搜档网
当前位置:搜档网 › 1-s2.0-S0378775311012262-main (1)

1-s2.0-S0378775311012262-main (1)

1-s2.0-S0378775311012262-main (1)
1-s2.0-S0378775311012262-main (1)

Journal of Power Sources 196 (2011) 8843–8849

Contents lists available at ScienceDirect

Journal of Power

Sources

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j p o w s o u

r

Pulsed laser deposition of manganese oxide thin ?lms for supercapacitor applications

Dongfang Yang ?

Industrial Materials Institute,National Research Council Canada,800Collip Circle,London,ON,N6G 4X8,Canada

a r t i c l e

i n f o

Article history:

Received 10May 2011

Received in revised form 9June 2011Accepted 10June 2011

Available online 17 June 2011

Keywords:

Electrochemical capacitor Supercapacitor Ultracapacitor

Pulsed laser deposition Manganese oxides Thin ?lms

a b s t r a c t

Thin ?lms of manganese oxides have been grown by the pulsed laser deposition (PLD)process on sili-con wafer and stainless steel substrates at different substrate temperatures and oxygen gas pressures.By proper selection of processing parameters such as temperature and oxygen pressure during the PLD process,pure crystalline phases of Mn 2O 3,Mn 3O 4as well as amorphous phase of MnO x were successfully fabricated as identi?ed by X-ray diffraction.The pseudo-capacitance behaviours of these different phases of manganese oxides have also been evaluated by the electrochemical cyclic voltammetry measured in 0.1M Na 2SO 4aqueous electrolyte at different scan rates.Their speci?c current and capacitance deter-mined by electrochemical measurements were compared and the results show that crystalline Mn 2O 3phase has the highest speci?c current and capacitance,while the values for crystalline Mn 3O 4?lms are the lowest.The speci?c current and capacitance values of the amorphous MnO x ?lms are lower than Mn 2O 3but higher than Mn 3O 4.The speci?c capacitance of Mn 2O 3?lms of 120nm thick reaches 210F g ?1at 1mV s ?1scan rate with excellent stability and cyclic durability.This work has demonstrated that PLD is a very promising technique for screening high performance active materials for supercapacitor applications due to its excellent ?exibility and capability of easily controlling chemical composition,microstructures and phases of materials.

Crown Copyright ? 2011 Published by Elsevier B.V. All rights reserved.

1.Introduction

Supercapacitors store energy using either ion adsorption (elec-trochemical double layer capacitors)or fast surface redox reactions (pseudo-capacitors).Electrochemical double layer capacitors use high surface area activated carbon as the active electrode mate-rials,while metal oxides,such as RuO 2,Fe 3O 4or MnO 2,as well as electronically conducting polymers,are used as the active electrode materials for the pseudo-capacitors [1].The speci?c pseudo-capacitance of metal oxides typically exceeds double layer capacitance of carbon materials due to involving the Faraday charge transfer reactions.Among all the metal oxides,speci?c pseudo-capacitance of RuO 2is one of the highest and its pseudo-capacitive behaviours have been most widely studied.However,RuO 2is expensive which limits its wide scale applications.Man-ganese oxide is regarding as the most promising candidate material among the less expensive metal oxides to replace RuO 2for pseudo-capacitors.It is relatively low cost,low toxicity,and environmental friendly.The charge storage mechanism of manganese oxide based on surface adsorption of electrolyte cations as well as proton incor-?Tel.:+15194307147;fax:+15194307064.E-mail address:dongfang.yang@nrc.gc.ca

poration which accompanies the oxidation/reduction of Mn ions is in according with the following reaction:

MnO ?(OC)?+?C ++?e ??MnO ???(OC)?+?

(1)

where C +denotes the protons (H +)and alkali metal cations (Li +,Na +,K +)in the electrolyte,and MnO ?(OC)?and MnO ???(OC)?+?indicate manganese oxide in high and low oxidation states,respectively.Manganese oxides evaluated for supercapacitor application are typically synthesized by reducing aqueous KMnO 4solution with various reducing agents such as potassium borohydride,sodium dithionite,sodium hypophosphite,and hydrochloric acid under various controlled pH conditions [2].They can also be directly deposited on metallic or graphite substrates by electrochemi-cal anodic deposition in Mn(CH 3COO)2solution [3]or in MnSO 4solution [4].Sol–gel method has also been reported to synthe-size nanostructured manganese dioxide material using manganese acetate (MnAc 2·4H 2O)and citric acid (C 6H 8O 7·H 2O)as the raw materials [5].Manganese oxide was also prepared in the thin ?lm form by anodic oxidation of metallic manganese ?lms deposited by sputtering [6].Electrochemical oxidation converts the sputtered Mn metal thin ?lm into a porous,dendritic structure of manganese oxide which displays signi?cant high speci?c capacitance.

