搜档网
当前位置:搜档网 › 最新高中数学必修一专题:求函数的定义域与值域的常用方法

最新高中数学必修一专题:求函数的定义域与值域的常用方法

最新高中数学必修一专题:求函数的定义域与值域的常用方法
最新高中数学必修一专题:求函数的定义域与值域的常用方法

函数的定义域与值域的常用方法

(一)求函数的解析式

1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0;

2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;

3、求函数解析式的一般方法有:

(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;

(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;

(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;

(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域

1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;

2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;

3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;

4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;

5、分段函数的定义域是各个区间的并集;

6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;

7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;

(三)求函数的值域

1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;

2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”;

3、分段函数的值域是各个区间上值域的并集;

4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;

5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;

6、求函数值域的方法十分丰富,应注意总结;

(四)求函数的最值

1、设函数y=f(x)定义域为A,则当x∈A时总有f(x)≤f(x o)=M,则称当x=x o时f(x)取最大值M;当x∈A时总有f(x)≥f(x1)=N,则称当x=x1时f(x)取最小值N;

2、求函数的最值问题可以化归为求函数的值域问题;

3、闭区间的连续函数必有最值。

【典型例题】

考点一:求函数解析式

1、直接法:由题给条件可以直接寻找或构造变量之间的联系。

例1. 已知函数y=f(x)满足xy<0,4x2-9y2=36,求该函数解析式。

解:由4x2-9y2=36可解得:

3

3

3

x

y

x

?

->

?

?

==?

?

<-

??

说明:

这是一个分段函数,必须分区间写解析式,不可以写成3

y=±

的形式。

2、待定系数法:由题给条件可以明确函数的类型,从而可以设出该类型的函数的一般式,然后再求出各个参变量的值。

例2. 已知在一定条件下,某段河流的水流量y与该段河流的平均深度x成反比,又测得该段河流某段平均水深为2m时,水流量为340m3/s,试求该段河流水流量与平均深度的函数关系式。

解:设

k

y

x

=

,代入x,y的值可求得反比例系数k=780m3/s,故所求函数关系式为

780

,0

y x

x

=>

3、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

例3. 已知

2

2

11

()

x x x

f

x x

+++

=

,试求

()

f x。

解:设

1

x

t

x

+

=

,则

1

1

x

t

=

-,代入条件式可得:2

()1

f t t t

=-+,t≠1。故得:2

()1,1

f x x x x

=-+≠。

说明:要注意转换后变量范围的变化,必须确保等价变形。

4、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联

立求解。

例4. (1)已知21

()2()345

f x f x x x +=++,试求()f x ;

(2)已知

2

()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1

x 代x ,则得2111()2()345f f x x x x +=++,与条件式联立,消去

1f x ??

?

??,则得:

()2

22845333x f x x x x =

+--+。

(2)由条件式,以-x 代x 则得:

2

()2()345f x f x x x -+=-+,与条件式联立,消去()f x -,则得:()25

43f x x x =-+

说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。

5、实际问题中的函数解析式:这是高考的一个热点题型,一般难度不大,所涉及知识点也不多,关键是合理设置变量,建立等量关系。

例5. 动点P 从边长为1的正方形ABCD 的顶点B 出发,顺次经过C 、D 再到A 停止。设x 表示P 行驶的路程,y 表示PA 的长,求y 关于x 的函数。

解:由题意知:当x ∈[0,1]时:y =x ;

当x ∈(1,2

)时:

y 当x ∈(2,3)时:

y =

故综上所述,有

[]

,0,1(1,2](2,3]x x y x x ?∈=∈∈

考点二:求函数定义域

1、由函数解析式求函数定义域:由于解析式中不同的位置决定了变量不同的范围,所以解题时要认真分析变量所在的位置;最后往往是通过解不等式组确定自变量的取值集合。

例6.

34

x y x +=-的定义域。

解:由题意知:204

x x +>???

