搜档网
当前位置:搜档网 › 基础实验五数据拟合与曲线拟合

基础实验五数据拟合与曲线拟合

基础实验五数据拟合与曲线拟合

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过 实验或观测得到量x与y的一组数据对(X i ,Y i )(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或 拟合已知数据。f(x,c)常称作拟合模型,式中c=(c 1,c 2 ,…c n )是一些待定参 数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

实验数据与曲线拟合

实验数据与曲线拟合 1. 曲线拟合 1. 曲线拟合的定义 2. 简单线性数据拟合的例子 2. 最小二乘法曲线拟合 1. 最小二乘法原理 2. 高斯消元法求解方程组 3. 最小二乘法解决速度与加速度实验 3. 三次样条曲线拟合 1. 插值函数 2. 样条函数的定义 3. 边界条件 4. 推导三次样条函数 5. 追赶法求解方程组 6. 三次样条曲线拟合算法实现 7. 三次样条曲线拟合的效果 4. 12.1 曲线拟合 5. 12.1.1 曲线拟合的定义 6. 曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐 标之间的函数关系,是一种用解析表达式逼近离散数据的方法。曲线拟合通俗的说法就是“拉曲线”,也就是将现有数据透过数学方法来代入一条数学方程式的表示方法。科学和工程遇到的很多问题,往往只能通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,如果能够找到一个连续的函数(也就是曲线)或者更加密集的离散方程,使得实验数据与方程的曲线能够在最大程度上近似吻合,就可以根据曲线方程对数据进行数学计算,对实验结果进行理论分析,甚至对某些不具备测量条件的位置的结果进行估算。 7. 12.1.2 简单线性数据拟合的例子 8. 回想一下中学物理课的“速度与加速度”实验:假设某物体正在做加速运动,加速度未知,某实验人员 从时间t0 = 3秒时刻开始,以1秒时间间隔对这个物体连续进行了12次测速,得到一组速度和时间的离散数据,请根据实验结果推算该物体的加速度。 9. 表 12 – 1 物体速度和时间的测量关系表 10. 在选择了合适的坐标刻度之后,我们就可以在坐标纸上画出这些点。如图12–1所示,排除偏差明显 偏大的测量值后,可以看出测量结果呈现典型的线性特征。沿着该线性特征画一条直线,使尽量多的测量点能够位于直线上,或与直线的偏差尽量小,这条直线就是我们根据测量结果拟合的速度与时间的函数关系。最后在坐标纸上测量出直线的斜率K,K就是被测物体的加速度,经过测量,我们实验测到的物体加速度值是1.48米/秒2。

曲线拟合与插值理论与实例

第11章曲线拟合与插值 在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。对这个问题有两种方法。在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。这种方法在下一节讨论。这里讨论的方法是曲线拟合或回归。人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。图11.1说明了这两种方法。标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。 11.1 曲线拟合 曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。数学上,称为多项式的最小二乘曲线拟合。如果这种描述使你混淆,再研究图11.1。虚线和标志的数据点之间的垂直距离是在该点的误差。对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。最小二乘这个术语仅仅是使误差平方和最小的省略说法。

图11.1 2阶曲线拟合 在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。 ? x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; ? y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; 为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常称为线性回归。相反,如果我们选择n=2作为阶次,得到一个2阶多项式。现在,我们选择一个2阶多项式。 ? n=2; % polynomial order ? p=polyfit(x, y, n) p = -9.8108 20.1293 -0.0317 polyfit的输出是一个多项式系数的行向量。其解是y = -9.8108x2+20.1293x-0.0317。为了将曲线拟合解与数据点比较,让我们把二者都绘成图。

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

数学建模实验报告

matlab 试验报告 姓名 学号 班级 问题:.(插值) 在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。 问题的分析和假设: 分析:本题利用插值法求出水深小于5英尺的区域,利用题中所给的数据,可以求出通过空间各点的三维曲面。随后,求出水深小于5英尺的范围。 基本假设:1表中的统计数据均真实可靠。 2矩形区域外的海域不对矩形海域造成影响。 符号规定:x ―――表示海域的横向位置 y ―――表示海域的纵向位置 z ―――表示海域的深度 建模: 1.输入插值基点数据。 2.在矩形区域(75,200)×(-50,150)作二维插值,运用三次插值法。 3.作海底曲面图。 4.作出水深小于5的海域范围,即z=5的等高线。 x y z 129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 x y z 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9

