搜档网
当前位置:搜档网 › 寻迹小车制作笔记

寻迹小车制作笔记

寻迹小车制作笔记
寻迹小车制作笔记

寻迹小车制作笔记

——制作人:陈彦彧一.寻迹部分:

1.原理:

利用RPR220红外対管收集路面黑线信息,由红外发射管发射出红外线,由于地面的反射跟黑线的反射率不一样,所以红外接收管接收到反射光线的强度也不一样,引起红外接收管的电阻发生变化,用一个电路把这种电阻变化转变为电压变化(图1-1),再经过单片机的A/D转换功能把电压值读出来,就可以判断当前的情况是黑线还是地面了。

2.红外対管的分布:

尽可能考虑到道路的复杂性以及这辆小车的硬件配置,我利用了六个红外对管来检测。

其中5个用于检测道路的左右分叉,有一个用于超前检测路况(图1-2)。

图1-2

考虑到道路拥有十字以及众多的交叉,我认为使用这种分布可以更有效的使小车排除这种干扰,由此加快小车的判断速度。

二.电源供电部分

1.我使用的是6节1.2V串联结构的充电电池,共7.2V。

2.由于我使用的单片机(ATmega16A)的供电需要5V的稳定电压,而且为了避免电机正反

转造成的电压变化造成单片机的复位,这里必须要一个稳压电源,我选用的芯片是比较常用的Lm7805,不需要太高级的稳压芯片,以免大材小用。

3.驱动芯片要配合滤波电容使用,才能更好的稳定电压。为了检测稳压效果,并联一个发

光二极管,整体电路图(图2-1)

4.要注意的是,这个电路只能用于6V以上的电压稳压,而且稳压后的输出只能是5V如果

有需要的就是用其他的稳压芯片吧。

图2-1

三.电机驱动部分以及轮子设计

1.我使用的是L298N驱动芯片,可以同时控制两路电机,配合以上的电源供电部分就可以整合成一个适合单片机的电机驱动(图3-1)。

2.由于我想自己做小车,而一块板上凭我的能力只能焊好一个稳压模块,一个L298N模块以及一块单片机最小系统及其指示灯,所以我舍弃了四轮驱动,并把后面的两个轮拆成空转轮,这样做使电机负荷增加,转弯变得困难,使小车转弯速度慢了不少,可是这样也存在好处,在转弯的时候不用考虑过多的情况,直接差速转,反正有两个后轮的制约,转弯转的很慢,所以不用担心飞出跑道。

四.单片机部分

1.ISP下载口及PORTC的指示灯

为了调试方便,我当然把ISP下载口安装进去了,如果有需要可以把JTAG口也焊上,可是我PORTC用来安装指示灯了,所以只用ISP足够了。

五.元件清单

六.软件设计

1.主函数使用一个数组存储A/D转换的数据并合成一个move值,把这个值送到MOVE(移

动)函数里。

/*主函数*/

void main(void)

{

whole_init();

while(1)

{

b[0]=ADC_begin(0);

b[1]=ADC_begin(1);

b[2]=ADC_begin(2);

b[3]=ADC_begin(3);

b[4]=ADC_begin(4);

b[5]=ADC_begin(5);

light();

move=0x00;

for(a=0;a<=5;a++)

{

move=(move<<1)+b[a];

}

move&=0x3f;

MOVE(move);

}

}

2.MOVE函数使用的是一种比较笨拙的方式,就是把所有的情况列出来,虽然这种方式看

起来比较笨拙,可是更有效快速,并通过调用run、back、left、right、stop等函数,以后只要修改这几个子函数,就可以随时调整车子的速度以及灵敏度,由于我使用的车子在硬件上决定了比较笨拙,所以没有使用常用的自动修改PWM的值的大小来调速,而是直接使用稳定的PWM,也就是说我的车子是不会自动调整角度的,只会一小个一小个角度的转,如果以后有比较好的车子可以尝试一下自动修改PWM的程序,会更加智能。

/*移动函数*/

void MOVE(uchar c)

{

switch(c)

{

case 0x00/*000000*/:back();break;

case 0x20/*100000*/:left();break;

case 0x10/*010000*/:left();break;

case 0x08/*001000*/:run();break;

case 0x04/*000100*/:right();break;

case 0x02/*000010*/:right();break;

case 0x01/*000001*/:run();break;

case 0x30/*110000*/:left();break;

case 0x18/*011000*/:left();break;

case 0x0c/*001100*/:right();break;

case 0x06/*000110*/:right();break;

case 0x38/*111000*/:left();break;

case 0x1c/*011100*/:run();break;

case 0x0e/*001110*/:right();break;

case 0x3c/*111100*/:left();break;

case 0x1e/*011110*/:right();break;

case 0x14/*010100*/:run();;break;

case 0x15/*010101*/:run();break;

case 0x21/*100001*/:left();break;

case 0x11/*010001*/:left();break;

case 0x09/*001001*/:run();break;

case 0x05/*000101*/:right();break;

case 0x03/*000011*/:right();break;

case 0x31/*110001*/:right();break;

case 0x19/*011001*/:run();break;

case 0x0d/*001101*/:run();break;

case 0x07/*000111*/:right();break;

case 0x39/*111001*/:run();break;

case 0x1d/*011101*/:run();break;

case 0x0f/*001111*/:run();break;

case 0x3d/*111101*/:run();break;

case 0x1f/*011111*/:run();break;

case 0x3f/*111111*/:run();break;

default:run();break;