≠??,从而解得:x>-2且x ≠±4.故所求定义域为:

{x|x>-2且x ≠±4}。

2、求分段函数的定义域:对各个区间求并集。 例7. 已知函数由下表给出,求其定义域

3、求与复合函数有关的定义域:由外函数f (u )的定义域可以确定内函数g

(x )的范围,从而解得x ∈I

1,又由g (x )定义域可以解得x ∈I 2.则I 1∩I 2即为该复合函数的定义域。也可先求出复合函数的表达式后再行求解。

()()(())f x g x y f g x =

=

=例8

已知求的定义域.

解:

()3()33f x x g x =≥?≥?

≥*

又由于x 2-4x +3>0 ** 联立*、**两式可解得:

13|13x x x x x ≤<<≤??

≤<<≤?????或

故所求定义域为或

例9. 若函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域。

解:由f (2x )的定义域是[-1,1]可知:2-

1≤2x ≤2,所以f (x )的定义域为[2-

1,2],故log 2x ∈[2

1

,2]4x ≤≤,故定义域为?

?。

4、求解含参数的函数的定义域:一般地,须对参数进行分类讨论,所求定义域随参数取值的不同而不同。

例10.

求函数()f x =的定义域。 解:若0a =,则x ∈R ; 若0a >,则1

x a

≥-; 若0a <,则1x a

≤-; 故所求函数的定义域:

当0a =时为R ,当0a >时为1|x x a ??≥-????,当0a <时为1|x x a ??≤-????

说明:此处求定义域是对参变量a 进行分类讨论,最后叙述结论时不可将分类讨论的结果写成并集的形式,必须根据a 的不同取值范围分别论述。

考点三:求函数的值域与最值

求函数的值域和最值的方法十分丰富,下面通过例题来探究一些常用的方法;随着高中学习的深入,我们将学习到更多的求函数值域与最值的方法。 1、分离变量法

例11. 求函数

23

1x y x +=

+的值域。

解:

()2112312111x x y x x x +++=

==+

+++,因为1

01x ≠+,故y≠2,所以值域为{y|y≠2}。

说明:这是一个分式函数,分子、分母均含有自变量x ,可通过等价变形,让变量只出现在分母中,再行求解。

2、配方法

例12. 求函数y =2x 2+4x 的值域。

解:y =2x 2+4x =2(x 2+2x +1)-2=2(x +1)2-2≥-2,故值域为{y|y≥-2}。

说明:这是一个二次函数,可通过配方的方法来求得函数的值域。类似的,对于可以化为二次函数的函数的值域也可采用此方法求解,如y =af 2(x )+bf (x )+c 。

3、判别式法

例13. 求函数22

23

456

x x y x x ++=++的值域。 解:22

23456x x y x x ++=++可变形为:(4y -1)x 2+(5y -2)x +6y -3=0,由Δ≥0可解得:

高中数学必修一函数的值域求法

最新精题高一数学必修一函数的值域 2配方法]?3,5x??x2x?(求函数y?3例1. 的值域; 2的表达式,f(a),记∈[0,1]f(a)为其最小值,求-练习已知函数y=-3x+2ax1,x 的最大值并求f(a) 2?6x?5x函数y??求2. 的值域;例 ,的函数为常数d?且a0)、、、(????yaxbcxdabc 换元法:形如;常用换元法求值域x?y214x?? 3. 例的值域求函数 利用函数的单调性求函数的值域2?y6] 上的最大值和最小值.在区间例4求函数[2,1x?