求解的Matlab程序代码: x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx=75:0.5:200; cy=-50:0.5:150; cz=griddata(x,y,z,cx,cy','cubic'); meshz(cx,cy,cz),rotate3d xlabel('X'),ylabel('Y'),zlabel('Z') %pause figure(2),contour(cx,cy,cz,[-5 -5]);grid hold on plot(x,y,'+') xlabel('X'),ylabel('Y') 计算结果与问题分析讨论: 运行结果: Figure1:海底曲面图:

数学建模实验报告(1)

四川师范大学数学与软件科学学院 实验报告 课程名称:数学建模 指导教师:陈东 班级:_2008级2班_____________ 学号:__2008060244___________ 姓名:___邢颖________ 总成绩:______________

数学与软件科学学院 实验报告 学期:_2009__ 年至2010 _年____ 第_ 二___ 学期 2010 年 4 月 1 _日 课程名称:_数学建模__ 专业:数学与应用数学____ 2008__ _级_ 2 ___班 实验编号: 1 实验项目_Matlab 入门_ 指导教师 陈东 姓名: 邢颖 ____ 学号: 2008060244 一、实验目的及要求 实验目的: 实验要求: 二、实验内容 (1)用起泡法对10个数由小到大排序. 即将相邻两个数比较,将小的调到前头. (2)有一个 4*5 矩阵,编程求出其最大值及其所处的位置. (3)编程求 (4)一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下. 求它在第10次落地时,共经过多少米?第10次反弹有多高? (5)有一函数 ,写一程序,输入自变量的值,输出函数值. 三、实验步骤(该部分不够填写.请填写附页) (2) x=[1 6 2 7 6;4 6 1 3 2;1 2 3 4 7;8 1 4 6 3]; t=x(1,1); for i=1:4 for j=1:5 if x(i,j)>t t=x(i,j); a=[i,j]; end ∑=20 1! n n y xy x y x f 2sin ),(2 ++=

end end (3)程序1: x(1)=1; s=1; for n=2:20 x(n)=x(n-1)*n; s=s+x(n); end s 程序2; s=0,m=1; for n=2:20; m=m*n; s=s+m; end s 结果:s = 2.5613e+018 (4)程序 s=100 h=s/2 for n=2:10 s=s+2*h h=h/2 end s,h 结果:s = 299.6094 h = 0.0977 (5)程序: function f=fun1(x,y) f=x^2+sin(x*y)+2*y

matlab曲线拟合实例

曲线拟合 求二次拟合多项式 解:(一)最小二乘法MA TLAB编程: function p=least_squar(x,y,n,w) if nargin<4 w=1 end if nargin<3 n=1 end m=length(y); X=ones(1,m) if m<=n error end for i=1:n X=[(x.^i);X] end A=X*diag(w)*X';b=X*(w.*y)';p=(A\b)' 输入: x=[1 3 5 6 7 8 9 10]; y=[10 5 2 1 1 2 3 4] p=least_squar(x,y,2) 运行得: p = 0.2763 -3.6800 13.4320 故所求多项式为:s(x)=13.432-3.68x+0.27632x (二)正交多项式拟合MATLAB编程: function p=least_squar2(x,y,n,w) if nargin<4 w=1; end if nargin<3 n=1; end m=length(x); X=ones(1,m); if m<=n error end for i=1:n X=[x.^i;X]; end A=zeros(1,n+1);