Theoretical capacities of manganese oxides range from 1100to 1300F g ?1[7–11],but these high values are hardly achievable.

0378-7753/$–see front matter.Crown Copyright ? 2011 Published by Elsevier B.V. All rights reserved.doi:10.1016/j.jpowsour.2011.06.045

8844 D.Yang/Journal of Power Sources196 (2011) 8843–8849

The oxidation state of manganese ions in the oxides is a very crit-ical factor affecting the speci?c capacitance.It was believed that manganese oxides involving tetravalent Mn(4+)ions such as MnO2 exhibits much better performance than manganese oxides involv-ing trivalent Mn(3+)and divalent Mn(2+)ions such as Mn2O3and Mn3O4,respectively[12–14].The pseudo-capacitive performance of manganese oxides are also affected by their microstructures and surface morphologies which are controlled by their fabrica-tion methods and processing conditions.Since microstructures and morphology are closely related to the speci?c surface area, they will therefore affect the speci?c capacitance.Manganese oxides with amorphous or poor crystallinity structures possess porous microstructure and larger surface https://www.sodocs.net/doc/8c10426604.html,rger surface area implies more faradaic active sites and thereby higher pseudo-capacitance,however,the electrical conductivity for amorphous or poor crystallinity structures are relatively low.In contrast, manganese oxides with high crystallinity can give rise to higher electrical conductivity but their surface area also reduces simul-taneously.Surface area reduction sometime can be compensated by the existing of tunnels in the crystalline structures such as ?-,?-?-or?-MnO2for ion intercalation,therefore could pro-vide additional pseudo-capacitance and are of great interest to be exploited[15].Whether an amorphous or crystalline microstruc-ture of manganese oxides is more favourable for pseudocapacitor application will depend on which factors(e.g.surface area,con-ductivity or tunnels)is dominant one.Most of manganese oxide prepared and used for supercapacitors has an amorphous or poor crystallinity structures and normally consists of mixed valence states in which the oxidation states of manganese ions exists in all the2+,3+and4+(for MnO,Mn3O4and Mn2O3),respec-tively.Although proper heat-treatment of amorphous manganese oxide can be used to form crystalline structure,it is normally very dif?cult to prepare pure phase of crystalline or amorphous man-ganese oxides of single valence state,therefore pseudocapacitive behaviours of various pure phase of manganese oxide with single valence state have not been well-understood[16,17].It would be very interested to prepare manganese oxides of different phases and valence states using the same fabrication process and then compared their pseudo-capacitance behaviours in order to iden-tify the most suitable chemical composition,phases and valence states for pseudo-capacitor applications.

As one of thin?lm physical vapour deposition processes,pulsed laser deposition(PLD)is very suitable for the fabrication of either amorphous or pure crystalline phase of active materials such as manganese oxides due to its?exibility and easy in controlling the deposition process parameters;therefore it possesses the great potential for supercapacitor material research.In this work,PLD process parameters will be developed in order to fabricate amor-phous and pure phase of manganese oxide of different valences such as dimanganese trioxide,trimanganese tetraoxide and man-ganese dioxide.Si(100)wafers and polished stainless steel316 were used as substrates for the deposition.Manganese oxide thin ?lms deposited on Si substrates were characterized by XRD for their phase identi?cation,while?lms deposited on stainless steel was evaluated by electrochemical CV for the determination of speci?c current and capacitance.A comparison of pseudo-capacitance of various manganese oxides with manganese at different oxidation states prepared by PLD will be given in this paper.