2)的取值范围是(在R上单调递增,且f(m )>f(-m),则实数m1练习函数y=f(x) ) ∞,-1 )∪( 0,+C.(-1,0 ) D. (-∞A. (-∞,-1 ) B. ( 0,+∞) 2x+2-1-x 的最大值为,最小值为y= 。[0,1]2.已知x∈,则函数3.若函数y=f(x)的值域是[-2,3],则函数y=∣f(x)∣的值域是() A.[-2,3] B.[2,3] C.[0,2] D.[0,3] 2ax?bx?c;判别式法:形如111域y)的函数用判别式法求值不同时为零(a?,a 212ax?bx?c2221的值域;求函数例4 ?y?x x cx?d(a?0)y?分离常数法:形如的函数也可用此法求值域;bax?13x??y 例5求函数的值域;2x? 数形结合法。的值域?4|x?1|?|x|y? 6求函数(方法一可用到图象法)例

2xxxy( ) ,3],的最大值、最小值分别为1.函数∈=4[0-当堂检测3 0 (D)4,0 (B)2,0 (C)3,(A)4,1( ) .函数的最小值为2?y2xx?1(D)4 (B)1 (A)(C)2 232)(xy??)〕上的最大值、最小值分别是( 3、函数在区间〔0,52?x33333,,0,0 B.,无最小值。 D. A. C. 最大值72727)(ff(x)的值域为[a,b],则(x+a)的值域为.定义域为4R的函数y = ] ba+[-a,a[0,b-a] C.[,b] D.[2A.a,a+b] B.) (-.函数5y=x+2x1的值域是11 0} |y≤.y.{y|y≤} C.{|y≥0} D{yB|A.{yy≥} 22252]?[?4,,则m,值域为的定义域为[0,m]的取值范围是()6.若函数y=x-3x-44333),??[,4]],[3(]0(,4 D A B C 222 2xxyx (27.函数=4--1 ∈-.______3)2,的值域为2.______8.函数的值域为x?x2?y ???2。的值域是9、函数0,3??5(?xx?4xy x4?13??y2x?3。、函数的值域是10 2?(x)?4xf?4x?8.函数11 .的值域为 x?3?x3?y?y)0x?(。;.函数的值域是12.函数的值域是 5x?2x?52x2?y?x?4 13函数的值域————————————312?xy?x?的值。.若函数14的定义域和值域都是[1,b](b>1),求b22 15.求下列函数的值域:2x?x?y x?2?x?1y)(2)1 (21x?x? 2222? +x+3k+5=0(k的最大值。R)的两个实根,求.已知16x、x是方程x-(k-2)x+kx2211

高中数学必修一函数专题:二次函数值域

高一数学必修一函数专题:二次函数值域 第一部分:计算二次函数的值域 题型一:计算二次函数c bx ax x f ++=2 )(在定义域R x ∈上的值域。 解法设计:第一步:计算二次函数的对称轴a b x 2- =。 第二步:第一种情况:当0>a 时:二次函数c bx ax x f ++=2 )(开口向上。 二次函数)(x f 在对称轴a b x 2-=处取得最小值。 最大值为∞+。 第二种情况:当0

高中数学求函数值域的7类题型和16种方法

求函数值域的7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞???? ,当0a <时的值域为 24,4ac b a ?? --∞ ??? ., 3.反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R. 6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠ 当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值)

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一) 一、复习准备: 1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2.回顾初中函数的定义: 在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。 表示方法有:解析法、列表法、图象法. 二、讲授新课: (一)函数的定义: 设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作: (),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。显然,值域是集合B 的子集。 (1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R; (2)二次函数2 y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ??-??=≥?????? ;当a﹤0时,值域244ac b B y y a ??-??=≤?????? 。(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。(二)区间及写法: 设a 、b 是两个实数,且a≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。 巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0} (三)例题讲解: 例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。 变式:求函数223, {1,0,1,2}y x x x =-+∈-的值域 例2.已知函数1()2f x x =+,(1)求()()2 (3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。(四)课堂练习: 1.用区间表示下列集合: {}{}{}{} 4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或2.已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值; 3.课本P 19练习2。