}

}

/*倒退函数*/

void back(void)

{

PORTB=0x50;

OCR1AL=0x40;

OCR1BL=0x40;

}

/*前进*/

void run(void)

{

PORTB=0xa0;

OCR1AL=0x10;

OCR1BL=0x10;

}

/*向左*/

void left(void)

{

PORTB=0x90;

OCR1AL=0x00;

OCR1BL=0x00;

/* PORTB=0xa0;

OCR1BL+=10;*/

}

/*向右*/

void right(void)

{

PORTB=0x60;

OCR1AL=0x00;

OCR1BL=0x00;

/* PORTB=0xa0;

OCR1AL+=10;*/

}

/*停下*/

void stop(void)

{

PORTB=0x00;

}

3.A/D转换处理以及其函数

A/D转换输出的电压值我用一个算法把那个电压值还原到我们能读懂的电压值,并通过设置电压阈值,判断是否检测到黑线。

b[6]

b[0] b[1] b[2] b[3] b[4]

/*AD转换初始化*/

voidADchanger_init(void)

{

ADMUX=0x40;/*AVCC作为参考电压,格式为右对齐*/ ADCSRA=0x83;/*8分频,模数转换使能*/

// ADCSRA|=0x40;/*启动模数转换*/

// ADCSRA&=0xbf;/*关闭模数转换*/

// while(!(ADCSRA & (1 << ADIF)));/*等待模数转换完成*/ // ADCSRA&=0xef;/*清除模数转换完成标志位*/

}

/*AD转换接收程序*/

uintADC_receive(void)

{

uint temp1,temp2;

temp1=(uint)ADCL;

temp2=(uint)ADCH;

temp2=(temp2<<8)+temp1;

return temp2;

}

/*AD转换启动换取一次*/

uintADC_begin(uchar b)

{

ulong u;

ADMUX&=0xe0;

ADMUX|=b;

ADCSRA|=0xc0;/*启动模数转换*/

while(!(ADCSRA & (1 << ADIF)));/*等待模数转换完成*/ adc_val=ADC_receive();/*模数转换数据*/

u=ADC_handle(adc_val);/*模数数据处理*/

ADCSRA&=0xef;/*清除模数转换完成标志位*/

ADCSRA&=0x3f;/*关闭模数转换*/

return u;

// ADCSRA&=0xef;/*清除模数转换完成标志位*/

}

/*AD转换处理*/

uintADC_handle(uinti)

{

long x;

uint y;

x=5000*(long)i/1023;

if(x>=4500)

{

y=0x01;/*检测到黑线返回1*/

}

if(x<4500)

{

y=0x00;/*检测不到黑线返回0*/

}

return y;

}

4.定时/计数器产生两路PWM控制电机

考虑到节省定时器的应用,决定使用同一个定时器1,可以同时产生两路不同的PWM 方波,其他定时器可以另有用途。

/*定时器1初始化*/

void time1_init(void)

{

TCCR1A=0xf1;

TCCR1B=0x02;/*使用8位相位修正PWM,升序计数比较匹配时清零,降序置位*/

}

5.当然还有其他的串口初始化等等的初始化,因为这些都随着个人喜好,这里都不意义介

绍了。

七.设计遇到困难及解决

1.问题:起初PORTC输出端的指示灯有四盏LED无论如何都无法点亮。

解决:查资料后发现Atmega16出厂的时候在熔丝位是使能了JTAG功能,输出电压低,无法驱动LED,后来查阅DataSheet,把熔丝位改了,关闭了JTAG功能,PORTC正常使用。

2.问题:四驱还是二驱,扭力还是速度?

解决:由于四驱的稳定性以及灵活性,本来是打算使用四驱的,可是发现在一张板子上焊上两个L298N根本难度很大,所以我用的是二电机驱动四轮,以此来获得四驱的稳定性,可是灵活性大大降低了,如果可以的话,还是速度配上舵机更好,可是在我的经济实力内,我还是选择了差速加扭力。

3.问题:红外対管的分布;扇形寻迹?一字寻迹?

解决:由于之前说的小车的硬件原因,本来可以做扇形寻迹的念头被打消了,因为转向半径不定,难以保证我的基准点就在黑线上。而一字寻迹有着无法超前检测的缺点,遇到十字不知怎么办,所以我在一字寻迹的基础上在前面加了一个红外対管,用来超前检测,这样弥补了不足,可是我还是想做扇形寻迹。。。硬件不给力啊~~~

八.设计软件及其他

1.设计软件:IAR AVR

2.画图软件:Protel99se、Protues

3.设计周期:两个星期(框架1天,调试两个星期减一天T…..T)

4.可拓展性:其实我把蓝牙串口跟测速都放上去了,基本上除了直立都能做了

5.设计者:陈彦彧~~~初级开发者一个

6.此文章写于2012-11-29

7.请大家多多指教

智能循迹小车详细制作过程

(穿山乙工作室)三天三十元做出智能车 基本设计思路: 1.基本车架(两个电机一体轮子+一 个万向轮) 2.单片机主控模块 3.电机驱动模块(内置5V电源输出) 4.黑白线循迹模块 0.准备所需基本元器件 1).基本二驱车体一台。(本课以穿山乙推出的基本车体为 例讲解) 2).5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红 色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40 个。 3).5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一 个;双孔接线柱三个、10u电解电容2个、排针12个、9110 驱动芯片2个。 4).5x7cm洞洞板、LM324比较器芯片各一个;红外对管三 对、4.7K电阻3个、330电阻三个、红色3mmLED三个。 一、组装车体

