配置技术。同时FPGA的规模要比CPLD大得多,但CPLD应用起来相对要简单的多

基于ARM和FPGA的高速数据采集卡的设计与实现 (1)

清华大学 硕士毕业论文报告 课程名称:嵌入式系统课程设计 专业班级:应用电子技术09201班 学生姓名:崔剑 指导教师:袁里弛 完成时间:2011年12月26日 报告成绩: 评阅意见: 评阅教师日期

目录 第一章系统设计方案和主要器件选型 (2) 1.1 系统设计方案 (2) 1.2 ADC芯片选型 (2) 1.3 DA芯片选型 (2) 1.4 FPGA芯片选型 (3) 1.5 主控CPU选型 (3) 第二章数据采集与触发电路设计 (4) 2.1 前端采集电路设计 (4) 2.2 触发电路与触发控制 (5) 2.3 SDRAM控制器设计 (6) 第三章各芯片间的数据传输与处理 (7) 3.1 采集卡各芯片速度等级的划分和数据流向 (7) 3.2 ARM与FPGA通信 (7) 3.3 数据的模拟输出 (8) 第四章设计总结 (13) 参考文献 (13) 附录1 ARM外围电路 (14) 附录2 FPGA外围电路 (15) 附录3 ARM读取显示程序 (20)

第一章 系统设计方案和主要器件选型 1.1 系统设计方案 整个系统是由前端模拟通道、触发电路、FPGA 数据采集预处理、数据模拟输出和ARM 数据处理显示五部分组成。FPGA 数据采集预处理分为A/D 数据采集、触发控制、帧控制、SDRAM 控制器和ARM 数据交换五个部分,模拟数据经过A/D 装换后在FPGA 中缓冲,缓冲之后使用触发控制将采集到的数据分成512个数据点组成的数据帧,数据按照帧的顺序传输,经过SDRAM 存储后,通过ARM 与FPGA 中的共享存储区传输给ARM 。具体的数据采集系统的硬件结构图如下图2-1所示: 图2-1 数据采集卡硬件结构图 1.2 ADC 芯片选型 A/D 转换器是整个采集系统的核心,系统前端模拟电压调理电路、FPGA 数据采集和后端的采集控制部分都与A/D 直接相关,A/D 芯片的选择不但关系到系统设计的性能,而且直接决定了整板设计的难度。 1.3 DA 芯片选型 为了输出高性能的模拟信号,DAC 采用采样率高达175M 的高速DAC 。AD970X 系列DAC 针对低功耗特性进行了优化,同时仍保持出色的动态性能,适合用于手持便携式仪器等需要有效地合成宽带信号的场合。AD9707 精度高达14位 ,采样率为175MSPS ,内部集成边沿触发式输入锁存器,1V 温度补偿带隙基准电压源和自校准功能,使AD9707能提供真14位INL 与DNL 性能。 FPGA AD ARM 模 拟通道 SDRAM PLL DA GPIO 触发电路GPIO 晶振 复位JTAG FLASH SDRAM LCD UART 数据总线控制线 配置线 模拟输入 模拟输出时钟 地址总线

认清CPLD和FPGA

认清CPLD和FPGA CPLD和FPGA都是我们经常会用到的器件。有的说有配置芯片的是FPGA,没有的是CPLD;有的说逻辑资源多的是FPGA,少的是CPLD;有的直接就不做区分,把他们都叫做FPGA。那么两者到底有什么区别呢?下面我们就以Altera公司的CPLD和FPGA为例来说说两者的区别。 首先我们看一下CPLD的芯片结构,搞清楚CPLD是由哪几部分组成的。下图是MAX 系列CPLD的芯片结构图: 从图中可以清楚的看出来CPLD主要由三部分组成:Macro cell(宏单元),PIA(可编程连线),和IO Control Block(IO控制块)。每个宏单元都与GCLK(全局时钟)OE(输出使 能)GCLR(清零)等控制信号直接相连,并且延时相同。各宏单元之间也由固定长度的金属线互连,这样保证逻辑电路的延时固定。其中宏单元模块是CPLD的逻辑功能实现单元,是器件的基本单元,我们设计的逻辑电路就是由宏单元具体实现的。下面我们再来看看宏单元的具体结构:

一个宏单元主要包括了LAB Local Array(逻辑阵列),Product-Term Select Matrix(乘积项选择矩阵)和一个可编程D触发器组成。其中逻辑阵列的每一个交叉点都可以通过编程实现导通从而实现与逻辑,乘积项选择矩阵可实现或逻辑。这两部分协同工作,就可以实现一个完整的组合逻辑。输出可以选择通过D触发器,也可以对触发器进行旁路。通过这个结构可以发现,CPLD非常适合实现组合逻辑,再配合后面的触发器也能够实现一定的时序逻辑。 我们再来以cyclone系列为例看看FPGA的内部结构:

ARM、DSP、FPGA的特点和区别

说明ARM、DSP、FPGA的异同点 3 ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。ARM架构是面向低预算市场设计的第一款RISC微处理器,基本是32位单片机的行业标准,它提供一系列内核、体系扩展、微处理器和系统芯片方案,四个功能模块可供生产厂商根据不同用户的要求来配置生产。由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行。目前ARM在手持设备市场占有90 以上的份额,可以有效地缩短应用程序开发与测试的时间,也降低了研发费用。 DSP(digital signal processor)是一种独特的微处理器,有自己的完整指令系统,是以数字信号来处理大量信息的器件。一个数字信号处理器在一块不大的芯片内包括有控制单元、运算单元、各种寄存器以及一定数量的存储单元等等,在其外围还可以连接若干存储器,并可以与一定数量的外部设备互相通信,有软、硬件的全面功能,本身就是一个微型计算机。DSP采用的是哈佛设计,即数据总线和地址总线分开,使程序和数据分别存储在两个分开的空间,允许取指令和执行指令完全重叠。也就是说在执行上一条指令的同时就可取出下一条指令,并进行译码,这大大的提高了微处理器的速度。另外还允许在程序空间和数据空间之间进行传输,因为增加了器件的灵活性。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。由于它运算能力很强,速度很快,体积很小,而且采用软件编程具有高度的灵活性,因此为从事各种复杂的应用提供了一条有效途径。 当然,与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。 FPGA是英文Field Programmable Gate Array(现场可编程门阵列)的缩写,它是在PAL、GAL、PLD等可编程器件的基础上进一步发展的产物,是专用集成电路(ASIC)中集成度最高的一种。FPGA采用了逻辑单元阵列LCA(Logic Cell Array)这样一个新概念,内部包括可配置逻辑模块CLB(Configurable Logic Block)、输出输入模块IOB (Input Output Block)和内部连线(Interconnect)三个部分。用户可对FPGA内部的逻辑模块和I/O模块重新配置,以实现用户的逻辑。它还具有静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改。作为专用集成电路(ASIC)领域中的一种半定制电路,FPGA既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。可以毫不夸张的讲,FPGA能完成任何数字器件的功能,上至高性能CPU,下至简单的74电路,都可以用FPGA来实现。FPGA如同一张白纸或是一堆积木,

ARM与FPGA通信

在数据采集卡中ARM主要负责数据显示和数据分析,处理的速度处于MS 级;而FPGA在系统中处于数据的高速采集和高速处理,处理的速度是ns级。两个处理器的之间的数据传输属于典型的异步数据通信,它们之间通信的速度之间决定了系统处理数据的效率。FPGA与ARM之间属于大量数据交换,以异步并行读取的方式为例介绍ARM与FPGA的通信,实际设计中使用DMA方式来实现ARM 与FPGA之间的大数据量通信。 ARM存储系统分析 S3C2410A存储控制器提供访问外部存储器所需要的存储器控制信号。 S3C2410A支持大、小端模式,将存储空间分为8个组(Bank),每组大小是128M,共计1GB,如图1所示。所有存储器组都可用于ROMA或者SRAM,Bank6、Bank7还可以用于SDRAM。所有内部块的访问周期都可编程。总线访问周期可以通过插入外部等待来延长,支持SDRAM的自刷新和掉电模式。Bank0~Bank6的开始地址是固定的,Bank7的开始地址是Bank6的结束地址,灵活可变,并且Bank7的大小与Bank6的大小必须相等。除Bank0外,其余各存储器的总线宽度可编程设置为8位、16位或者32位,但是Bank0只支持16位或者32位。Bank0作为引导ROM,地址映射到0x0000_0000。OM[1:0]是系统的引导模式控制引脚,在复位时,系统将检测OM[1:0]上的逻辑电平,并根据这个电平来决定Bank0区存储器的总线宽度。

图1 ARM存储单元分配图 在设计中ARM的bank0用于Nor Flash,bank6和bank7用于两块SDRAM,我们选择bank4作为FPGA内部RAM映射的空间。Bank4在ARM的统一基地址为0x20000000,后面的采集的数据都是基于这个地址为首地址的。

单片机,DSP和FPGA区别以及发展前景

单片机、dsp、FPGA/CPLD的分析、比较 硬件天地2009-02-15 11:54:39 阅读367 评论0 字号:大中小订阅 引言 信息技术正在快速发展,其应用已经深入到各个领域各个方面。如今越来越多的电子产品向着智能化、微型化、低功耗方向发展,其中有的产品还需要实时控制和信号处理。电子系统的复杂性在不断增加,它迫切要求电子设计技术也有相应的变革和飞跃。使用纯SSI 数字电路设计系统工作量大,灵活性低,而且系统可靠性差。广泛使用单片机(MCU) 设计系统克服了纯SSI 数字电路系统许多不可逾越的困难,是一个具有里程碑意义的飞跃。而DSP 以其极强的信号处理功能赢得了广阔的市场,得到了广泛地应用。近年来,PLD 器件迅速发展,尤其是CPLD/ FPGA 向深亚微米领域进军,PLD 器件得到了广泛应用,以CPLD/ FPGA 为物质基础的EDA 技术诞生了。它具有电子技术高度智能化、自动化的特点,打破了软硬件最后的屏障,使得硬件设计如同软件设计一样简单。它作为一种创新技术正在改变着数字系统的设计方法、设计过程和设计观念。单片机,DSP ,PLD/ EDA 以其各自的特点满足了各种需要,正从各个领域各个层面改变着世界,它们已经成为数字时代的核心动力,推动着信息技术的快速发展。 以下,我们将对单片机,DSP ,PLD/ EDA 分别加以介绍,并作比较和分析。 单片机 单片机是集成了CPU ,ROM ,RAM 和I/ O 口的微型计算机。它有很强的接口性能,非常适合于工业控制,因此又叫微控制器(MCU) 。它与通用处理器不同,它是以工业测控对象、环境、接口等特点出发,向着增强控制功能,提高工业环境下的可靠性、灵活方便地构成应用计算机系统的界面接口的方向发展。所以,单片机有着自己的特点。 品种齐全,型号多样 自从INTEL 推出51 系列单片机,许多公司对它做出改进,发展成为增强型51 系列,而且新的单片机类型也不断涌现。如MOTOROLA 和PHIL IPS 均有几十个系列,几百种产品。CPU 从8 ,16 ,32 到64 位,多采用RISC 技术,片上I/O 非常丰富,有的单片机集成有A/ D ,“看门狗”,PWM ,显示驱动,函数发生器,键盘控制等,它们的价格也高低不等,这样极大地满足了开发者的

相关主题