A(1,n+1)=1; a=zeros(1,n+1); z=zeros(1,n+1); for i=1:n phi=A(i,:)*X;t=sum(w.*phi.*phi); b=-sum(w.*phi.*x.*phi)/t a(i)=sum(w.*y.*phi)/t; if i==1 c=0;else c=-t/t1; end t1=t for j=1:n z(j)=A(i,j+1); end z(n+1)=0 if i==1 z=z+b*A(i,:); else z=z+b*A(i,:)+c*A(i-1,:); end A=[A;z]; end phi=A(n+1,:)*X;t=sum(w.*phi.*phi); a(n+1)=sum(w.*y.*phi)/t; p=a*A; 输入: x=[1 3 5 6 7 8 9 10]; y=[10 5 2 1 1 2 3 4]; p=least_squar2(x,y,2) 运行得: b = -6.1250 t1 = 8 z = 0 1 0 b = -4.9328 t1 = 64.8750 z = 1.0000 -6.1250 0 p = 0.2763 -3.6800 13.4320 故所求多项式为:s(x)=13.432-3.68x+0.27632x

实验数据曲线拟合方法研究

本科毕业设计论文题目实验数据曲线拟合方法研究 专业名称 学生姓名 指导教师 毕业时间

毕业 一、题目 实验数据曲线拟合方法研究 二、指导思想和目的要求 通过毕业设计,使学生对所学自动控制原理、现代控制原理、控制系统仿真、电子技术等的基本理论和基本知识加深理解和应用;培养学生设计计算、数据处理、文件编辑、文字表达、文献查阅、计算机应用、工具书使用等基本事件能力以及外文资料的阅读和翻译技能;掌握常用的实验数据曲线拟合方法,培养创新意识,增强动手能力,为今后的工作打下一定的理论和实践基础。 要求认真复习有关基础理论和技术知识,认真对待每一个设计环节,全身心投入,认真查阅资料,仔细分析被控对象的工作原理、特性和控制要求,按计划完成毕业设计各阶段的任务,重视理论联系实际,写好毕业论文。 三、主要技术指标 设计系统满足以下要求: 数据拟合误差要尽量的小的同时保证曲线的线形形状最佳。 四、进度和要求 1、搜集中、英文资料,完成相关英文文献的翻译工作,明确本课题的国内外研 究现状及研究意义;(第1、2周) 2、撰写开题报告;(第 3、4周) 3、应用最小二乘法进行曲线拟合;(第5、6周) 4、应用Matlab命令曲线拟合;(第7、8周) 5、应用Matlab图形用户界面曲线拟合;(第9、10周) 6、研究其他曲线拟合方法;(第11周) 7、整理资料撰写毕业论文; (1)初稿;(第12、13周)(2)二稿;(第14周)

8、准备答辩和答辩。(第15周) 五、主要参考书及参考资料 [1]卢京潮,《自动控制原理》,西北工业大学出版社,2010.6 [2]胡寿松,《自动控制原理》,科学出版社,2008,6 [3]薛定宇,陈阳泉,《系统仿真技术与应用》,清华大学出版社,2004.4 [4]王正林,《Matlab/Simulink与控制系统仿真》,电子工业出版社,2009.7 [5]李桂成,《计算方法》,电子工业出版社,2013.8 [6]蒋建飞,胡良剑,唐俭.数值分析及其Matlab实验【M】.北京:科学出版社,2008 学生指导教师系主任

数学建模迭代实验报告(新)