高一人教版必修一 数学函数定义域、值域、解析式题型

高一函数定义域、值域、解析式题型 一、 具体函数的定义域问题 1 求下列函数的定义域 (1 )1 y = (2 )y = (2)(3) 若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m <<(B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 二、 抽象函数的定义问题 (一)已知函数()f x 的定义域,求函数[()]f g x 的定义域 2. 已知函数()f x 的定义域为[0,1],求函数2(2)f x 的定义域。 (二)已知函数[()]f g x 的定义域,求函数()f x 的定义域 3. 已知函数(21)f x +的定义域为[1,2],求函数()f x 的定义域。 (三)已知函数[()]f g x 的定义域,求函数[()]f h x 的定义域 4. 已知函数2(1)f x -的定义域为(2,5),求函数1()f x 的定义域。 5.已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

(一) 配凑法 5 .已知22113(1)x f x x x ++=+,求()f x 的解析式。 (二) 换元法 6.已知(12f x +=+()f x 的解析式。 (三) 特殊值法 7 .已知对一切,x y R ∈,关系式()()(21)f x y f x x y y -=--+且(0)1f =,求()f x 。 待定系数法 8.已知()f x 是二次函数,且2(1)(1)244f x f x x x ++-=-+,求()f x 。 (四) 转化法 9. 设()f x 是定义在(,)-∞+∞上的函数,对一切x R ∈,均有()(2)0f x f x ++=,当11x -≤≤时,()21f x x =-,求当13x <≤时,函数()f x 的解析式。 (五) 消去法 11.已知函数()f x 21()()x f x x -=,求()f x (六) 分段求解法 12. 已知函数2,()21,()1,0x x o f x x g x x ?≥=-=?-

高一必修一数学函数的定义域值域专题训练打印版

高一必修一数学函数的定义域值域专题训练打 印版

函数定义域、值域专题教案与练 习 一、函数的定义域 1.函数定义域的求解方法 求函数的定义域主要是通过解不等式(组)或方程来获得.一般地,我们约定:如果不加说明,所谓函数的定义域就是自变量使函数解析式有意义的实数的集合. (1)若)(x f 是整式,则定义域为全体实数. (2)若)(x f 是分式,则定义域为使分母不为零的全体实数.?? (3)若)(x f 是偶次根式,则定义域为使被开方式为非负的全体实数. (4)若)(x f 为对数式,则定义域为真数大于零的全体实数。 (5)若)(x f 为复合函数,则定义域由复合的各基本的定义域所组成的不等式组确定.如:)(x f 的定义域为],[b a ,则复合函数)]([x g f 的定义域应由不等式b x g a ≤≤)(解出. (5)由实际问题确定的函数,其定义域由自变量的实际意义确定. 2.求函数定义域的常见问题: (1)若已知函数解析式比较复杂,求定义域时通常根据各种条件列不等式组求解; (2)由)(x f y =的定义域,求复合函数)]([x g f 的问题,实际上是已知中间变量)(x g u =的值域,求自变量x 的取值范围问题; (3)对含有字母参数的函数,求其定义域时注意对字母参数的一切允许值分类讨论; (4)若是实际问题除应考虑解析式有意义外,还应使实际问题有意义. 二、求函数的值域常用方法 (1)观察法:通过对函数解析式的简单变形,利用熟知的基本函数值域求解; (2)单调性法:利用函数的单调性求解 (3)换元法:通过对函数解析式进行适当换元,可以将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围求函数的值域。 三、初等函数:指数函数、对数函数、幂函数的定义域、值域 1.指数函数:)1,0()(≠>=a a a x f x ,定义域:R x ∈;值域:),0()(+∞∈x f ; 2.对数函数:)1,0(log )(≠>=a a x x f a ,定义域:),0(+∞∈x ;值域:R x f ∈)( 3.幂函数:α x x f =)(()R ∈α,其定义域、值域随α的取值而不同,但在),0(+∞∈x 都有意义。

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高中函数值域的12种解法(含练习题)

高中函数值域的12种求法 一、观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为[3,+∞]。 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二、反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y >1}) 三、配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4], ∴0≤√(-x2+x+2)≤3/2,函数的值域是[0,3/2]。 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√(15-4x)的值域。(答案:值域为{y∣y≤3}) 四、判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可