(图中显示的很清晰吧,照着上螺丝就行了) 二、制作单片机控制模块 材料:5x7cm洞洞板、单片机卡槽、51单片机、石英晶体、红色LED、1K电阻、10K排阻各一个;2个瓷片电容、排针40个。 电路图如下,主要目的是把单片机的各个引脚用排针引出来,便于使用。我们也有焊接好的实物图供你参考。(如果你选用的是STC98系列的单片机在这里可以省掉复位电路不焊,仍能正常工作。我实物图中就没焊复位)

三、制作电机驱动模块 材料:5x7cm洞洞板、7805稳压芯片、红色LED、1K电阻各一个;双孔接线柱三个、10u电解电容2个、排针12个、9110驱动芯片2个。 电路图如下,这里我们把电源模块与驱动模块含在了同一个电路板上。因为电机驱动模块所需的电压是+9V左右(6—15V 均可),而单片机主控和循迹模块所需电压均为+5V。 这里用了一个7805稳压芯片将+9V电压稳出+5V电压。

基于单片机的智能寻迹小车毕业设计

基于单片机的智能寻迹小车毕业设计 系统主要由红外避障模块、声控模块、光电寻迹、电机驱动及语音播报模块组成。 采用P89V51单片机作为智能小车控制核心。系统能实现对线路进行寻迹,小 车可以 前进或后退,遇到障碍物可以自行停止并可以实现反向运行,系统可以利用声 音控 制小车的启停。整个系统小巧紧凑,控制准确,性价比高,人机互动性好。 P89V51单片机;红外避障;线路寻迹;直流减速电机 ABSTRACT System is mainly by infrared obstacle avoidance module, voice module, opto-electronics and motor drive tracing module. Used as a single- chip smart car P89V51 control core. System can realize the tracing lines, cars can go forward or backward, encountered obstacles can stop and reverse operation can be achieved, the system can use voice to control the start and stop car. Compact the entire system to control the accurate, cost-effective, good human-computer interaction. KEYWORD: P89V51MCU;Infrared obstacle avoidance;Tracing;DC motor speed 1

智能循迹小车实验报告18447

简单电子系统设计报告 ---------智能循迹小车 学号201009130102 年级10 学院理学院 专业电子信息科学与技术姓名马洪岳 指导教师刘怀强

摘要 本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。采用与白色地面色差很大的黑色路线引导小车按照既定路线前进,在意外偏离引导线的情况下自动回位。 本设计采用单片机STC89C51作为小车检测、控制、时间显示核心,以实验室给定的车架为车体,两直流机为主驱动,附加相应的电源电路下载电路,显示电路构成整体电路。自动寻迹的功能采用红外传感器,通过检测高低电平将信号送给单片机,由单片机通过控制驱动芯片L298N驱动电动小车的电机,实现小车的动作。 关键词:STC89C51单片机;L298N;红外传感器;寻迹 一、设计目的 通过设计进一步掌握51单片机的应用,特别是在控制系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 二、设计要求 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制,绕跑到行驶一周。 三、软硬件设计 硬件电路的设计 1、最小系统: 小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。主要包括:时钟电路、电源电路、复位电路。其中各个部分的功能如下: (1)、电源电路:给单片机提供5V电源。 (2)、复位电路:在电压达到正常值时给单片机一个复位信号。

图1 单片机最小系统原理图 2、电源电路设计: 模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。在本设计中,51单片机使用5V电源,电机及舵机使用5V电源。考虑到电源为电池组,额定电压为4.5V,实际充满电后电压则为4-4.5V,所以单片机及传感器模块采用最小系统模块稳压后的5V电源供电,舵机及电机直接由电池供电。 3、传感器电路: 光电寻线方案一般由多对红外收发管组成,通过检测接收到的反射光强,判断黑白线。原理图由红外对管和电压比较器两部分组成,红外对管输出的模拟电压通过电压比较器转换成数字电平输出到单片机。

智能小车寻迹模块设计方案

智能小车寻迹模块设计方案 本文设计方案以MSP430单片机为系统的控制核心,采用反射式光电传感器模块寻迹,实现智能小车的自动寻迹行驶。在实验中采用与白色相差很大的黑色引导线作为智能小车的既定路线,系统驱动采用控制方式为PWM 的直流电机。 详细介绍了反射式光电传感器寻迹模块的工作原理,寻迹模块的电路图以及在以MSP430单片机为控制核心的基础上如何实现智能寻迹小车的自动寻迹行驶。并简要介绍了系统的电路图。该技术可用于无人生产线、服务机器人、仓库等领域。 0 引言 智能小车又称轮式移动机器人,能够按预设模式在特定环境中自动移动,无需人工干预,可用于科学勘测、现代物流等方面。针对路面采用黑色标记线条作为路径引导线的应用场合,反射式光电传感器是常用的路径识别传感器。反射式光电传感器因信号处理方式和物理结构简单的特点而被广泛应用于结构化环境 和低成本产品中,虽然存在检测距离近、预测性差的弱点,但通过合理设计和选择反射式光电传感器并结合合适的信息处理软件能够满足上述简单环境场合应用。随着汽车ECU 电子控制的发展,在汽车上配备远程信息处理器,传感器和 接收器,通过这些器件的协调控制可以实现汽车的无人驾驶。本文提出基于 MSP430单片机的控制装置,通过反射式光电传感器寻迹,MSP430单片机处理反射式光电传感器检测到的信号,从而控制智能车的转向,实现智能小车的自动寻迹。 1 系统总体设计方案 在小车车体的前端贴近地面的地方安装有4 组寻迹模块,如图1所示,单 片机通过判断4个寻迹模块发送来的信号进行自动循迹。寻迹模块在遇到黑线时发送低电平信号,遇到空白的地方发送高电平信号,单片机通过判断高低电平即可作出相应的操作。通过4组寻迹模块发送的信号组合,可将小车行驶状态分成如表1所示7种状态。