非 线 性 迭 代 实 验 报 告 一、实验背景与实验目的 迭代是数学研究中的一个非常重要的工具,通过函数或向量函数由初始结点生成迭代结点列,也可通过函数或向量函数由初值(向量)生成迭代数列或向量列。 蛛网图也是一个有用的数学工具,可以帮助理解通过一元函数由初值生成的迭代数列的敛散性,也帮助理解平衡点(两平面曲线交点)的稳定性。 本实验在Mathematica 平台上首先利用蛛网图和迭代数列研究不动点的类型;其次通过蛛网图和迭代数列研究Logistic 映射,探索周期点的性质、认识混沌现象;第三通过迭代数列或向量列求解方程(组)而寻求有效的求解方法;最后,利用结点迭代探索分形的性质。 二、实验材料 2.1迭代序列与不动点 给定实数域上光滑的实值函数)(x f 以及初值0x ,定义数列 )(1n n x f x =+, ,2,1,0=n (2.2.1) }{n x 称为)(x f 的一个迭代序列。 函数的迭代是数学研究中的一个非常重要的思想工具,利用迭代序列可以研究函数)(x f 的不动点。 对函数的迭代过程,我们可以用几何图象来直观地显示它——“蜘蛛网”。运行下列Mathematica 程序: Clear[f] f[x_] := (25*x - 85)/(x + 3); (实验时需改变函数) Solve[f[x]==x , x] (求出函数的不动点) g1=Plot[f[x], {x, -10, 20}, PlotStyle -> RGBColor[1, 0, 0], DisplayFunction -> Identity]; g2=Plot[x, {x, -10, 10}, PlotStyle -> RGBColor[0, 1, 0], DisplayFunction -> Identity]; x0=5.5; r = {}; r0=Graphics[{RGBColor[0, 0, 1], Line[{{x0, 0}, {x0, x0}}]}]; For[i = 1, i <= 100, i++, r=Append[r, Graphics[{RGBColor[0, 0, 1], Line[{{x0, x0}, {x0, f[x0]}, {f[x0], f[x0]}}] }]]; x0=f[x0] ]; Show[g1, g2, r, r0, PlotRange -> {-1, 20}, (PlotRange 控制图形上下范围) DisplayFunction -> $DisplayFunction] x[0]=x0; x[i_]:=f[x[i-1]]; (定义序列) t=Table[x[i],{i,1,10}]//N ListPlot[t] (散点图) 观察蜘蛛网通过改变初值,你能得出什么结论? 如果只需迭代n 次产生相应的序列,用下列Mathematica 程序: Iterate[f_,x0_,n_Integer]:= Module[{ t={},temp= x0},AppendTo[t,temp]; For[i=1,i <= n, i++,temp= f[temp]; AppendTo[t,temp]]; t ] f[x_]:= (x+ 2/x)/2; Iterate[f,0.7,10]

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程 最小二乘法曲线拟合的应用实例 班级: 姓名: 学号: 指导教师:

一,实验目的 通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法 二,实验内容 1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。要求: 对该数据进行合理的最小二乘法数据拟合得下列数据。 x=[10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 2 0000 21000 22000 23000]; y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 65.8 87.5 137.8 174. 2] 三,程序如下 X=10000:1000:23000; Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,65.8,87.5,137.8,17 4.2] dy=1.5; %拟合数据y的步长for n=1:6 [a,S]=polyfit(x,y,n); A{n}=a;

da=dy*sqrt(diag(inv(S.R′*S.R))); Da{n}=da′; freedom(n)=S.df; [ye,delta]=polyval(a,x,S); YE{n}=ye; D{n}=delta; chi2(n)=sum((y-ye).^2)/dy/dy; end Q=1-chi2cdf(chi2,freedom); %判断拟合良好度 clf,shg subplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’) subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’) nod=input(‘根据图形选择适当的阶次(请输入数值)’); elf,shg, plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’); axis([8000,23000,20.0,174.2]);hold on errorbar(x,YE{nod},D{nod},‘r’);hold off title(‘较适当阶次的拟合’) text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])

实验6 曲线拟合与数据分析

实验6 曲线拟合与数据分析 【实验目的】 1.掌握利用Origin进行(非)线性拟合的方法。 2.掌握如何由自定义函数对数据拟合。 3.掌握利用Origin对数据进行插值与外推。 4.掌握如何实现重叠图形的分离。 实验6.1非线性拟合 【实验内容】 1.利用安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Polynomial Fit.dat数据文件进行二次 多项式拟合,拟合结果如下图。 图6- 1二次多项式拟合结果 2.利用安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Gaussian.dat文件进行非线性拟合, 拟合结果如下图 图6- 2非线性拟合结果 3.分析分析报表,评估上面两题的拟合效果。 【实验步骤】 1)多项式拟合