高中数学求函数值域的方法十三种审批稿

高中数学求函数值域的 方法十三种 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高中数学:求函数值域的十三种方法 一、观察法(☆ ) 二、配方法(☆) 三、分离常数法(☆) 四、反函数法(☆) 五、判别式法(☆) 六、换元法(☆☆☆) 七、函数有界性 八、函数单调性法(☆) 九、图像法(数型结合法)(☆) 十、基本不等式法 十一、利用向量不等式 十二、 十三、一一映射法 十四、 多 种 方 法 综 合 运 用 一、观察法:从自变量x 的范围出发,推出()y f x =的取值范围。 【例1】 求函数1y =的值域。 11≥, ∴函数1y =的值域为[1,)+∞。 【例2】求函数 x 1 y = 的值域。 【解析】∵0x ≠ ∴0 x 1≠ 显然函数的值域是: ),0()0,(+∞-∞ 【例3】已知函数()112--=x y ,{}2,1,0,1-∈x ,求函数的值域。

【解析】因为{}2,1,0,1- =f f,()1 1- f所以: = 2 0= f,()()0 ∈ 3 x,而()()3 -f = 1= {}3,0,1- ∈ y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x∈,则函数的值域为{}1 y。 y ≥ |- 二.配方法:配方法式求“二次函数类”值域的基本方法。形如2 =++的 F x af x bf x c ()()() 函数的值域问题,均可使用配方法。 【例1】求函数225,[1,2] y x x x =-+∈-的值域。 【解析】将函数配方得:∵由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,故函数的值域是:[4,8] 【变式】已知,求函数的最值。 【解析】由已知,可得,即函数是定义在区间上的二次函数。将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。显然其顶点横坐标不在区间内,如图2所示。函数的最小值为,最大值为。 图2

必修一 函数的定义域及值域

个性化学科优化学案 辅导科目 数学 就读年级 学生 教师 徐亚 课 题 函数的概念 授课时间 2015年11月28 备课时间 2015年11月25日 教 学 目 标 1、理解函数的概念,明确确定函数的三个要素,会用区间表示函数的定义域和值域;掌握求函数定义域的基本原则。 2、了解函数的三种表示方法,并能选择合适的方法表示函数。 重、难 考 点 求函数的值域问题时要明确两点,一是值域的概念,二是函数的定义域和对应关系是确定函数的依据。 教学容 鹰击长空—基础不丢 1.定义:设A 、B 是两个非空集合,如果按照某种对应关系f ,使对于集合A 中的 一个数x ,在集 合B 中 确定的数f(x)和它对应,那么就称:f A B →为集合A 到集合的一个 ,记作: 2.函数的三要素 、 、 3.函数的表示法:解析法(函数的主要表示法),列表法,图象法; 4. 同一函数: 相同,值域 ,对应法则 . 1.区间的概念和记号 在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号. 设a,b ∈R ,且a

必修一函数定义域值域和单调性奇偶性练习题

高一数学函数练习题 一、 求函数的定义域 1、 求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)1 11y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,, 则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311 x y x -= + ⑷311x y x -=+ (5)x ≥ ⑸ y =⑹ 225941x x y x +=-+

⑺31y x x =-++ ⑻2y x x =- ⑼ y = ⑽ 4y =⑾y x =- 6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式系 1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是