基于STM32 智能抓物小车的设计 电子设计II课程报告

摘要 本实验主要分析把握对象的智能车基于STM32F103的设计。智能系统的组成主要包括STM32F103控制器、伺服驱动电路、红外检测电路、超声波避障电路。本试验采用STM32F103微处理器作为核心芯片,速度和转向的控制采用PWM技术,跟踪模块、检测、障碍物检测和避免功能避障模块等外围电路,实现系统的整体功能。 小车行驶时,避障程序跟踪程序,具有红外线跟踪功能的汽车检测电路。然后用颜色传感器识别物体的颜色和抓取。在硬件设计的基础上提出了实现伺服控制功能,简单的智能车跟踪和避障功能的软件设计和控制程序,在STM32集成开发环境IAR编译,并使用JLINK下载程序。 关键词:stm32;红外探测;超声波避障;颜色传感;舵机控制

ABSTRACT This experiment mainly analyzed the grasping object intelligent car based on STM32F103 design. The composition of the intelligent system mainly includes STM32F103 controller, servo drive circuit, infrared detection circuit, ultrasonic obstacle avoidance circuit. This test uses the STM32F103 microprocessor as the core chip, the speed and steering control using PWM technology, tracking module and detection, obstacle avoidance module for obstacle detection and avoidance function, other peripheral circuit to achieve the overall function of the system. The car is moving, obstacle avoidance procedures prior to tracking program, car tracking function with infrared detection circuit. Then use color sensor to recognize object color and grab. On the basis of the hardware design is proposed to realize the servo control function, simple intelligent car tracking and obstacle avoidance function of the software design, and the control program is compiled in the STM32 integrated development environment IAR, and download the program using Jlink. Key words: STM32; infrared detection; ultrasonic obstacle avoidance; color sensing; steering control

创新性实验 循迹小车实验报告

时间:周三上午 组号:5 创新性实验报告 题目寻迹小车 学院电子信息学院 专业xxx 班级xxx 学号xxx 学生姓名xxx 指导教师xxx 完成日期2014年5月

目录 1 摘要 (3) 2 引言 (3) 3系统总体设计 (3) 4硬件电路设计 (5) 5 制作与调试 (6) 5.1 硬件电路的布线与焊接 (6) 第一步:电路部分基本焊接 (6) 第二步:机械组装 (6) 第三步:安装光电回路 (7) 5.2 调试 (7) 整车调试: (7) 6 结论及建议 (7) 7 附录 (8)

1 摘要 本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。采用与白色地面色差很大的黑色路线引导小车按照既定路线前进。LM393随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一 个闭环控制,因此能快速灵敏地控制。 关键词:红外反射式传感器,自寻迹小车,闭环控制 2 引言 随着素质教育的越来越被重视,很多学校都把制作智能小车作为首选课题,智能小车生动有趣还牵涉到机械结构、电子基础、传感器原理、自动控制甚至单片机编程等诸多学科知识,学生通过动手实践能大大提高解决实际问题的能力,而且智能小车还是一个很好的硬件平台,只要增加一些控制电路就能完成循迹小车、救火机器人、足球机器人、避障机器人、遥控汽车等课题。 我们制作的是一款由数字电路来控制的智能循迹小车,在组装过程中我们不但能熟悉机械原理还能逐步学习到:光电传感器、电压比较器、电机驱动电路等相关电子知识。 3 系统总体设计 本系统的整体框图如图1所示。它包括传感器电路、电压比较电路、电 机驱动电路、电源电路。

智能循迹小车

目录 1.第一章绪论 1.1循迹小车的发展现状 1.2 选题意义 1.3本设计的工作 1.3.1设计要求 1.3.2设计思路 2.第二章硬件部分简介 2.1 具体方案论证与设计 2.2 主控芯片的简介 2.2.1 光电反射式传感器(ST178) 2.2.2低功率低失调双比较器LM393 3.第三章光电循迹小车的原理 3.1原理 3.2 传感器电路 3.2.1红外反射式光电传感器原理 3.2.2黑线检测电路

3.3核心控制电路 3.3.1模数转换电路(比较器电路) 3.3.2数字逻辑电路 3.4驱动电路 3.5 拓展功能“防撞” 3.6PCB制板 3.7作品展示 3.8原件清单 4.第四章结论 5.参考文献 6.课程设计心得

绪论 1.1循迹小车发展现状与趋势 智能汽车作为一种智能化的交通工具,体现了车辆工程、人工智能、自动控制、计算机等多个学科领域理论技术的交叉和综合,是未来汽车发展的趋势。寻迹小车可以看作是缩小化的智能汽车,它实现的基本功能是沿着指定轨道自动寻迹行驶。就目前智能小车发展趋势而言:相比价格昂贵、体积大、数据处理复杂

