搜档网
当前位置:搜档网 › 定量叶片泵设计与计算

定量叶片泵设计与计算

定量叶片泵设计与计算
定量叶片泵设计与计算

1 双作用叶片泵简介

1.1双作用叶片泵组成结构

组成结构:定子、转子、叶片、配油盘、传动轴、壳体等

1.2 双作用叶片泵工作原理

图3-19 双作用叶片泵工作原理

1-定子 2-压油口 3-转子 4-叶片 5-吸油口

图1-1 双作用叶片泵工作原理 Fig 1-1 Double-acting vane pump principle of work 1—定子;2—吸油口;3—转子;4—叶片;5—压油口

如图1-1所示。它的作用原理和单作用叶片泵相似,不同之处只在于定子表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线八个部分组成,且定子和转子是同心的。在图示转子顺时针方向旋转的情况下,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区把它们隔开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的液压力径向平衡,所以又称为平衡式叶片泵。

定子表面近似为椭圆柱形,该椭圆形由两段长半径R 、两段短半径r 和四段过渡曲线所组成。当转子转动时,叶片在离心力和建压后>根部压力油的作用下,

在转子槽作径向移动而压向定子表,由叶片、定子的表面、转子的外表面和两侧配油盘间形成若干个密封空间,当转子按图示方向旋转时,处在小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,叶片外伸,密封空间的容积增大,要吸入油液;再从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子壁逐渐压进槽,密封空间容积变小,将油液从压油口压出,因而,当转子每转一周,每个工作空间要完成两次吸油和压油,所以称之为双作用叶片泵,这种叶片泵由于有两个吸油腔和两个压油腔,并且各自的中心夹角是对称的,所以作用在转子上的油液压力相互平衡,因此双作用叶片泵又称为卸荷式叶片泵,为了要使径向力完全平衡,密封空间数即叶片数>应当是双数。

1.3 双作用叶片泵结构特点

1>双作用叶片泵的转子与定子同心;

2>双作用叶片泵的定子表面由两段大圆弧、两段小圆弧和四段定子过渡曲

线组成;

3>双作用叶片泵的圆周上有两个压油腔、两个吸油腔,转子每转一转,吸、压油各两次双作用式>。

4>双作用叶片泵的吸、压油口对称,转子轴和轴承的径向液压作用力基本平衡;即径向力平衡卸荷式>。

5>双作用叶片泵的所有叶片根部均由压油腔引入高压油,使叶片顶部可靠地与定子表面密切接触。

6>传统双作用叶片泵的叶片通常倾斜安放,叶片倾斜方向与转子径向辐射线成倾角θ,且倾斜方向不同于单作用叶片泵,而沿旋转方向前倾,用于改善叶片的受力情况,最近观点认为倾角为0最佳。

1.4 双作用叶片泵排量和流量计算

图3-20 双作用叶片泵的流量计算

1-转子 2-叶片 3-定子

图1-2 双作用叶片泵的流量计算 1-转子 2-叶片 3-定子

如图1-2所示,泵的排量为

())()2/(22221r R B Z V V V p -=-=π (1-1)

式中 R ——定子表面长圆弧半径;

r ——定子表面短圆弧半径;

B ——转子或叶片宽度;

Z ——叶片数。

若叶片厚度为δ,且倾斜θ角安装,则它在槽往复运动时造成叶片泵的排量损失为

θπδθπδcos )(cos 2)(2Z r R B Z r R B -=-

双作用叶片泵的真正排量为

??????-+-=θπδcos )()(Z r R r R B V )/(3rad m (1-2)

泵的实际流量为

pv pv Z r R r R B V q ωηθπδηω??????-+-=??=cos )()(

)/(3s m (1-3)

2 双作用叶片泵设计原始参数设计原始参数:

额定排量:9.0/

=

q ml r

额定压力:7.0

=

p MPa

额定转速:1450/min

=

n r

3 设计方案分析与选定

3.1 设计总体思路

本设计为定量叶片泵的设计,叶片泵实现定量可以是定心的单作用叶片泵和双作用叶片泵,此处选择双作用叶片泵进行设计。以双作用叶片泵本身的结构特点实现定量,并参考YB型叶片泵结构,结合现有新技术和新观点进行双作用叶片泵的设计。

3.2泵体结构方案分析与选定

本设计为单级双作用叶片泵,它分为单级圆形平衡式叶片泵和单级方形平衡式叶片泵两种类型。

3.2.1圆形叶片泵

圆形叶片泵的主要结构特点和存在问题:

1>采用固定侧板,转子侧面与侧板之间的间隙不能自动补偿,高压时泄漏严重。只能工作在7.0MPa以下的中、低压。

2>进、出油道都铸造在泵体称为暗油道>,铸造清沙困难。而且油道狭窄,高转速时由于流速过快,流动阻力大,容易出现吸空和气蚀。

3>侧板与转子均带耳轴,虽然支承定心较好,但毛坯费料,加工不方便。这种结构装配时对后泵盖联接螺钉拧紧扭矩的均匀性要求很严,否则容易导致侧板和转子的倾侧,使侧板与转子端面的轴向间隙不均匀,造成局部磨损。

3.2.2方形叶片泵

方形叶片泵主要结构特点与圆形叶片泵相比,主要有以下改进:

1>简化了结构,在同等排量的情况下,外形尺寸和重量比圆形泵大大减小。

2>取梢转子和侧板的耳轴,改善了加工工艺性,而且可节省毛坯材料。装配时即使泵盖四个螺栓的拧紧力矩不很均匀,也不致影响侧板与转子端面的均匀密合。

3>采用浮动压力侧板,提高了容积效率和工作压力。

4>进油道设在泵体,排油道设在泵盖,均为开式油道,不仅铸造方便,而且油道通畅,即使高转速工作时流动阻力也较小.