2.Experimental

2.1.Pulsed laser deposition(PLD)of manganese oxide thin?lms

Various manganese oxide?lms were grown on silicon and stain-less steel substrates using the PLD technique.The PLD process uses a pulsed laser beam generated by a KrF excimer laser(Lambda Physik LPX-210i)operating at a wavelength of248nm and pulse duration of25ns to ablate a target and deposit thin?lm in an vac-uum chamber(PVD products,PLD-3000).During the deposition process,the laser beam was introduced into the deposition cham-ber through a quartz window and focused with optical lens onto the target surface.The laser?uence on the target was adjusted to be2–3J cm?2,while the repetition rate was?xed at50Hz. For the deposition of manganese oxide?lms,a3.5-inch circular target of either manganese oxide(Mn3O4,99.9%pure from K.J. Lesker)or metallic Mn(Mn,99.95%pure from K.J.Lesker)was used.The laser beam ablated the rotating Mn3O4or Mn target at a speed of18rpm in various temperatures and oxygen pres-sures to form manganese oxide thin?lms deposited directly on the 3-inch Si(100)[p-type, =10–30 cm,from Polishing Corpora-tion of America]or20mm×30mm×1.0mm polished rectangular stainless steel316substrates.To improve the?lm homogeneities, the substrates were rotated along the vertical axis at a speed of 35rpm.Before introducing a Si wafer into the deposition cham-ber,it was cleaned by acetone,and isopropyl alcohol,and then etched in2.5%HF acid for5min to remove the native oxide.The stainless steel substrates were polished by SiC240micro-grits sand paper and then by Al2O3paste of0.05?m to the mirror-like?nish. They were then cleaned by acetone and isopropyl alcohol before being introduced into the deposition chamber.After loading the substrate,the system was pumped down to a base pressure below 3×10?7Torr using a turbo-molecular pump.The substrate to be coated was facing the target,with a stand-off distance of8–12cm. During deposition,some substrates were heated,under vacuum, using a programmable non-contact radioactive heater.Oxygen gas (UHP)pressure was adjusted to be0–500mTorr during deposi-tion.Detailed information about the deposition processes has been given in Ref.[18].The?lm structure was examined by using X-ray diffraction equipment(XRD,Philips,X-Pert MRD)with monochro-matized Cu K?in the?0–2?thin?lm con?guration,where?0was ?xed at0.5?for MnO x?lms.Their surface morphology was then analyzed by a Leo440?eld emission scanning electron microscope (FE-SEM).The re?ectance of the?lms at the ultra-violet(UV)and visible wavelength ranges was also measured using a photospec-trometer from Scienti?c Computing International.The thickness of?lms determined from the re?ectance data was in the range of 100–400nm.The weight of un-coated and MnO x?lms coated sub-strates were measured by a highly sensitive balance with precision down to10?g and used to calculate the weight of the MnO x?lms.

2.2.Electrochemical characterization

Electrochemical characterization of manganese oxide?lms was performed by cyclic voltammetry(CV)in a standard three-electrode cell with0.1M Na2SO4aqueous solution as the electrolyte.The counter electrode was a platinised platinum wire and the reference electrode was an Ag/AgCl electrode?tted with a salt bridge.The potential was cycled with a Gamry PC3potentiostat within a potential range?0.1to0.9V vs.Ag/AgCl at a scan rate of 1,5,10,20and50mV s?1,respectively.This potential range was chosen to ensure that redox processes on manganese oxide?lms occur homogenously and reversibly.The test cell con?guration was designed such that all the thin-?lm samples under testing have the same surface area(~4.6cm2)exposed to the electrolyte during electrochemical cycling experiments.This ensures that capacitance of MnO x of different oxidation states and phases can be compared. The speci?c current and capacitance of manganese oxide?lms were calculated from cyclic voltammogram data and the weight of man-ganese oxide?lms.The weight of the manganese oxide?lms were determined by subtracting the weight of manganese oxide?lm coated stainless steel substrate by the bare stainless steel sub-

D.Yang/Journal of Power Sources196 (2011) 8843–8849

8845

Fig.1.XRD spectra of manganese oxide?lms deposited by PLD at substrate temper-atures of500?C in various oxygen gas pressures using a Mn3O4target.XRD spectrum of the Mn3O4target was also shown for comparison.

strate.The electrical current and capacitance data were divided by the weight of the?lm to obtain the speci?c current and speci?c capacitance.Galvanostatic charge/discharge cycles of manganese oxide?lms of various phases were carried out at various constant currents ranging from100to400?A.