高中数学求函数值域的类题型和种方法

高中数学求函数值域的类 题型和种方法 Last updated on the afternoon of January 3, 2021

求函数值域的 7类题型和16种方法 一、函数值域基本知识 1.定义:在函数()y f x =中,与自变量x 的值对应的因变量y 的值叫做函数值,函数值的集合叫做函数的值域(或函数值的集合)。 2.确定函数的值域的原则 ①当函数()y f x =用表格给出时,函数的值域是指表格中实数y 的集合; ②当函数()y f x =用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数()y f x =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数()y f x =由实际问题给出时,函数的值域由问题的实际意义确定。 二、常见函数的值域,这是求其他复杂函数值域的基础。 函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域。 一般地,常见函数的值域: 1.一次函数()0y kx b k =+≠的值域为R. 2.二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ?? -+∞?? ?? ,当0a <时的值域为24,4ac b a ?? --∞ ???., 3.反比例函数()0k y k x = ≠的值域为{}0y R y ∈≠. 4.指数函数()01x y a a a =>≠且的值域为{}0y y >. 5.对数函数()log 01a y x a a =>≠且的值域为R.

6.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 三、求解函数值域的7种题型 题型一:一次函数()0y ax b a =+≠的值域(最值) 1、一次函数:()0y ax b a =+≠当其定义域为R ,其值域为R ; 2、一次函数()0y ax b a =+≠在区间[],m n 上的最值,只需分别求出()(),f m f n ,并比较它们的大小即可。若区间的形式为(],n -∞或[),m +∞等时,需结合函数图像来确定函数的值域。 题型二:二次函数)0()(2≠++=a c bx ax x f 的值域(最值) 1、二次函数)0()(2≠++=a c bx ax x f ,当其定义域为R 时,其值域为 ()()22 4 044 04ac b y a a ac b y a a ?-≥>???-?≤时,()2b f a -是函数的最小值,最大值为(),()f m f n 中 较大者;当0a <时,()2b f a -是函数的最大值,最大值为 (),()f m f n 中较小者。 (2)若[],2b m n a - ?,只需比较(),()f m f n 的大小即可决定函数的最大(小)值。 特别提醒: ①若给定区间不是闭区间,则可能得不到最大(小)值; ②若给定的区间形式是[)(]()(),,,,,,,a b a b +∞-∞+∞-∞等时,要结合图像来确函数的值域; ③当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论。 例1:已知()22f x x --的定义域为[)3,-+∞,则()f x 的定义域为(],1-∞。 例2:已知()211f x x -=+,且()3,4x ∈-,则()f x 的值域为()1,17。 题型三:一次分式函数的值域 1、反比例函数)0(≠= k x k y 的定义域为{}0x x ≠,值域为{}0y y ≠ 2、形如:cx d y ax b +=+的值域:

数学必修一定义域值域知识点总结

数学必修一定义域值域知识点总结 数学必修一定义域知识点 定义 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域; 常见题型 1,已知f(x)的定义域,求f(g(x))的定义域. 例1,已知f(x)的定义域为(-1,1),求f(2x-1)的定义域. 略解:由-1<2x-1<1有0<1 ∴f(2x-1)的定义域为(0,1) 2,已知f(g(x))的定义域,求f(x)的定义域. 例2,已知f(2x-1)的定义域为(0,1),求f(x)的定义域。 解:已知0<1,设t=2x-1 ∴x=(t+1)/2 ∴0<(t+1)/2<1 ∴-1<1 ∴f(x)的定义域为(-1,1) 注意比较例1与例2,加深理解定义域为x的取值范围的含义。 3,已知f(g(x))的定义域,求f(h(x))的定义域.

例3,已知f(2x-1)的定义域为(0,1),求f(x-1)的定义域。 略解:如例2,先求出f(x)的定义域为(-1,1),然后如例1有-1<1,即0<2 ∴f(x-1)的定义域为(0,2) 指使函数有意义的一切实数所组成的集合。 其主要根据: ①分式的分母不能为零 ②偶次方根的被开方数不小于零 ③对数函数的真数必须大于零 ④指数函数和对数函数的底数必须大于零且不等于1 例4,已知f(x)=1/x+√(x+1),求f(x)的定义域。 略解:x≠0且x+1≧0, ∴f(x)的定义域为[-1,0)∪(0,+∞) 注意:答案一般用区间表示。 例5,已知f(x)=lg(-x2+x+2),求f(x)的定义域。 略解:由-x2+x+2>0有x2-x-2<0 即-1<2 ∴f(x)的定义域为(-1,2) 函数应用题的函数的定义域要根据实际情况求解。 例6,某工厂统计资料显示,产品次品率p与日产量 x(件)(x∈N,1≦x<99)的关系符合如下规律: 又知每生产一件正品盈利100元,每生产一件次品损失100元. 求该厂日盈利额T(元)关于日产量x(件)的函数;