5>传动釉输入端一侧的支承较强,能够承受径向载荷,允许用皮带或齿轮直接驱动,有一定的耐冲击和振动能力。

3.2.3 方案选定

综上所述,方形叶片泵具有结构紧凑,体积小,能够适应高转速和较高压力工作,耐冲击、振动能力较强等特点,因此特别适用于工程车辆液压系统。加之其加工工艺性也比圆形泵优越得多,所以在一般工业机械上也获得广泛应用,已逐步取代圆形泵。

综合考虑以上因素选定方形叶片泵为本设计的叶片泵类型。

3.3 叶片倾斜角方案分析选定

3.3.1 叶片倾角对叶片受力的影响

图3-1 叶片顶端受力分解

YB型叶片泵设计说明

目录 1概述 (1) 2 YB型叶片泵的基本状况 (3) 2.1叶片泵的构成和优缺点 (3) 2.2 YB型叶片泵的工作原理 (4) 2.3双作用叶片泵的理论排量和瞬时流量 (4) 3叶片泵的设计方案 (7) 3.1泵体结构 (7) 3.2叶片倾斜角方案 (8) 3.2.1 叶片的受力分析 (8) 3.3定子过渡曲线方案 (10) 4 双作用叶片泵主要参数的计算 (11) 4.1流量计算 (11) 4.1.1 理论流量 (11) 4.1.2 实际流量 (11) 4.2扭矩计算 (11) 4.2.1 理论扭矩 (11) 4.2.2 实际扭矩 (12) 4.3功率计算 (12)

4.3.1 输入功率轴功率 (12) 4.3.2 实际输出功率 (12) 5 双作用叶片泵结构设计 (13) 5.1转子 (13) 5.1.1 转子半径 (13) 5.1.2 转子轴向宽度 (14) 5.1.3 转子相关结构尺寸 (14) 5.2叶片设计 (16) 5.1.1 叶片数 (16) 5.2.2 叶片安放角 (17) 5.2.3 叶片的厚度 (17) 5.2.4 叶片的长度 (17) 5.2.5 叶片的结构尺寸设计 (18) 5.2.6 叶片的强度校核 (18) 5.3定子的设计 (19) 5.3.1 定子短半径1R (19) 5.3.2 定子长半径 (19) 5.3.3 定子大、小圆弧角 (20) 5.3.4 定子过渡曲线的幅角 (20) 5.3.5 定子过渡曲线设计 (20) 5.3.6 校核定子曲线 (21)

5.3.7 定子结构尺寸设计 (22) 5.4左配流盘的设计 (23) 5.4.1 左配油盘封油区夹角 (23) 5.4.2 左配流盘V形尖槽 (24) 5.4.3 左配流盘结构尺寸设计 (24) 5.5右配流盘结构设计 (25) 5.6传动轴的设计 (26) 5.6.1 轴的材料选择 (27) 5.6.2 花键轴段的设计 (27) 5.6.3 校核轴段花键的挤压强度 (28) 5.6.4 轴的结构设计 (29) 5.6.5 轴上载荷分析 (30) 5.6.6 按扭转切应力校核轴的强度 (31) 5.7泵体的设计 (31) 5.7.1 泵体材料选择: (31) 5.7.2 左泵体结构设计 (32) 5.7.3 右泵体结构设计 (33) 5.8盖板设计 (33) 6双作用叶片泵的使用寿命及维护 (35) 6.1叶片泵的使用寿命 (35) 6.2叶片泵的使用条件 (35)

液压油泵性能参数

液压油泵性能参数 液压泵是靠密封容腔容积的变化来工作的。如何为机械选择适合的液压油泵?首先我们要了解液压油泵的工作原理和性能参数中,下面由金中液压系统厂家设计部告诉大家液压油泵的性能参数: 工作压力指液压泵出口处的实际压力值。工作压力值取决于液压泵输出到液压系统中的液体在流动过程中所受的阻力。阻力(负载)增大,则工作压力升高;反之则工作压力降低。 额定压力指液压泵在连续工作过程中允许达到的最高压力。额定压力值的大小由液压泵零部件的结构强度和密封性来决定。超过这个压力值,液压油泵有可能发生机械或密封方面的损坏 排量V指在无泄漏情况下,液压泵转一转所能排出的油液体积。可见,排量的大小 只与液压泵中密封工作容腔的几何尺寸和个数有关。排量的常用单位是(ml/r)。 理论流量qt 指在无泄漏情况下,液压泵单位时间内输出的油液体积。其值等于泵的 排量V和泵轴转数n的乘积,即qt=Vn(m3/s) 实际流量q指单位时间内液压泵实际输出油液体积。由于工作过程中泵的出口压力 不等于零,因而存在内部泄漏量Δq(泵的工作压力越高,泄漏量越大),使得泵的实际流量小于泵的理论流量,即 q=qt-△q 显然,当液压泵处于卸荷(非工作)状态时,这时输出的实际流量近似为理论流量。 额定流量qn 泵在额定转数和额定压力下输出的实际流量。 输入功率Pi 驱动液压泵的机械功率,由电动机或柴油机给出,即pi=ωT 输出功率po液压泵输出的液压功率,即泵的实际流量q与泵的进、出口压差Δp的乘积po=△pq 当忽略能量转换及输送过程中的损失时,液压泵的输出功率应该等于输入功率,即泵的理论功率为pi=△pq=△pVn=ωTt 式中, ω—液压泵转动的角速度;Tt—液压泵的理论转矩 际上,液压泵在工作中是有能量损失的,这种损失分为容积损失和机械损失。 容积损失主要是液压泵内部泄漏造成的流量损失。容积损失的大小用容积效率表 征,即 实际上,液压泵在工作中是有能量损失的,这种损失分为容积损失和机械损失。 容积损失主要是液压泵内部泄漏造成的流量损失。容积损失的大小用容积效率表 征,即 式中取泄漏量Δq=klp。这是因为液压泵工作构件之间的间隙很小,泄漏液体的流动状态可以看作是层流,即泄漏量和泵的工作压力p成正比。kl是液压泵的泄漏系数。 机械损失指液压泵内流体粘性和机械摩擦造成的转矩损失。机械损失的大小用机械 效率表征,即 式中,ΔT是损失掉的转矩。 液压泵的总效率泵的总效率是泵的输出功率与输入功率之比,即 液压泵的总效率、容积效率和机械效率可以通过实验测得。图3.2给出了某液压泵的性能