的传感器CCD反射式光电传感器以其价格适中、体积小、数据处理方便等更具有发展优势。 1.2 选题意义 汽车电子迅猛发展,智能车产生和不断探索并服务于人类的趋势将不可阻挡。智能车的研究将会给汽车这个产生了一百多年的交通工具带来巨大的科技变革。人们在行驶汽车时,不再只在乎它的速度和效率,更多是注重驾驶时的安全性,舒适性,环保节能性和智能性等。各国科学家和汽车工作人员以及汽车爱好者都在致力于智能车的研究,研究的成果有很多都已应用于人们的日常生活生产之中,例如在2005年1月美国发射的“勇气”号和“机遇”号火星探测器实质上都是装备先进的智能车辆。因此,研究智能车的实际意义和取得的价值都非常重大。本课题利用传感器识别路径,将赛道信息进行识别处理,利用主控芯片控制小车的行进进而完成循迹。 1.3本设计的工作 1.3.1设计要求 要求:设计并制作一个简易光电智能循迹电动车,其行驶路线示意图如图1-1:(其中粗黑些为光电寻迹线)要求智能循迹小车从起点出发,沿粗黑色引导线到达终点后立即停车但行驶全程行驶时间不能大于90s。

智能小车设计

2016—2017学年第二学期期末考试《单片机原理及应用*》实践考核 项目设计说明书 专业:电子科学与技术 学号: 20160060156

姓名:张一鸣 2017年6 月14日 考核项目及要求 项目一:电机驱动模块的设计与制作 1.考核要点 (1) 掌握驱动电路的工作原理; (2) 掌握电机驱动的制作方法; (3) 掌握焊接技术; 2.作品要求 学生自行运用工具进行作品的设计制作,作品达到电路连接正确、布局合理、美观整洁。 项目二:单片机最小系统板的设计制作 1.考核要点 (1) 掌握单片机在实际操作中的基本知识; (2) 实验板包括单片机最小系统、蓝牙遥控模块、温度检测模块、液晶模块、 报警模块电路等的设计; (3) 使用Proteus仿真软件绘制实验板所包含的所有模块电路; (4) 熟练使用keil编程软件编写各模块电路的演示程序。 2.作品要求 学生自行运用工具进行作品的设计、仿真及演示,达到正确实现、布局合理、美观整洁。 项目三:智能小车底盘设计 1.考核要点 (1) 理解电机的工作原理; (2) 了解部分机械机构的设计方法; (3) 掌握智能小车的整体安装方法。

2.作品要求 学生独立设计安装,车身结构美观,布局合理,功能实现。 目录 1.功能说明 (1) 1-1.蓝牙无线遥控 (1) 1-2.实时温度显示 (1) 2.硬件设计 (2) 2-1.元器件选择 (2) 2-2.硬件设计原理说明 (4) 3.软件设计 (5) 3-1.程序总体设计 (5) 3-2.程序详细设计 (5) 4.测试与总结 (6) 4-1驱动电路板测试 (6) 4-2控制电路板测试 (6) 4-3最终整体效果 (7) 4-4总结 (7)

智能寻迹小车以及程序

寻迹小车 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单,如图2所示:

图2 ST168检测电路 ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。 R1限制发射二极管的电流,发射管的电流和发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻R2可限制接收电路的电流,一方面保护接收红外管;另一方面可调节检测电路的灵敏度。因为传感器输出端得到的是模拟电压信号,所以在输出端增加了比较器,先将ST168输出电压与2.5V进行比较,再送给单片机处理和控制。 传感器的安装 正确选择检测方法和传感器件是决定循迹效果的重要因素,而且正确的器件安装方法也是循迹电路好坏的一个重要因素。从简单、方便、可靠等角度出发,同时在底盘装设4个红外探测头,进行两级方向纠正控制,将大大提高其循迹的可靠性,具体位置分布如图3所示。

基于Arduino智能寻迹小车开题报告

云南农业大学 本科生毕业设计开题报告 设计题目:基于Arduino的智能寻迹小车控制系统设计毕业设计起止时间: 年月日~月日(共 17 周) 专业:电气工程及其自动化 姓名: 学号: 指导教师: 报告时间: 云南农业大学教务处制 200 年月日

1. 本课题所涉及的问题在国内(外)的研究现状综述 国外智能车辆的研究历史较长,始于上世纪50年代。它的发展历程大体可以分成三个阶段: 第一阶:20世纪50年代是智能车辆研究的初始阶段。1954年美国Barrett Electronic 公司研究开发了世界上第一台自主引导车系统,该系统只是一个运行在固定路线上的拖车式运货平台,但它却具有了智能车辆最基本的特征即无人驾驶。 第二阶段:从80年代中后期开始,世界主要发达国家对智能车辆开展了卓有成效的研究。在欧洲,普罗米修斯项目开始在这个领域的探索。在美洲,美国成立了国家自动高速公路系统联盟(NAHSC)。在亚洲,日本成立了高速公路先进巡航/辅助驾驶研究会。 第三阶段:从90年代开始,智能车辆进入了深入、系统、大规模研究阶段。最为突出的是,美国卡内基.梅隆大学(Carnegie Mellon University)机器人研究所一共完成了Navlab系列的10台自主车(Navlab1—Navlab10)的研究,取得了显著的成就。 相比于国外,我国开展智能车辆技术方面的研究起步较晚,开始于20世纪80年代。而且大多数研究处在于针对某个单项技术研究的阶段。虽然我国在智能车辆技术方面的研究总体上落后于发达国家,并且存在一定得技术差距,但是我们也取得了一系列的成果,主要有: (1)中国第一汽车集团公司和国防科技大学机电工程与自动化学院与2003年研制成功我国第一辆自主驾驶轿车。 (2)南京理工大学、北京理工大学、浙江大学、国防科技大学、清华大学等多所院校联合研制了7B.8军用室外自主车,该车装有彩色摄像机、激光雷达、陀螺惯导定位等传感器。 可以预计,我国飞速发展的经济实力将为智能车辆的研究提供一个更加广阔的前景。因此,对智能小车进行深入细致的研究,不但能加深课堂上学到的理论知识,更能将理论转化为实际运用,为将来打下坚实的基础。 2.本人对课题提出的任务要求及实现预期目标的可行性分析