必修一值域定义域练习题

1、设集合M={x |0≤x ≤2},N={y |0≤y ≤2},从M 到N 有4种对应如下图所示: 其中能表示为M 到N 的函数关系的有。 2、求下列函数的定义域: )(x f =1+x + x -21 设函数y=f(x)的定义域为[0,1],求下列函数的定义域. (1)y=f(3x); (2)y=f( ); (3)y=f(; (4)y=f(x+a)+f(x-a). 3、已知函数)(x f =3x 2-5x +2,求)3(f ,)2(-f ,)1(+a f 。 4、下列函数中哪个与函数y =x 是同一个函数? (1)2)(x y =;(2)33x y =;(3)2x y = x 1)31()31 -++x f x

5.给出下列两个条件:(1)f(+1)=x+2;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2. 试分别求出f(x)的解析式. 变式训练1:(1)已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x ); (2)已知f (x )满足2f (x )+f ( )=3x ,求f (x ). 6 求下列函数的值域: (1)y= (2)y=x-; (3)y=. 变式训练2:求下列函数的值域: (1)y= ; (2)y=|x|. 7.若函数f (x )=x 2 -x+a 的定义域和值域均为[1,b ](b >1),求a 、b 的值. .8.判断函数f(x)=在定义域上的单调性. 需要答案回复 x x x 1;122+--x x x x x 21-1e 1e +-x x 521+-x x 21x -2112-x

LS 高一数学函数值域求法及例题

君子有三乐,而王天下不与存焉。父母俱存,兄弟无故,一乐也;仰不愧于天,俯不怍于人,二乐也;得天下英才而教育之,三乐也。 函数值域(最值)的常用方法 姓名: 一、基本函数的值域: 一次函数()0y kx b k =+≠的值域为R . 二次函数()2 0y ax bx c a =++≠,当0a >时的值域为24,4ac b a ??-+∞????, 当0a <时的值域为24,4ac b a ??--∞ ?? ?. 反比例函数()0k y k x =≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R . 正,余弦函数的值域为[]1,1-,正,余切函数的值域为R . 二、其它函数值域 一、观察法(根据函数图象、性质能较容易得出值域(最值)的简单函数) 1、求242-+-=x y 的值域. 2 、求函数y = 的值域. 二、配方法(当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求值域) 1、求函数][)4,0(422∈+--=x x x y 的值域. 说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制. 2、若,42=+y x 0,0>>y x ,试求xy 的最大值。

三、反表示法(分子、分母只含有一次项的函数,也可用于其它易反解出自变量的函数类型) 对于存在反函数且易于求得其反函数的函数,可以利用“原函数的定义域和值域分别为其反函数的值域和定义域”这一性质,先求出其反函数,进而通过求其反函数的定义域的方法求原函数的值域。 1、求函数1 2+= x x y 的值域. 2、求函数2241x y x +=-的值域. 四、判别式法(分子、分母中含有二次项的函数类型,此函数经过变形后可以化为 0)()()(2=++y C x y B x y A 的形式,再利用判别式加以判断) 1、求函数3 274222++-+=x x x x y 的值域. 2、求函数2122 x y x x += ++的值域. 3、 五、换元法(通过简单的换元把一个函数变为简单函数,其题型特征是无理函数、三角函数(用 三角代换)等) 1、求函数x x y 41332-+-=的值域. 六、数形结合法(对于一些能够准确画出函数图像的函数来说,可以先画出其函数图像,然后利用函数图像求其值域) 1、求函数13y x x =-+-的值域。 七、不等式法(能利用几个重要不等式及推论来求得最值.(如:ab b a ab b a 2,222≥+≥+), 利用此法求函数的值域,要合理地添项和拆项,添项和拆项的原则是要使最终的乘积结果中不含自变量,同时,利用此法时应注意取""=成立的条件.) 1、求函数1(0)y x x x =+>的值域.