1. 导入数据,通过【File 】→【Import 】命令打开安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Polynomial Fit.dat 文件。 2. 选中A 、B 列数据,生成散点图。 3. 通过【Analysis 】→【Fitting 】→【Fit Polynomial 】命令打开Polynomial Fit 对话框。 图6- 3多项式拟合对话框 4. 如图6-3示,输入输出数据关系Recalculate 选为Manual ,多项式次数Polynomial Order 设置为2。 单击OK 即可得6-1结果。 2) 非线性拟合 1. 导入数据,通过【File 】→【Import 】命令打开安装目录中的D:\OriginLab\Origin8\Samples\Curve Fitting\ Gaussian.dat 文件。 2. 选中A 、B 列数据,生成散点图。 3. 通过【Analysis 】→【Fitting 】→【NonLinear Curve Fit 】命令打开NLFit 对话框。 4. 如图6-4示,拟合函数选择Gauss 函数,单击OK ,得6-2所示结果。 图6- 4非线性拟合对话框 实验6.2自定义函数拟合 【实验内容】 1. 有自定义函数 0bx y y ae =+ 利用安装目录D:\OriginLab\Origin8\Samples\Curve Fitting 下的Exponential Decay.dat 数据文件拟合出函数参数y0,a,b 。

数模实验报告

数学建模与实验实验报告 姓名:李明波 院系:仪器科学与工程学院 学号:22013108 老师:王峰

数学建模与实验实验报告 实验一 实验题目 (1)已知某平原地区的一条公路经过如下坐标所示的点,请采用样条插值绘出这条公路(不考虑 (2)对于上表给出的数据,估计公路长度。 实验过程 (1)第一问代码如下: X=[0,30,50,70,80,90,120,148,170,180,202,212,230,248,268,271,280,290,300,312,320,340,3 60,372,382,390,416,430,478]; Y=[80,64,47,42,48,66,80,120,121,138,160,182,200,208,212,210,200,196,188,186,200,184,1 88,200,202,240,246,280,296]; %给出坐标点 xx=0:1:478;%选取0~478内的点 yy=spline(X,Y,xx);%样条插值法找出曲线 plot(X,Y, 'p ',xx,yy, 'g ');%绘出曲线图 x=[440,420,380,360,340,320,314,280,240,200]; y=[308,334,328,334,346,356,360,392,390,400]; hold on xy=440:-1:200; yx=spline(x,y,xy); plot(x,y, 'p ',xy,yx, 'g '); 运行上述代码得到结果如下:

上图为所绘公路图 (2)代码如下: X=[0 30 50 70 80 90 120 148 170 180 202 212 230 248 268 271 280 290 300 312 320 340 360 372 382 390 416 430 478 440 420 380 360 340 320 314 280 240 200]; Y=[80 64 47 42 48 66 80 120 121 138 160 182 200 208 212 210 200 196 188 186 200 184 188 200 202 240 246 280 296 308 334 328 334 346 356 360 392 390 400]; for k=1:length(X)-1 len(k)=sqrt((X(k+1)-X(k))^2+(Y(k+1)-Y(k))^2); end; Len=sum(len);Len 运行得到结果如下: 即公路长为967.46米。

数学建模-实验报告11

《数学建模实验》实验报告 学号:______ 姓名: 实验十一:微分方程建模2 一只小船渡过宽为d的河流,目标是起点A 正对着的另一岸B点,已知河水流速w 与船在静水中的速度V2之比为k. 1?建立小船航线的方程,求其解析解; 2. 设d=100m,v i=1m/s,v2=2m/s,用数值解法求渡河所需时间、任意时刻小船的位置及航行曲线,作图,并与解析解比较。 一、问题重述 我们建立数学模型的任务有: 1. 由已给定的船速、水速以及河宽求出渡河的轨迹方程; 2. 已知船速、水速、河宽,求在任意时刻船的位置以及渡船所需要的时间。 二、问题分析 此题是一道小船渡河物理应用题,为典型的常微分方程模型,问题中船速、水速、河宽已经给定,由速度、时间、位移的关系,我们容易得到小船的轨迹方程,同时小船的起点和终点已经确定,给我们的常微分方程模型提供了初始条件。 三、模型假设 1?假设小船与河水的速度恒为定值v「V2 ,不考虑人为因素及各种自然原因; 2. 小船行驶的路线为连续曲线,起点为A,终点为B ; 3. 船在行驶过程中始终向着B点前进,即船速v2始终指向B ; 4. 该段河流为理想直段,水速w与河岸始终保持平行。 四、模型建立 y | B A 兀、 % \ * r v A X 如图,以A为原点,以沿河岸向右方向为x轴正向,以垂直河岸到B端方向为y轴正向建立平面直角坐标系。其中河水流速为v i,小船速度为V2,且w:v2 k,合速度为v,河宽为d,为72与直线AB的夹角。