VP叶片泵

本系列泵专为低噪声工作而开发的高压高性能叶片泵,独特的设计、高精蜜加工及材料的合理选择,保证了其可靠性高,适应性强的优势,最适和现代液压系统的需要。用在注塑成型机、压力压铸机、金属切削机械、工程机械等液压系统中得到了广泛的应用。 上海永策机械设备有限公司是一家[1]专业生产液压油泵,变量叶片泵,双联叶片泵,中压叶片泵,子母叶片泵,定量叶片泵,柱塞泵,齿轮泵,中压泵,50T 叶片泵、150T叶片泵、电磁阀,叠加阀,顺序阀、压力阀,方向阀,流量阀,转子叶片等产品的工厂。 其输出功率与负载工作速度和负载大小相适应,具有高效、节能、安全可靠、价格优惠等特点,特别适用于作容积调速的液压系统中的动力源,如金属切削机床、压力机械、皮革机械、液压站等。VP变量叶片泵机组具有压力调整和流量调节装置,当系统压力高于叶片泵调定的压力时流量会减少,使功率损失降为最低,效率高,安全可靠,侧板采用液压平衡,可获得更好的容积效率,采用数种隔音防振的机构,低噪声,无振动。 1、设计合理,加工精密的圆弧叶片,降低了叶片对定子内曲线的压应力,提高了定子和叶片的使用寿命; 2、定子采用先进的高次方无冲击过渡曲线,使叶片具有良好的运动和受力状态,保证了叶片与定子间的良好接触,并使得流量损失,压力和流量脉动为最小,噪声更低,寿命更长。

3、采用插装式结构,主要内脏零件做成组件形式,泵心更换可在几分钟内完成 1. VP变量泵轴上不允许直接承受径向力和轴向力,以免造成油泵异常损坏。 2. 安装时需仔细擦清孔和被连接轴的表面,以减小由振动引起叶片泵轴端表面的微动磨损,从而长期保持配合轴径尺寸精度。 3. 注意区分进油口和出油口。通常进油口大、出油口小、切勿颠倒,当验证液压叶片泵转向符合标牌箭头的方向时,才能启动电机,至叶片泵排油正常后再正式启动。 4. VP变量叶片泵机组的吸油高度一般不超过500mm,泵吸入口压力在 0.02~0.025MPa之间,液压叶片泵的排量越大要求吸入压力越高。 5. VP变量叶片泵的进油口,管接头直至油箱油面以上的整个吸油管道和附件的接合必须严格密封,任何部位不得漏气,否则将在油箱内产生大量泡沫,空气吸入还会使油泵产生气蚀,引起油泵噪声,损坏和引起液压系统的振动。 6. 为防止油泵吸入杂物,减少磨损,叶片泵的进油口应装置100~180um 的滤油器,其过滤能力应不小于泵流量的三倍,同时推荐在排油管道油口处安装精度30~50um的滤油器,以确保油液的清洁度,提高液压系统稳定性和液压元件的工作寿命。 7. 为确保高压变量叶片泵机组的性能,延长使用寿命,液压叶片泵系统应使用抗磨液压油,推荐选用N46号抗磨液压油,长期工作油温宜在10℃~65℃范围内。液压叶片泵机组油箱设计宜采用封闭型,需定期清洗滤油器与检查油的品质,就实际情况更换工作油液。

定量叶片泵(双作用叶片泵)设计

2 双作用叶片泵设计原始参数 设计原始参数: 额定排量:9.0/q ml r = 额定压力:7.0p MPa = 额定转速:1450/min n r = 4 参数的计算 4.1 流量计算 4.1.1平均理论流量 314509.01013.05/min th Q n q L -=?=??= (4-1) 4.1.2实际流量 叶片泵为固定侧板型,压力7.0MPa ,查泵资料得:容积效率取84%v η= 则 13.0584%/min 10.962/min th v Q Q L L η=?=?= (4-2) 4.2功率计算 4.2.1输入功率轴功率 3310(/30)10 1.586s N T nT kw kw ωπ--=??=?= (4-3) 式中,T 为作用在泵轴的扭矩,单位为N m ; ω为角速度,单位为rad/s ; n 为转速,单位为r/min 。 4.2.2有效输出功率液压功率 12/60()/60/60 1.279h N pQ p p Q kw pQ kw kw =?=-== (4-4) 式中,p 为泵进出口之间的压力差,取值为6.3Mpa ; 2p 为出油口压力;

1p 为进口压力,单位均为Mpa ; Q 为泵输出的流量,单位为l/min 。 4.2.3理论功率 3(/60)10 1.523th N pnq kw -=??= (4-5) 4.3 扭矩计算 4.3.1理论扭矩 在没有摩擦损失和泄漏损失的理想情况下,轴功率与液压功率相等,所计算出的功率值为泵的理论功率。这时作用在泵轴上的扭矩是理论扭矩th T ,泵输出的流量是理论流量th Q ,因此理论功率可表示 ()()th s th h th N N N == (4-6) 其中 33()10(/30)10()s th th th N T nT kw ωπ--=?=? 3()/60(/60)10()h th th N pQ pnq kw -=?=?? 式中,()s th N 为理论轴功率; ()h th N 为理论液压功率; q 为泵的排量,单位为ml/r 。 由前面的式子导出驱动泵的理论扭矩为 ()2th q p T N m π = =10.268 N m (4-7) 4.3.2实际扭矩 实际上,泵在运转时要消耗一部分附加扭矩去克服摩擦阻力,所以驱动泵轴所需的实际扭矩比th T 大,实验测得取值m η=96%。 T=th T +th m T T η= =10.445 N m (4-8) 式中,T 为损失扭矩;P 为电动机功率,本次设计中用的是10KW ;m η为反映摩擦损失的机械效率。 4.4 双作用叶片泵设计计算参数表 由上计算得: 额定排量q Ml/r 额定压力p MPa 额定转速n r/min 平均理论流量 Q th L/min 实际扭矩T N m ?