3.Results and discussion

3.1.XRD characterization of manganese oxide?lms deposited by PLD

XRD patterns of manganese oxide?lms deposited by PLD on silicon substrate using a Mn3O4target at various substrate tem-peratures and oxygen processing gas pressures are shown in Figs.1and2.XRD pattern of the Mn3O4target was also presented in the?gures for comparison.XRD pattern of Mn3O4target can be identi?ed as the tetragonal structure(PDF card#24-0734)[19]. Excimer laser ablation of Mn3O4target at substrate temperature of500?C in vacuum and oxygen pressure lower than1mTorr pro-duced also a pure tetragonal Mn3O4phase(PDF card#24-0734), however,some diffraction peaks shown in Mn3O4target such as peaks at2?=31.0,36.1,58.5,64.7which correspond to diffraction from index planes of(200),(211),(321)and(400),respectively, disappeared.This suggested Mn3O4?lm deposited on Si(100)has preferential orientation.When oxygen pressure during the PLD process increased to values higher than10mTorr,a pure Mn2O3 phase was formed.XRD patterns of Mn2O3?lms can be identi?ed as either a cubic structure(PDF card#41-1442)or an orthorhom-bic structure(PDF card#24-0508).Due to similarity in the XRD patterns of both structures,it is hard to judge whether a cubic or an orthorhombic structure was formed.The XRD peaks for the Mn2O3?lm deposited at300vmTorr O2are weaker than those of peaks for the Mn2O3?lms deposited at500vmTorr and100mTorr O2,respectively.This is due to the thickness of this particular?lm is thinner than the other two.Fig.2(a)shows XRD patterns of manganese oxide?lms deposited at the substrate temperature of 200?C in oxygen pressure ranging from1mTorr to500mTorr.At 1mTorr oxygen pressure,the pure crystalline Mn3O4phase was deposited,while at oxygen pressure higher than100mTorr an amorphous phase was formed as shown in the?gure.Fig.2(b)gives XRD patterns of manganese oxide?lms deposited in250mTorr O2 pressure at substrate temperatures ranging from400?C to500?C. Amorphous MnO x?lms were produced at substrate temperatures below450?C,while at500?C the pure crystalline Mn2O3phase

was Fig.2.XRD spectra of manganese oxide?lms deposited by PLD at(a)200?C in various oxygen gas pressures and in(b)250mTorr of oxygen pressure at various temperatures using a Mn3O4target.XRD spectrum of the Mn3O4target was also shown for comparison.

formed.The oxidation state of Mn(either+2,+3or+4)in amorphous ?lms,unfortunately,cannot be determined basing on XRD patterns.

XRD patterns of manganese oxide?lms deposited by PLD on silicon substrate using a metallic Mn target at various substrate temperatures and oxygen pressures are shown in Figs.3and4. XRD pattern of the Mn target was also presented in the?gures for comparison.The XRD pattern of Mn target can be identi?ed as the cubic structure?-Mn(PDF card#32-0637).At700?C substrate temperature,laser ablation of the Mn target in oxygen pressure of1mTorr produced the pure tetragonal Mn3O4phase(PDF card #24-0734),similar to the?lm deposited in the same oxygen pres-sure at500?C using the Mn3O4target.When the oxygen pressure increased to10mTorr of O2,mixed phases of Mn3O4and Mn2O3 co-formed in the?lm.When oxygen pressures are higher than 20mTorr,only the pure crystalline Mn2O3phase appeared in the deposited?lms.When manganese oxide?lms deposited at temper-atures of400?C or lower in40mTorr O2as shown in Fig.4(a),they consist of amorphous manganese oxides MnO x and cubic structure

8846 D.Yang /Journal of Power Sources 196 (2011) 8843–

8849

Fig.3.XRD spectra of manganese oxide ?lms deposited by PLD at substrate temper-atures of 700?C in various oxygen gas pressures using a Mn target.XRD spectrum of the Mn target was also shown for

comparison.

Fig.4.XRD spectra of manganese oxide ?lms deposited by PLD at (a)40mTorr and (b)10mTorr of O 2pressure at various substrate temperatures using a Mn target.XRD spectrum of the Mn target was also shown for comparison.