V x V y 在t 时刻, 船 dx dt V i 小船在x 轴方向的位移为 x v 2 sin v 2 cos V i V 2 0,x(0) 0, y(0) ;(d y) 0. \ (d y) d y ______ 2 2 ' x dy v 2 cos 由(2)/(1)得到dx y(0) v-1 v 2 sin 0. dx In (2) (i )题 dx 对上式求倒数得 dx dy x ,在y 轴方向上的位移为y ,则t 时刻, 方向 的速度 模型求解 v 2 sin V 1 v 2 co s —, 则上式可化为 dx d y dy d ?dp pdy ydp ,代入上式, k J p 2 整理,得 P 2 | ln| d Cy | 也就是 x 2 (d y )2 y P (d y ) dp P 2 kdy ,积分可得 y C k ( ------- )k ,代入 d y x d y d y 2 0, y 0 d k (d y )k (d y )k d k (见附 录) ,对该情况下的微分方程的数值解进行分 60.0000 6.5451 98.2803 60.1000 6.4519 98.3319 60.2000 6.3585 98.3827 60.3000 6.2649 98.4327 60.4000 6.1711 98.4819 60.5000 6.0771 98.5304 60.6000 5.9829 98.5782 60.7000 5.8886 98.6251 60.8000 5.7940 98.6713 60.9000 5.6993 98.7168 61.0000 5.6043 98.7615 61.1000 5.5092 98.8054 题 由初始条件,设计程序 析,结果如下(省略了前60s 的数据):

1、曲线拟合及其应用综述

曲线拟合及其应用综述 摘要:本文首先分析了曲线拟合方法的背景及在各个领域中的应用,然后详细介绍了曲线拟合方法的基本原理及实现方法,并结合一个具体实例,分析了曲线拟合方法在柴油机故障诊断中的应用,最后对全文内容进行了总结,并对曲线拟合方法的发展进行了思考和展望。 关键词:曲线拟合最小二乘法故障模式识别柴油机故障诊断 1背景及应用 在科学技术的许多领域中,常常需要根据实际测试所得到的一系列数据,求出它们的函数关系。理论上讲,可以根据插值原则构造n 次多项式Pn(x),使得Pn(x)在各测试点的数据正好通过实测点。可是, 在一般情况下,我们为了尽量反映实际情况而采集了很多样点,造成了插值多项式Pn(x)的次数很高,这不仅增大了计算量,而且影响了函数的逼近程度;再就是由于插值多项式经过每一实测样点,这样就会保留测量误差,从而影响逼近函数的精度,不易反映实际的函数关系。因此,我们一般根据已知实际测试样点,找出被测试量之间的函数关系,使得找出的近似函数曲线能够充分反映实际测试量之间的关系,这就是曲线拟合。 曲线拟合技术在图像处理、逆向工程、计算机辅助设计以及测试数据的处理显示及故障模式诊断等领域中都得到了广泛的应用。 2 基本原理 2.1 曲线拟合的定义 解决曲线拟合问题常用的方法有很多,总体上可以分为两大类:一类是有理论模型的曲线拟合,也就是由与数据的背景资料规律相适应的解析表达式约束的曲线拟合;另一类是无理论模型的曲线拟合,也就是由几何方法或神经网络的拓扑结构确定数据关系的曲线拟合。 2.2 曲线拟合的方法 解决曲线拟合问题常用的方法有很多,总体上可以分为两大类:一类是有理论模型的曲线拟合,也就是由与数据的背景资料规律相适应的解析表达式约束的曲线拟合;另一类是无理论模型的曲线拟合,也就是由几何方法或神经网络的拓扑结构确定数据关系的曲线拟合。 2.2.1 有理论模型的曲线拟合 有理论模型的曲线拟合适用于处理有一定背景资料、规律性较强的拟合问题。通过实验或者观测得到的数据对(x i,y i)(i=1,2, …,n),可以用与背景资料规律相适应的解析表达式y=f(x,c)来反映x、y之间的依赖关系,y=f(x,c)称为拟合的理论模型,式中c=c0,c1,…c n是待定参数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的方法是最小二乘法。 2.2.1.1 线性模型的曲线拟合 线性模型中与背景资料相适应的解析表达式为: ε β β+ + =x y 1 (1) 式中,β0,β1未知参数,ε服从N(0,σ2)。 将n个实验点分别带入表达式(1)得到: i i i x yε β β+ + = 1 (2) 式中i=1,2,…n,ε1, ε2,…, εn相互独立并且服从N(0,σ2)。 根据最小二乘原理,拟合得到的参数应使曲线与试验点之间的误差的平方和达到最小,也就是使如下的目标函数达到最小: 2 1 1 ) ( i i n i i x y Jε β β- - - =∑ = (3) 将试验点数据点入之后,求目标函数的最大值问题就变成了求取使目标函数对待求参数的偏导数为零时的参数值问题,即: ) ( 2 1 1 = - - - - = ? ?∑ = i i n i i x y J ε β β β (4)