高中数学求函数值域的解题方法总结(16种)

求函数值域的解题方法总结(16种) 在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。 一、观察法: 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例:求函数()x 323y -+=的值域。 点拨:根据算术平方根的性质,先求出 ()x 3-2的值域。 解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。 点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。 练习:求函数()5x 0x y ≤≤=的值域。(答案:{}5,4,3,2,1,0) 二、反函数法: 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例:求函数2 x 1x y ++=的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数2 x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数x -x -x x 10101010y ++=的值域。(答案:{}1y 1-y |y 或)。 三、配方法: 当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。 例:求函数() 2x x -y 2++=的值域。 点拨:将被开方数配方成平方数,利用二次函数的值求。 解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。此时2x x -2++=

全国高考数学复习微专题:函数值域的求法

求函数的值域 作为函数三要素之一,函数的值域也是高考中的一个重要考点,并且值域问题通常会渗透在各类题目之中,成为解题过程的一部分。所以掌握一些求值域的基本方法,当需要求函数的取值范围时便可抓住解析式的特点,寻找对应的方法从容解决。 一、基础知识: 1、求值域的步骤: (1)确定函数的定义域 (2)分析解析式的特点,并寻找相对应的方法(此为关键步骤) (3)计算出函数的值域 2、求值域的常用工具:尽管在有些时候,求值域就像神仙施法念口诀一样,一种解析式特点对应一个求值域的方法,只要掌握每种方法并将所求函数归好类即可操作,但也要掌握一些常用的思路与工具。 (1)函数的单调性:决定函数图像的形状,同时对函数的值域起到决定性作用。若()f x 为单调函数,则在边界处取得最值(临界值)。 (2)函数的图像(数形结合):如果能作出函数的图像,那么值域便一目了然 (3)换元法:()f x 的解析式中可将关于x 的表达式视为一个整体,通过换元可将函数解析式化归为可求值域的形式。 (4)最值法:如果函数()f x 在[],a b 连续,且可求出()f x 的最大最小值,M m ,则()f x 的值域为[],m M 注:一定在()f x 连续的前提下,才可用最值来解得值域 3、常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归。 (1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域 (2)二次函数(2 y ax bx c =++):二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解。(关键点:①抛物线开口方向,②顶点是否在区间内)

数学定义域和值域

函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 经典例题透析 类型一、函数概念 1.下列各组函数是否表示同一个函数? (1) (2) (3) (4) 小结1:相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致(两点必须同时具备) 2.求下列函数的定义域(用区间表示). (1);(2);(3). 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 3.值域: (先考虑其定义域) 实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了,但求值域还是特别要注意讲究方法,常用的方法有: 1.直接法:由常见函数的值域或不等式性质求出; 2.分离常数法:可将其分离出一个常数; 3.观察法:利用函数的图象的"最高点"和"最低点",观察求得函数的值域;

4.判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些"分式"函数等;此外,使用此方法要特别注意自变量的取值范围; 5.换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域. 例题详见备课本 5. 换元法 通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。 ∵0e x > ∴01y 1y >-+ 解得:1y 1<<- 故所求函数的值域为)1,1(- 例3. 求函数1x x y -+=的值域。 解:令t 1x =-,)0t (≥ 则1t x 2+= ∵ 43)21t (1t t y 22++=++= 又0t ≥,由二次函数的性质可知 当0t =时,1y m i n = 当0t →时,+∞→y 故函数的值域为),1[+∞

相关主题