基于单片机的循迹小车实验报告

课程设计报告 (嵌入式技术实践(二)) 学院:电气工程与自动化学院 题目:基于P89V51RB2单片机寻迹小车 专业班级: 学号: 学生姓名: 指导老师: 2013年06月07日

目录 第1章绪论 (4) 1.1 引言 (4) 1.2 课题任务要求 (4) 1.3 本论文研究的内容 (4) 第2章系统总体设计 (5) 2.1 小车的机械特性 (5) 2.2 智能小车寻迹基本原理 (5) 2.3 智能小车测速基本原理 (5) 2.2 智能小车遥控基本原理 (5) 第3章系统硬件设计 (7) 3.1 控制器的选择 (7) 3.1.1 概述 (7) 3.1.2 P89V51RB2开发工具特性 (7) 3.2 硬件电路设计 (7) 3.2.1 系统电源电路 (7) 3.2.2 电机驱动模块 (8) 3.2.3 光电编码器 (9) 3.2.4 红外线检测电路 (9) 3.2.5 超声波蔽障/测距.................................................................. 错误!未定义书签。 3.2.6 LCD显示设计...................................................................... 错误!未定义书签。第4章系统软件设计 (13) 4.1 编译环境 (13) 4.2 模块的驱动 (13) 4.2.1 红外线传感器模块 (13) 4.2.2 电机模块的驱动 (14) 4.2.3 转速捕获 (16) 4.2.4 LCD1602显示模块 (17) 4.2.5 按键模块 (21) 4.2.6 超声波模块模块 (23) 第5章系统调试分析 (26) 5.1 系统设计中的注意事项 (26) 5.1.1 外部因素 (26) 5.1.2 内部因素 (26) 5.2 硬软件总体调试 (26)

智能循迹小车分析方案

智能循迹小车设计 专业:自动化 班级:0804班 姓名: 指导老师: 2018年8月——2018年10月 摘要:

本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89S52 单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车<特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛

智能寻迹小车

智能寻迹小车 作者:李毅卢仁义吴甜解放军炮兵学院(安徽合肥230031) 时间:2008-06-18 来源:电子产品世界 浏览评论推荐给好友我有问题个性化定制 关键词:51单片机智能小车光电对管寻迹脉冲宽度调制 摘要:本文介绍了一种基于51单片机的小车寻迹系统。该系统采用两组高灵敏度的光电对管,对路面黑色轨迹进行检测,并利用单片机产生PWM波,控制小车速度。测试结果表明,该系统能够平稳跟踪给定的路径。 关键词:智能小车;光电对管;寻迹;脉冲宽度调制 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理

该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单,如图2所示: 图2 ST168检测电路

智能循迹小车设计

智能循迹/避障小车研究 工作报告 一、智能循迹小车程序结构框图 二、Proteus仿真图 三、软件程序设计

一、智能循迹小车程序结构框图 经过几天在网上的查找,对智能循迹/避障小车有了大致的了 解, 一般有三个模块: 1、最基本的小车驱动模块,使用两个二相四线步进电机对小车的两个后轮分别进行驱动,前轮最好用万向轮,能使小车更好地转弯; 2、小车循迹模块,在小车底部有三个并排安装的红外对管,对黑色与白色的反射信号不同,经单片机处理后对小车进行相应处理; 3、避障模块,我写的程序中对于避障模块是用中断来处理的(即安装在小车车头的红外对管检测到有障碍物后,就会向单片机的P3_2口输出一个高电平或是低电平,这时中断程序将对小车进行预先设定好的避障处理),但是在程序结构框图中,我不太会表示中断处理方式,所以就用查询的方式画了。

N Y N Y 二、Proteus 仿真图 我用Proteus 大概地仿真了小车的运行状态。图中的两个二相四线步进电机就代表小车的左右轮(假定步进电机顺时针转动方向为小车前进方向),网上有很多种驱动芯片,在仿真时我只使用L298N 芯

片来驱动步进电机。用三个单刀双制开关模拟用于小车循迹的三个红外对管的输出信号,经一个与门与三极管开关连接到P3_3口,中断程序对P1_0, P1_1, P1_2三个口进行检测,并做出相应处理。同时因为避障模块的优先级高于循迹模块,所以将外部中断0用于避障,外部中断1用于循迹。P1_3口则用于检测小车是否到达终点。 1、小车驱动模块: 使用一片298芯片驱动一个二相四线步进电机,电机的电压为12V。

智能小车的结构与设计

智能小车俯视图结构说明: 本产品是由一个语音模块、一个+5V的辅助电源(LM7805数字压控电路)、一个电机驱动模块、四个电机、一块IAP单片机,一对无线发送接收模块。 功能与使用: 这辆语音控制智能小车通过语音识别来判断我们人所说的指令来行走的,给不同的指令就会按不同的指令来行走。可以根据我们说的去执行,更加人性化,同时也能起到人车交流的效果,操作简单,易于使用。 图2:智能小车全景图 平台选型说明 单片机开发板(以STC15F2K61S2芯片为控制核心) 设计说明 设计原理图如下:

3 设计原理图 设计方案: 语音控制智能小车,主控电路是由单片机开发板(以IAP15F2K61S2芯片为控制核心)来控制小车,主要是由语音控制模块通过无线模块发送信号来控制小车的前进、后退、左右转等功能。 语音模块主要是由LD3320 ASR非特定语音识别芯片组成的,通过识别人的语言,从从而实现轻松的语控制。我们采用锂电池通过7085稳压输出5V的直流电,方便携带,轻巧灵活,设计合理。通过对单片机开发板编写系统程序,调试出合适的程序,才能很好地处理信号和控制小车,以及各种电器。 作品特色 先进性: 传统玩具的市场比重正在逐步缩水,高科技含量的电子玩具则蒸蒸日上。高科技含量的电子互动式玩具已经成为玩具行业发展的主流。本文设计一个具有语音识别功能的智能遥控小车。本文还在小车的控制系统中采用语音识别系统,使控制者可以用语音对小车进行控制,产生相应的动作,而且小车和控制者还具有一定的交互功能,体现出了现代科技想智能化发展的潮流。 实用性: 当我们的技术成熟的时候我们可以向机动车改装,这样的话手脚残疾人也能开车了,还有就是该技术可以应用到智能家居中,让我们能够更加轻松地控制家里面的用电设备,使我们的住所更加人性化。

智能寻迹小车设计报告

~ 目录 1.项目设计目的 (1) 2.项目设计正文 (3) .项目分析及方案制定 (3) .设计步骤及流程图 (4) 寻迹设计步骤 (4) 流程图 (4) ( .主要模块介绍 (4) LM393的主要特点 (4) LM393引脚图及内部框图 (5) LM393 功能简介 (5) 89C2051 (5) 89C2051简介 (5) 89C2051 主要性能参数 (5) 89C2051 功能特性概述 (6) 。 .电路设计及PCB绘制 (6) 电源电路 (6) 红外收发电路 (6) 电机驱动电路 (7) 单片机最小系统 (7) 整体电路 (8)

PCB板的绘制 (8) . 成品展示 (9) \ 3.项目设计总结 (9) 4.参考文献 (10) 智能寻迹小车 ——CDIO三级项目 王君杰 (电子信息工程 1501 6) 一、项目设计目的 在科技飞速发展的今天,智能化的概念已经渗入到各行各业,自动控制系统也出现在生活的方方面面,早到工厂的机械化生产,近到目前的自动驾驶。越来越多的领域涉及到电控制技术。特别是使用单片机一类的MCU的控制,在生活中越来越常见。因此,基于单片机控制的电路的学习和时间对于我们来说就显得尤为重要。同时,对于单片机作为软件主控单元,结合模电数电的硬件电路支持的综合项目开发,也是作为大学生需要了解并且熟练运用的基础。掌握了这些知识,对于我们以后的职业发展也有着莫大的帮助。 二、? 三、项目设计正文 、项目分析及方案制定 首先对于“智能寻迹小车”这个标题而言,我们可以分为两个部分:小车和智能寻迹。“小车”决定了硬件电路的大致构成:电源、电容、电阻、开关、电机、LED。而“智能”则决定了一些高级电路的选用:MCU、传感器、电机驱动、电位器及一些IC。 其次,假如去掉“智能”两字,仅关注如何做成一个能够行驶的小车,那么电路的搭建将会变得尤为简单。假如做一个“上电即跑”的小车,那么连开关都不需要,仅需要电源(干电池即可),两个电机 (3V/100mA)和两个限流电阻按图一方式连接即可。当然,这样的 小车只能实现向一个方向前进,无法实现跑道的自动识别和转向。 不过,这个电路也是所有行驶工具的基础,所有的行驶工具,都是 在这个电路的基础上按照想要实现的功能进行拓展开发。 接着让我们来到“智能”的环节。所谓智能,也就是需要小车 有人的思想,正如同课题所述——寻迹。智能的小车需要具备自动识别跑道的能力。同时,在采集到跑道信息后要做出相应的处理。在我们这个课题中,也就是需要及时并

智能循迹避障声控小车设计__毕业设计

智能循迹避障声控小车设计 摘要 系统主要由红外避障模块、声控模块、光电寻迹、电机驱动及语音播报模块组成。采用P89V51单片机作为智能小车控制核心。系统能实现对线路进行寻迹,小车可以前进或后退,遇到障碍物可以自行停止并可以实现反向运行,系统可以利用声音控制小车的启停。整个系统小巧紧凑,控制准确,性价比高,人机互动性好。 关键词:P89V51单片机;红外避障;线路寻迹;直流减速电机 ABSTRACT System is mainly by infrared obstacle avoidance module, voice module, opto-electronics and motor drive tracing module. Used as a single-chip smart car P89V51 control core. System can realize the tracing lines, cars can go forward or backward, encountered obstacles can stop and reverse operation can be achieved, the system can use voice to control the start and stop car. Compact the entire system to control the accurate, cost-effective, good human-computer interaction. KEYWORD:P89V51MCU;Infrared obstacle avoidance;Tracing;DC motor speed