齿轮泵及叶片泵

液压泵拆装实训 1.1实训目的 液压动力元件——液压泵是液压系统的重要组成部分,通过对液压泵的拆装实训以达到下列目的: 1、进一步理解常用液压泵的结构组成及工作原理。 2、掌握的正确拆卸、装配及安装连接方法。 3、掌握常用液压泵维修的基本方法。 1.2实训用液压泵、工具及辅料 1、实习用液压泵:齿轮泵2 台、叶片泵2 台、轴向柱塞泵1 台。 2、工具:内六方扳手2 套、固定扳手、螺丝刀、卡簧钳等。 3、辅料:铜棒、棉纱、煤油等。 1.3实训要求 1、实习前认真预习,搞清楚相关液压泵的工作原理,对其结构组成有一个基本的认识。 2、针对不同的液压元件,利用相应工具,严格按照其拆卸、装配步骤进行,严禁违反操作规程进行私自拆卸、装配。 3、实习中弄清楚常用液压泵的结构组成、工作原理及主要零件、组件特殊结构的作用。 1.4实训内容及注意事项 在实习老师的指导下,拆解各类液压泵,观察、了解各零件在液压泵中的作用,了解各种液压泵的工作原理,按照规定的步骤装配各类液压泵。 1.4.1齿轮泵 型号:CB-B 型齿轮泵。 结构:泵结构见图2-1 及图2-2。 1.4.1.1工作原理 在吸油腔,轮齿在啮合点相互从对方齿谷中退出,密封工作空间的有效容积不断增大,完成吸油过程。在排油腔,轮齿在啮合点相互进入对方齿谷中,密封工作空间的有效容积不断减小,实现排油过程。

图1-1 外啮合齿轮泵结构示意图 图1-2 齿轮泵结构示意图 1-后泵盖 2-滚针轴承 3-泵体 4-前泵盖 5-传动轴1.4.1.2拆装步骤

1、拆解齿轮泵时,先用内六方扳手在对称位置松开6个紧固螺栓,之后取掉螺栓,取掉定位销,掀去前泵盖4,观察卸荷槽、吸油腔、压油腔等结构,弄清楚其作用,并分析工作原理。 2、从泵体中取出主动齿轮及轴、从动齿轮及轴。 3、分解端盖与轴承、齿轮与轴、端盖与油封。(此步可以不做) 4、装配步骤与拆卸步骤相反。 1.4.1.3拆装注意事项 1、拆装中应用铜棒敲打零部件,以免损坏零部件和轴承。 2、拆卸过程中,遇到元件卡住的情况时,不要乱敲硬砸,请指导老师来解决。 3、装配时,遵循先拆的部件后安装,后拆的零部件先安装的原则,正确合理的安装,脏的零部件应用煤油清洗后才可安装,安装完毕后应使泵转动灵活平稳,没有阻滞、卡死现象。 4、装配齿轮泵时,先将齿轮、轴装在后泵盖的滚针轴承内,轻轻装上泵体和前泵盖,打紧定位销,拧紧螺栓,注意使其受力均匀。 1.4.1.4主要零件分析 轻轻取出泵体,观察卸荷槽、消除困油槽及吸、压油腔等结构,弄清楚其作用。 1、泵体3 泵体的两端面开有封油槽d,此槽与吸油口相通,用来防止泵内油液从泵体与泵盖接合面外泄,泵体与齿顶圆的径向间隙为0.13~0.16mm。 2、端盖1与4 前后端盖内侧开有卸荷槽e(见图中虚线所示),用来消除困油。端盖1上吸油口大,压油口小,用来减小作用在轴和轴承上的径向不平衡力。 3、油泵齿轮 两个齿轮的齿数和模数都相等,齿轮与端盖间轴向间隙为0.03~0.04mm,轴向间隙不可以调节。 1.4.1.5思考题 1、齿轮泵由哪几部分组成?各密封腔是怎样形成? 2、齿轮泵的密封工作区是指哪一部分? 3、图2-2 中,a、b、c、d 的作用是什么? 4、齿轮泵的困油现象的原因及消除措施。 5、该齿轮泵有无配流装置?它是如何完成吸、压油分配的? 6、该齿轮泵中存在几种可能产生泄漏的途径?为了减小泄漏,该泵采取了什么措施? 7、齿轮、轴和轴承所受的径向液压不平衡力是怎样形成的?如何解决?

定量叶片泵设计与计算

1 双作用叶片泵简介 1.1双作用叶片泵组成结构 组成结构:定子、转子、叶片、配油盘、传动轴、壳体等 1.2 双作用叶片泵工作原理 图3-19 双作用叶片泵工作原理 1-定子 2-压油口 3-转子 4-叶片 5-吸油口4 5 3 21 图1-1 双作用叶片泵工作原理 Fig 1-1 Double-acting vane pump principle of work 1—定子;2—吸油口;3—转子;4—叶片;5—压油口 如图1-1所示。它的作用原理和单作用叶片泵相似,不同之处只在于定子表面是由两段长半径圆弧、两段短半径圆弧和四段过渡曲线八个部分组成,且定子和转子是同心的。在图示转子顺时针方向旋转的情况下,密封工作腔的容积在左上角和右下角处逐渐增大,为吸油区,在左下角和右上角处逐渐减小,为压油区;吸油区和压油区之间有一段封油区把它们隔开。这种泵的转子每转一转,每个密封工作腔完成吸油和压油动作各两次,所以称为双作用叶片泵。泵的两个吸油区和两个压油区是径向对称的,作用在转子上的液压力径向平衡,所以又称为平衡式叶片泵。 定子内表面近似为椭圆柱形,该椭圆形由两段长半径R 、两段短半径r 和四段过渡曲线所组成。当转子转动时,叶片在离心力和建压后>根部压力油的作用下,

在转子槽内作径向移动而压向定子内表,由叶片、定子的内表面、转子的外表面和两侧配油盘间形成若干个密封空间,当转子按图示方向旋转时,处在小圆弧上的密封空间经过渡曲线而运动到大圆弧的过程中,叶片外伸,密封空间的容积增大,要吸入油液;再从大圆弧经过渡曲线运动到小圆弧的过程中,叶片被定子内壁逐渐压进槽内,密封空间容积变小,将油液从压油口压出,因而,当转子每转一周,每个工作空间要完成两次吸油和压油,所以称之为双作用叶片泵,这种叶片泵由于有两个吸油腔和两个压油腔,并且各自的中心夹角是对称的,所以作用在转子上的油液压力相互平衡,因此双作用叶片泵又称为卸荷式叶片泵,为了要使径向力完全平衡,密封空间数即叶片数>应当是双数。 1.3 双作用叶片泵结构特点 1>双作用叶片泵的转子与定子同心; 2>双作用叶片泵的定子内表面由两段大圆弧、两段小圆弧和四段定子过渡曲线组成; 3>双作用叶片泵的圆周上有两个压油腔、两个吸油腔,转子每转一转,吸、压油各两次双作用式>。 4>双作用叶片泵的吸、压油口对称,转子轴和轴承的径向液压作用力基本平衡;即径向力平衡卸荷式>。 5>双作用叶片泵的所有叶片根部均由压油腔引入高压油,使叶片顶部可靠地与定子内表面密切接触。 6>传统双作用叶片泵的叶片通常倾斜安放,叶片倾斜方向与转子径向辐射线成倾角θ,且倾斜方向不同于单作用叶片泵,而沿旋转方向前倾,用于改善叶片的受力情况,最近观点认为倾角为0最佳。