数学建模实验报告

内江师范学院 中学数学建模 实验报告册 编制数学建模组审定牟廉明 专业: 班级:级班 学号: 姓名: 数学与信息科学学院 2016年3月 说明 1.学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告; 2.要求学生要认真做实验,主要就是指不得迟到、早退与旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验成绩不合格; 3.学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求与目的,不得抄袭她人的实验报告; 4.实验成绩评定分为优秀、合格、不合格,实验只就是对学生的动手能力进

行考核,跟据所做的的情况酌情给分。根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定。

实验名称:数学规划模型(实验一)指导教师: 实验时数: 4 实验设备:安装了VC++、mathematica、matlab的计算机 实验日期:年月日实验地点: 实验目的: 掌握优化问题的建模思想与方法,熟悉优化问题的软件实现。 实验准备: 1.在开始本实验之前,请回顾教科书的相关内容; 2.需要一台准备安装Windows XP Professional操作系统与装有数学软件的计算机。 实验内容及要求 原料钢管每根17米,客户需求4米50根,6米20根,8米15根,如何下料最节省?若客户增加需求:5米10根,由于采用不同切割模式太多,会增加生产与管理成本,规定切割模式不能超过3种,如何下料最节省? 实验过程: 摘要:生活中我们常常遇到对原材料进行加工、切割、裁剪的问题,将原材料加工成所需大小的过程,称为原料下料问题。按工艺要求,确定下料方案,使用料最省,或利润最大就是典型的优化问题。以此次钢管下料问题我们采用数学中的线性规划模型、对模型进行了合理的理论证明与推导,然后借助于解决线性规划的专业软件Lingo 11、0对题目所提供的数据进行计算从而得出最优解。 关键词:钢管下料、线性规划、最优解 问题一 一、问题分析: (1)我们要分析应该怎样去切割才能满足客户的需要而且又能使得所用原料比较少; (2)我们要去确定应该怎样去切割才就是比较合理的,我们切割时要保证使用原料的较少 的前提下又能保证浪费得比较少; (3)由题意我们易得一根长为17米的原料钢管可以分别切割成如下6种情况(如表一): 表一:切割模式表 模式 4m钢管根数 6m钢管根数8m钢管根数余料/m 1 4 0 0 1 2 1 2 0 1 3 2 0 1 1 4 2 1 0 3 5 0 1 1 3 6 0 0 2 1

相关主题