智能寻迹小车实验报告

DIY 达人赛 基于STC89C52 单片机智能寻迹小车 实 验 报 告 参赛队伍: 队员: 2014 年 4 月

一、引言 我们所处的这个时代是信息革命的时代,各种新技术、新思想层出不穷,纵观世界范围内智能汽车技术的发展,每一次新的进步无不是受新技术新思想的推动。随着汽车工业的迅速发展,传统的汽车的发展逐渐趋于饱和。伴随着电子技术和嵌入式技术的迅猛发展,这使得汽车日渐走向智能化。智能汽车由原先的驾驶更加简单更加安全更加舒适,逐渐的向智能驾驶系统方向发展。智能驾驶系统相当于智能机器人,能代替人驾驶汽车。它主要是通过安装在前后保险杠及两侧的红外线摄像机,对汽车前后左右一定区域进行不停地扫描和监视。计算机、电子地图和光化学传感器等对红外线摄像机传来的信号进行分析计算,并根据道路交通信息管理系统传来的交通信息,代替人的大脑发出指令,指挥执行系统操作汽车。 1、来源汽车的智能化是21 世纪汽车产业的核心竞争力之一。汽车的智能化是以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科交叉的科技。 2、智能汽车国外发展情况 从20 世纪70 年代开始,美国、英国、德国等发达国家开始进行无人驾驶汽车的研究,目前在可行性和实用化方面都取得了突破性的进展。目前日本、欧美已有企业取得实用化成果。与国外相比,国内在智能车辆方面的研究起步较晚,规模较小,开展这方面研究工作的单位主要是一些大学和研究所,如国防科技大学、清华大学、吉林大学、北京理工大学、长安大学、沈阳自动化所等。我国从20 世纪80 年代开始进行无人驾驶汽车的研究,国防科技大学在1992 年成功研制出我国第一辆真正意义上的无人驾驶汽车。先后研制出四代无人驾驶汽车。第四代全自主无人驾驶汽车于2000 年 6 月在长沙市绕城高速公路上进行了全自主无人驾驶试验,试验最高时速达到75.6Km/h。 3、我们的小车 我们做的是基于STC 8 9 C52单片机开发,主要是研究3轮小车的路径识别及其遥 控运动。

智能循迹避障小车方案设计书

封面

作者:PanHongliang 仅供个人学习 目录 摘要………………………………………………………………………………………2 ABSTRACT………………………………………………………………………………

…2 第一章绪论 (3) 1.1智能小车的意义和作用 (3) 1.2智能小车的现状 (3) 第二章方案设计与论证 (4) 2.1 主控系统 (4) 2.2 电机驱动模块 (4) 2.3 循迹模块 (6) 2.4 避障模块 (7) 2.5 机械系统 (7) 2.6电源模块 (8) 第三章硬件设计 (8) 3.1总体设计 (8) 3.2驱动电路 (9) 3.3信号检测模块 (10) 3.4主控电路 (11) 第四章软件设计 (12) 4.1主程序模块 (12) 4.2电机驱动程序 (12) 4.3循迹模

块 (13) 4.4避障模块 (15) 第五章制作安装与调试 (18) 结束语 (18) 致谢……………………………………………………………………………………… 19 参考文献 (19) 智能循迹避障小车 摘要:利用红外对管检测黑线与障碍物,并以STC89C52单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。其中小车驱动由 L298N驱动电路完成,速度由单片机输出的PWM波控制。 关键词:智能小车;STC89C52单片机; L298N;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and theroad obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car。STC89C52 MCU。L298N。Infrared Emitting Diode 第一章绪论 1.1智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视

毕业设计 智能循迹避障小车设计

单片机系统课程设计轮式移动机器人的设计 学院:通信与电子工程学院 班级:电子131 姓名:初清晨 学号: 2013131013 同组成员:孟庆阳张轩 指导老师:王艳春 日期: 2015年12月24日

组员分工 1、组长:张轩,实物焊接,报告整理,程序设计 2、组员:孟庆阳,实物焊接,仿真测试,报告整理 3、组员:初清晨,实物焊接,报告整理,仿真测试

目录 摘要 0 第一章绪论 0 1.1智能小车的意义和作用 0 1.2智能小车的现状 (1) 第二章方案设计与论证 (2) 2.1 主控系统 (2) 2.2 电机驱动模块 (2) 2.3 循迹模块 (3) 2.4 避障模块 (3) 2.5 机械系统 (4) 2.6电源模块 (4) 第三章硬件设计 (5) 3.1 AT89S52单片机的简介 (5) 3.2总体设计 (8) 3.3驱动电路 (9) 3.4信号检测模块 (10) 3.5主控电路 (10) 第四章软件设计 (10) 4.1主程序框图 (10) 4.2电机驱动程序 (10) 4.3循迹模块 (11) 4.4避障模块 (15) 结束语 (19) 致谢 (20) 附录一循迹加红外避障综合程序 (22) 附录二实物图 (25)

摘要 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等用途。智能电动小车就是其中的一个体现。设计者可以通过软件编程实现它的行进、循迹、停止的精确控制以及检测数据的存储、显示,无需人工干预。因此,智能电动小车具有再编程的特性,是机器人的一种。 本设计采用AT89S52单片机加电机驱动电路和红外遥控及循迹模块还有红外接收一体化传感器设计而成,采用模块化的设计方案,运用红外遥控器控制小车的前进、后退、左转、右转、启动和停止。 关键词:智能小车;STC89C52单片机;L9110;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and the road obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car; STC89C52 MCU; L298N; Infrared Emitting Diode 第一章绪论 1.1智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,

相关主题