液压齿轮油泵品牌国内前十名企业排名

1.上海阳光泵业制造有限公司 上海阳光泵业是集设计/生产/销售泵、给水设备及泵用控制设备于一体的大型综合性泵业集团,是中国泵行业的龙头企业。总资产达38亿元,在上海、浙江、河北、辽宁、安徽等省 市拥有7家企业,5个工业园区,占地面积67万平方米,建筑面积35万平方米。上海阳光获 得了“上海市质量金奖”、“上海市科技百强企业”、“上海市名牌产品”、“中国质量信用AAA级”、“全国合同信用等级AAA级”、“质量、信誉、服务三优企业”、“中国最具竞争 力的商品商标”、“五星级服务认证”等荣誉,连续多年入选全国机械500强。高端人才和 高素质的员工队伍是阳光发展的动力。集团现有员工4500余人,其中工程技术人员500多名,主要由国内知名水泵专家教授、博士硕士、中高级工程师、高级工艺师组成,形成了具有创新思维的梯队型人才结构。科技创新,是阳光基业长青的生命之源。集团是上海市高新技术企业、上海市知识产权示范企业和上海市专利示范企业。上海市级的“企业技术中心”,每年以销售总额的5%,用于技术创新和新产品研发。 2.天昊泵业集团有限公司 天昊泵业集团是经工商总局批准成立的集团公司,位于京津冀一体化的青县经济开发区南区,是专业生产水泵和控制柜的大型厂家。从设计、研发、铸造、精加工、装配、试验全部自己生产完成。 主要产品:全贯流潜水电泵(单向、双向排水)、QZ/QZB潜水轴流泵(下吸、中吸、井筒式、卧式等)、QJ深井泵、矿用潜水泵(含浮箱、箱式)、不锈钢泵、ZLB立式轴流泵、污水泵等上 百种规格型号。 研发中心具有几十年水泵设计丰富经验的专业研究人员,又有年轻的本科毕业生的新生力量和操作能力较强的技术工人。集团研发设备先进、研究方法科学,具有较强的产品研发、试制、测试能力,测试中心的测试水池总容积达200000m3,测试能力:口径Φ32-Φ3000mm,流 量0-200000m3,压力0-10MPa,功率0-600kw/380V,200-3000kw/6KV-10KV。测试系统精度达 到GB/T32-2005《回转动力泵水力性能验收实验1级和2级》。集团生产的产品广泛用于农田 灌溉、抗旱排涝、市政工程、电厂、工矿、冶金等行业。 3.上海丹天泵业有限公司 上海丹天泵业有限公司作为国内泵类,给排水设备及相关电气控制设备的主要供应商之一,丹天泵业在中国。企业位于上海市奉贤区,通过iso9001、14001、18001国际质量、环境、职业健康安全管理体系认证,拥有先进的生产设备和一流的测试中心,全面引进德国技术,充分

变量叶片泵

变量叶片泵 金中液压有限公司成立于2004年,坐落于中国制造业名城广东省东莞市,总部工厂位于厚街。系中国液压行业集研发、生产、销售为一体的最具实力品牌的企业。 公司生产的主要(系列)产品有:变量叶片泵、定量叶片泵、变量柱塞泵、方向/压力/流量控制阀、比例阀、叠加阀、逻辑阀以及新开发产品液压系统及工程机械配套产品液压泵、马达及多路阀等,并承揽各种液压系统/液压装置的设计与制造。 变量叶片泵是导叶可改变角度的泵,来改变流量的泵。可以节能,改变流量。 产品使用的范围: 注塑机,油压机、工程机械、塑胶机械、制鞋机械、压铸机械、冶金机械、矿山机械、金属切削机床以及其它各类液压系统。 变量叶片泵工作原理 (叶片泵)。当泵工作时油液对定子内环侧表面会产生一个斜向上的不平衡径向液压力F0,该力的水平分力F2由调压弹簧2承受,当泵的工作压力升高到水平分力F2超过弹簧预紧力时,定子将向左移动,则偏心量减少,从而减小泵的排量。工作压力越高,泵的排量越小,直至为零。这类泵实现变量运动的方法是直接利用泵工作容积

内压力对定子的作用来产生变量运动所需的操纵力,所以国内习惯称为内反馈式 变量叶片泵液压系统动力组合: 1.油箱; 2.加油口; 3.油网; 4.油尺; 5.电机; 6.油泵(叶片泵); 7.单向阀;8.压力表开关;9.压力表;10.电磁换向阀;11.油路板; 变量叶片泵系统特点: 1.节约用电,减少升温,稳定性高; 2.省略了压力阀,低噪音大流量; 3.有压力补尝,流量和压力都同时可变;高输出力,高效率,体积小,构造简单,低周波音,低噪音。使用压力范围:0-70KG/平方CM。

第八章 叶片泵

第八章 叶片泵 叶片泵具有流量均匀,运转平稳,噪音低,体积小,重量轻等优点。在机床、工程机械、船舶、压铸及冶金设备中得到广泛的应用。中低压叶片泵的工作压力一般为8MPa ,中高压叶片泵的工作压力可达25MPa 至32MPa 。泵的转速范围为600~2500r/min 。叶片泵对油液的清洁度要求较高。此外,与齿轮泵相比,叶片泵的制造工艺要求也较高。 叶片泵主要分为单作用(转子每转完成吸、排油各一次)和双作用(转子每转完成吸、排油各二次)两种形式。双作用叶片泵与单作用式相比,其流量均匀性好,转子体所受的径向液压力基本平衡。双作用叶片泵都做成定量泵形式,单作用叶片泵一般设计成可以无级调节排量的变量泵。 §8-1 双作用叶片泵的工作原理和流量 一、双作用叶片泵工作原理 图8-1是双作用叶片泵的工作原理图。定子的腰圆形表面由二段半径为R 的大圆弧,二段半径为r 的小圆弧以及四段连接大小圆弧的平滑曲线组成。叶片在转子的叶片槽内可以滑动。转子、叶片、定子都夹在前后两个配流盘中间。当转子旋转时,叶片受离心力而紧贴定子内表面,起密封作用,将吸油腔与排油腔隔开。当转子与叶片从定子内表面的小圆弧区向其大圆弧区移动时,两个油封叶片之间的容积增大,通过配流盘上的配油窗口(吸油槽)吸油;由大圆弧区移向小圆弧区时,通过配流盘上的配油窗口(排油槽)排油。转子转一周,叶片在槽内往复两次,完成两个吸、排油过程,故称双作用式。 泵转子体中的叶片槽底部通排油腔。因此在建立排油压力后,处在吸油区的叶片贴紧定子内表面的压紧力为其离心力和叶片底部液压力之和。在压力还未建立起来的启动时刻,此压紧力仅由离心力产生。如果离心力不够大,叶片就不能与定子内表面贴紧以形成高,低压腔之间的可靠密封,泵由于吸、排油腔沟通而不能进行正常工作。这就是叶片泵最低转速不能太低的原因。 双作用叶片泵的两个排油腔及两个吸油腔均为对称布置,故作用在转子上的液压力互相平衡,轴和轴承的寿命较长。 图8-2是配流盘和定子曲线相对位置关系的示意图。图中的点划线为定子内表面曲线(简称定子曲线),1β和2β分别为大圆弧段及小圆弧段所对应的中心角,1α及2α为在大圆弧区及小圆弧区的吸、排油槽之间的封油角。吸、排油槽开在转子两侧的配流盘上。假定泵的叶片数为Z ,为保证吸、排油腔间的密封,应使Z /21πα≥,Z /22πα≥。为了避免发生困油现象,应使两封油叶片之间的容腔在1α及2α角度范围内移动时(这时,容腔与高、低压腔均不通)。其容积大小保持不变。即保证圆弧段的包角11αβ≥;22αβ≥。 图8-2中陪流盘上排油槽端部的三角槽用来减少液压冲击,起消振作用。若转子顺时针转动,当两相邻叶片间的油腔从吸油区进入大圆弧区时,油腔中的压力保持为低压。当此油腔转到开始与排油区接通时,高压油流入此密闭容腔并压缩其中的油液,因此压力骤升。这个过程会发生压力冲击,并因而产生噪声。为了解决这个问题,一般采用设置上述减振槽的方法,使高、低压油进入密闭容腔时受到节流阻尼,从而减缓了压力冲击现象。 图8-2中的环形槽 通过配流盘背面的沟槽(虚线所示)和排油区接通。此环形槽的位置与转子的叶片槽底部相对应,以便将高压油引到叶片底部,产生使叶片向外紧贴定子内表面的压紧力。 二、双作用叶片泵的瞬时流量和理论排量 由图8-1的双作用叶片泵工作原理图可知:假如叶片为无限薄,当转子在dt 时间内转过?d 角度后,叶片泵排出的液体体积为叶片在大圆弧段扫过的体积和叶片在小圆弧段扫过的体积之差。实际上,叶片是有厚度的。在排油区,叶片两端均为高压,它的运动不产生吸排油作用;在吸油区,叶片头部为吸油压力,叶片底部的高压油要用来推动叶片向外伸,所以泵的排出油量应减去这一部分体积Θ。因此,叶片泵在dt 时间内排出的油液体积为 ??????--=∑=n i i i dt SB v dt r R B dV 122cos )(2 2θω (8-1)

叶片泵设计说明

叶片泵的结构设计及造型 叶片泵在液压系统中应用非常广泛,它具有结构紧凑、体积小、运转平稳、噪声小、使用寿命长等优点,但也存在着结构复杂、吸油性能差、对油液污染比较敏感等缺点。在此次课题设计过程过学习了解它的分类、结构特点、工作原理、应用场合等,在对流量,压力等技术参数进行计算的基础上,运用UG软件完成了一种典型叶片泵的设计,包括实体造型、装配图、工程图。 第一章叶片泵概述 1.1 叶片泵的分类 液压泵是液压系统的动力装置,它将原动机输入的机械能转化为液体的压力能。按不同的分类原则,划分如下: 1.按工作原理可分为 (1)叶片式泵、容积式泵、其它类泵。其中叶片式泵有立式泵、高速泵等;容积式泵有往复泵,如活塞(柱塞)泵、隔膜泵等;回转泵如齿轮泵、螺杆泵等。 2.叶片泵按结构分为单作用泵和双作用泵。单作用式叶片泵主要做变量泵使用,双作用式叶片泵主要做定量泵使用。 1.2叶片泵工作原理 1.2.1双作用式叶片泵的原理 当电机带动转子沿转动时,叶片在离心力和叶片底部压力油的双重作用下向外伸出,其顶部紧贴在定子表面上。处于四段同心圆弧上的四个叶片分别与转子外表面、定子表面及两个配流盘组成四个密封工作油腔。这些油腔随着转子的转动,密封工作油腔产生由小到大或由大到小的变化,可以通过配流盘的吸油窗口(与吸油口相连)或排油窗口(与排油口相连)将油液吸入或压出。 在转子每转过程中,每个工作油腔完成两次吸油和压油,所以称为双作用式叶片泵,由于高低压腔相互对称,轴受力平衡,为卸荷式。由于改善了机件的受力情况,

所以双作用叶片泵可承受的工作压力比普通齿轮泵高,一般国产双作用叶片泵的公称压力为5 1063 pa 。 图1.1 双作用叶片泵工作原理 1— 定子;2—压油口;3—转子;4—叶片;5—吸油口 1.2.2单作用叶片泵的原理 单作用叶片泵的工作原理如图所示,单作用叶片泵由转子1、定子2、叶片3和端盖等组成。定子具有圆柱形表面,定子和转子间有偏心距。叶片装在转子槽中,并可在槽滑动,当转子回转时,由于离心力的作用,使叶片紧靠在定子壁,这样在钉子、转子、叶片和两侧配油盘间就形成若干个密封的工作空间,当转子按图示的方向回转时,在图的右部,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这是吸油腔。在图的左部,叶片被定子壁逐渐压进槽,工作空间逐渐缩小,将油液从压油口压出,这是压油腔,在吸油腔和压油腔之间,有一段封油区,把吸油腔和压油腔隔开,这种叶片泵在转子每转一周,每个工作空间完成一次吸油和压油,因此称为单作用叶片泵。转子不停地旋转,泵就不断地吸油和排油。 图 1.2 单作用叶片泵工作原理

叶片泵设计(DOC)

《三维造型设计》实训 说明书 题目:三元叶片泵的三维造型设计及装配 班级:机械设计与制造1104班 姓名:李孟博 学号: 2 1 0 2 3 1 1 0 4 2 2 指导老师:李彩风、孙振杰 实训时间:2013.7.1—2013.7. 5

目录 第一章 Pro/E软件 (3) 1.1Pro/E wildfire4.0的系统环境与设定 (3) 1.2Creo系统的主要模块及功能简介 (3) 1.3工作界面 (3) 第二章零件建模 (4) 2.1大滑块的零件建模 (4) 2.2压盖的零件建模 (5) 2.3泵体的零件建模 (5) 第三章工程图绘制 (8) 3.1设置格式 (8) 3.2大滑块的工程图 (9) 3.3压盖的工程图 (10) 3.4泵体的工程图 (11) 第四章装配图 (13) 总结 (15)

第一章 Pro/E软件 Creo是美国参数科技公司PTC公司于2010年10月推出CAD设计软件包。Creo是整合了PTC公司的三个软件Pro/Engineer的参数化技术、Concrete的直接建模技术和ProductView的三维可视化技术的新型CAD设计软件包,是PTC公司闪电计划所推出的第一个产品。 1.1Pro/E wildfire4.0的系统环境与设定 1.Pro/E野火版4.0的运行环境 CPU:2.0GHz以上;硬盘:剩余空间4GB以上; 内存:256MB以上;显存:64MB以上;鼠标:滚轮式三键 2.设置Pro/E的启动位置;鼠标右键单击Pro/E的快捷方式图标1.2Creo系统的主要模块及功能简介 1.草绘模块(Sketch):创建和编辑二维平面草图 2.零件模块(Part):创建三维模型 3.装配模块(Assembly):组装部件或完整产品 4.工程图模块(Drawing):由三维模型生成二维工程图 5.制造模块(Manufacturing):高速加工、专业化加工及模具设计1.3工作界面

单作用叶片泵

单作用叶片泵 工作原理:单作用叶片泵也是由转子、定子、叶片和配油盘等零件组成。与双作用叶片泵明显不同之处是,定子的内表面是圆形的,转子与定子之间有一偏心量e,配油盘只开一个吸油窗口和一个压油窗口。单作用叶片泵的转子回转时,由于离心力的作用,使叶片紧靠在定子内壁,这样在定子、转子、叶片和两侧配油盘间就形成若干个密封的工作区间,当转子按图示的方向回转时,叶片逐渐伸出,叶片间的工作空间逐渐增大,从吸油口吸油,这就是吸油腔。叶片被定子内壁逐渐压进槽内,工作空间逐渐减小,将油液从压油口压出,这就是压油腔。叶片泵转子每转一周,每个工作空间完成一次吸油和压油,称单作用叶片泵。 排量计算:下图是单作用叶片泵排量和流量计算简图。定子、转子直径分别为D 和d,宽度为B,两叶片间夹角为β,叶片数为Z,定子与转子的偏心量为e。当泵的转子转一转时,两相邻叶片间的密封容积的变化量为V1-V2。若把AB和CD看作是以O1为中心的圆弧,则有 所以,单作用叶片泵的排量为 泵的实际流量q为 式中,n—转子转速;ηpv—泵的容积效率。

为了使叶片运动自如、减小磨损,叶片槽通常向后(注意,这里与双作用叶片泵不同)倾斜20o~30o。下图为单作用叶片泵的配油盘和转子结构简图。 特点:单作用叶片泵的特点 可以通过改变定子的偏心距 e 来调节泵的排量和流量。 叶片槽根部分别通油,叶片厚度对排量无影响。 因叶片矢径是转角的函数,瞬时理论流量是脉动的。叶片数取为奇数,以减小流量的脉动。 单作用叶片泵与双作用叶片泵的区别: 一:单作用 1、单数叶片(使流量均匀) 2、定子、转子和轴受不平衡径向力 3、轴向间隙大,容积效率低 4、叶片底部的通油槽采取高压区通高压、低压区通低压,以使叶片底部和顶部的受力平衡,叶片靠离心力甩出。 5、叶片常后倾(压力角较小) 二:双作用 1、双数叶片(使流量均匀) 2、定子、转子和轴受平衡径向力 3、叶片底部的通油槽均通以压力油(定子曲线矢径的变化率较大,在吸油区外伸的加速度较大,叶片的离心力不足以克服惯性力和摩擦力) 4、叶片常前倾(叶片在吸油区和压油区的压力角变化较大) 总结:叶片泵流量大,压力大、压力稳定、噪音小。缺点:工作时易发热。制作精度高,成本高。 它是目前液压系统中应用最广的一种低噪音油泵。目前还没有能代替它的油泵,发展前景受到液压系统的限制,一般一套液压系统只用一台叶片泵。

叶片泵的Solidwords三维动态仿真

变量叶片泵的Solidwords三维建模及动态仿真 摘要 本次毕业设计课题为变量叶片泵的三维建模及动态仿真,主要是根据变量泵各实际零件尺寸及形状,通过测绘及观察配合关系,分析其工作原理后,运用Solidwords三维建模软件对其进行实体建模。在整个设计过程中,需充分理解变量泵的运动原理,了解其排量和流量的计算形式。清楚变量泵的特点,对各零件的尺寸要精确测量,避免装配时尺寸不当。首先,需要对变量泵实体进行拆卸,在拆卸过程中需记住各配合关系;其次,对拆下的零件进行测量,记下其实际尺寸,并运用三维建模软件进行绘制;然后,将各个零件按照配合关系装配起来,形成装配体;最后,做出实体动画,仿真分析其工作原理,并对其进行说明。单作用变量泵的特点主要是它可以通过改变转子和定子的偏心距来调节泵的流量,使液压系统在工作进给时能量利用合理,效率高,油的温升小。 Abstract The topics for graduate design variables leaves the pump dynamic three-dimensional modeling and simulation, Variables are mainly based on the actual parts of the pump size and shape, through the mapping and observation with, Analysis of its working principles, Solidwords use of its three-dimensional modeling software modeling. Throughout the design process, the need for full understanding of the movement principle of variable pump, aware of their displacement and flow of the calculation. Variable pump clearly the characteristics of the various components to accurately measure the size, to avoid improper assembly at the size. First, the need for variable pump entities to be demolished, the demolition process in line with the need to keep in mind; Secondly, removing the parts were measured, recorded its actual size and use of three-dimensional modeling software rendering; Then, with relations between various parts in accordance with the assembly, formed assembly; Finally, to entities animation, simulation analysis of its working principles, and its description. Single variable pump is the main feature of it by changing the stator and rotor of the eccentricity to regulate the flow of pumps, hydraulic system at work when the feed energy use reasonable, high efficiency, small temperature rise of oil.

哈工大叶片泵课程设计

《叶片泵原理与水力设计》课程设计 单级离心泵叶轮的水力设计 学院:能源科学与工程学院 班级:1102105 姓名: 学号: 指导教师:闫国军 20 14年12月

目录 1.课程设计目的 (1) 2.课程设计任务和要求 (1) 3.设计计算说明书 (2) 4.参考文献 (7) 5.附录 (8)

1.课程设计目的 离心泵是叶片式流体机械的典型产品,叶轮是其最关键的部件。通过单级离心泵叶轮的水力设计,使学生基本掌握叶片式流体机械叶轮的设计理论、设计方法和国家标准的使用,培养学生能够综合运用所学的基础理论、基本知识和基本技能,提高学生训练分析和解决实际问题的能力。为毕业后能够从事叶片式流体机械的产品设计工作奠定良好的基础。 2.课程设计任务和要求 设计题目:单级离心泵叶轮的水力设计 设计参数:q=200 m 3/h ,H=50 m ,n=1450 r/min , (NPSH)r =2.7 工作量:1. 设计计算说明书1分 2.叶轮木模图1张(A3图纸) 3.设计计算说明书 已知主要参数q=200 3 /m h =0.056m 3/s H=50m n=1450r/min (NPSH )r=2.7 一.主要参数确定。 1.确定泵进出口直径 (1)泵进口直径 根据流量q=2003 /m h ,查表6.1取流速c s =2.83, 则D s = s c q π4=83 .2*056.0*4π=0.159(m ) 参考标准取D s =160mm (2)泵出口直径 s d D D )7.0~1(==(0.7-1.0)*180=112-160mm

取d D =140mm. (3)进出口速度 c s = 4q/D s 2 π=2.79m/s c d =4q/D d 2 π=3.64m/s 2.空化计算 (1)泵安装高度 介质为常温清水, ρ g p v =0.24 ,取进口管路损失h c =0.5m NPSH a =1.3*NPSH r =3.51 h g = ρg p a -h c -ρ g p v -NPSH a =10.33-0.5-0.24-3.51=6.08 (2)泵空化余量 NPSH r =2.7 (3)泵空化比转速 4 362.5r NPSH q n C = =913.9 3.比转速 6.6650 056 .0145065.365.34 3 4 3=??= = H Q n n s 4.确定泵的效率 (1).水力效率 =h η3lg 0835.01n q +=0.877 (2).容积效率 000 3 /20.9610068.011 =?+= -s v n η (3).机械效率 圆盘摩擦损失效率 888.0)100/(1 07 .016 /7,=-=s m n η

双作用叶片泵的三维建模设计

双作用叶片泵的三维建模设计及运动仿真 摘要 本次毕业设计的题目为双作用叶片泵的三维建模及动态仿真,主要是在文献调研和网络调研基础上,采用计算、类比等方法,通过对产品三维模型结构分析,确定运动仿真。本课题的主要目的是让我们了解双作用叶片泵的结构和性能上的主要特点,以及双作用叶片泵与其他液压泵在结构和性能之间的差异。在整个设计过程中,我们要掌握的是双作用叶片泵的运动原理,并且知道且会计算其排量和流量。本设计采用的是SolidWorks三维建模。在网络调研的基础上,用SolidWorks对双作用叶片泵的各个零件进行三维建模,然后将各个零件按照配合关系装配起来,形成装配体。最后做出实体动画,运动仿真,并对其进行说明。双作用叶片泵的主要特点是:由于双作用叶片泵有两个吸油腔和压油腔,当转子每完成一周转动,每个密封空间,就有两次吸油和压油的过程完成;同时由于双作用叶片泵的吸、压油腔的结构特性,各自的中心夹角是对称的,油液压力作用在转子上是互相平衡的。双作用叶片泵的输出流量脉动较其他形式的泵小得多。 关键词:双作用叶片泵,三维建模,SolidWorks

Abstract The graduation design topic for 3D modeling of double acting vane pump and dynamic simulation, mainly in literature and Internet research foundation, by calculation, analogy method, through the analysis of the 3D model of product structure, determine the motion simulation. The main purpose of this paper is familiar with the difference of structure and properties of double acting vane pump and double acting vane pump and other hydraulic pump between the structure and properties of. In the design process, need to fully understand the movement principle of double acting vane pump, understand its displacement and flow calculation form. This design is based on SolidWorks modeling. Based on the investigation of the various parts of the network of double acting vane pump for three-dimensional modeling, and then the various parts in accordance with the cooperation between the assembly, the assembly is formed. Finally, make a solid animation, simulation analysis of its working principle, and carries on the description. The main characteristics of double acting vane pump is: each rotation of the rotor, each of the two sealed space of oil absorption and oil pressure; because of the double acting vane pump with two suction chamber and the pressure oil chamber, and the center angle of the symmetry, acting on the rotor oil pressure balance. The flow pulsation of double acting vane pump with other forms of pump is much smaller. Keywords: double action vane pump, 3D modeling, SolidWorks

相关主题