?-phase metallic Mn (and possibly some ?-Mn as indicating by diffraction peaks at 2?=45),which indicate that under low sub-strate temperatures,not all the metallic Mn vapour (plume)was oxidized to form manganese oxides,therefore metallic ?-phase still existed in the ?lms.In the same 40mTorr O 2,laser ablation of Mn target at 500?C or higher produced only pure crystalline Mn 2O 3phase indicating that all the Mn vapour was totally oxi-dized to form the oxide.It is also very interested to see that in lower O 2pressure of 10mTorr,even at a temperature as low as 400?C,Mn 2O 3phase can be deposited as shown in Fig.4(b).Only when the substrate temperature reaches over 700?C,?lms con-sisting of mixed Mn 3O 4and Mn 2O 3phases were deposited.XRD results in Figs.1–4clearly demonstrate that by controlling the pro-cessing parameters of the PLD technique,a pure phase of either crystalline Mn 2O 3or Mn 3O 4,a mixed phase of crystalline Mn 2O 3and Mn 3O 4,a mixed phase of metallic Mn and amorphous MnO x ,as well as an amorphous phase MnO x can be successfully prepared.The microstructures of manganese oxide ?lms deposited by PLD at various temperatures and oxygen pressures were very different as revealed by FE-SEM.Fig.5shows typical examples of the FE-SEM topography images of manganese oxide ?lms deposited on Si(100)substrates.The grain size,surface roughness and grain ori-entation of manganese oxide ?lms deposited at 200?C in 100mTorr O 2,500?C in 1mTorr O 2,and 500?C in 100mTorr O 2,respec-tively,are very much dependent on the temperature and oxygen pressure during the PLD process as shown in the ?gure.This is consistent with the XRD results in Figs.1–4.The ability of the PLD technique to produce manganese oxides with different oxi-dation states,phases and microstructures allows us to identify the best structures and compositions of active material candidates for supercapacitor applications.Unfortunately,neither a pure phase MnO 2or MnO can be obtained by PLD using a Mn 3O 4or a metal-lic Mn target within our system’s temperature range of 20–750?C and oxygen pressure range of 2×10?7–500mTorr.According to the oxygen pressure–temperature phase diagram of manganese oxide described in Fig.2of Ref.[20],the conditions for thermo-dynamically stable MnO phase to exist in the temperature range of 20–750?C,the oxygen partial pressure has to be lower than 10?11atmosphere which is unachievable in the PLD system used in this study.Although PLD is well-known for the ability to deposit ther-modynamically unstable phase due to the non-equilibrium nature of the technique,it is unlikely that MnO phase can be deposited since the temperature and pressure values are too far away from their equilibrium conditions.Although the resulting phases of man-ganese oxides prepared in our PLD experiments using either Mn 3O 4or Mn target did not exactly match what are predicted by the phase diagram,the conditions at which individual phase was deposited are not too far away from its equilibrium conditions described in the phase diagram.According to the diagram,MnO 2phase is ther-modynamically stable at temperatures lower than 300?C when the oxygen partial pressure is less than 1Torr;therefore,the amor-phous MnO x ?lms deposited at 200?C and 100mTorr O 2in this work,very likely,was an amorphous MnO 2.Tabbal et al.reported [21]that laser ablation of a MnO target in oxygen gas ambient above 250mTorr and an optimal deposition temperature of 500?C,crys-talline MnO 2phase can be deposited on Si substrates.However,under such conditions,the thermodynamically stable phases are either pure Mn 2O 3phase or mixed Mn 2O 3and Mn 3O 4phases but not the MnO 2according to the phase diagram.An effort to repro-duce those results is currently underway and the results will be reported in our future communication.

3.2.Electrochemical characterization of manganese oxide ?lms

Fig.6compared the cyclic voltammograms (CV)of manganese oxide ?lms of different phases deposited on polished stainless steel

D.Yang /Journal of Power Sources 196 (2011) 8843–8849

8847

Fig.5.FE-SEM topography images of manganese oxide ?lms deposited by PLD on Si(100)substrates at (a)200?C in 100mTorr O 2,(b)500?C in 1mTorr O 2,and (c)500?C in 100mTorr O 2

.

Fig.6.Cyclic voltammograms of manganese oxide ?lms deposited by PLD at various substrate temperatures and oxygen gas

pressures.

Fig.7.Speci?c capacitance vs.CV scan rates for manganese oxide ?lms deposited by PLD at various substrate temperatures and oxygen gas pressures.

316substrates at various conditions.For comparison of different manganese oxide ?lms,the measured electric current in CV was normalized by the weight of the ?lms and reported as speci?c cur-rent vs.electric potential.It is clearly to see that crystalline Mn 3O 4?lms deposited in low oxygen pressure of 1mTorr O 2at both 200?C and 500?C has the lowest speci?c current in the CV which indicates that Mn 3O 4phase has the poorest pseudo-capacitance behaviours.Crystalline Mn 2O 3phase deposited at 500?C and 100mTorr shows the highest speci?c current.The amorphous MnO x ?lm deposited in 100mTorr O 2at 200?C has the second highest speci?c current.The curves of speci?c capacitance vs.CV scan rate of different phases of manganese oxides are shown in Fig.7.Speci?c capaci-tance of the pure Mn 3O 4phase at 50mV s ?1scan rate is only 3F g ?1,while at 1mV s ?1it is 12F g ?1.Crystalline Mn 2O 3?lm has the high-est speci?c capacitance.It has a speci?c capacitance of 58F g ?1at 50mV s ?1scan rate and reaches 210F g ?1at 1mV s ?1scan rate.The speci?c capacitances of the amorphous MnO x ?lm are 25F g ?1at 50mV s ?1and 77F g ?1at 1mV s ?1,respectively.The speci?c capacitance increases with the decrease in scan rate for all the man-ganese oxide ?lm indicates that kinetic of surface redox reactions of manganese oxide is relatively slow and the charging–discharging process of manganese oxide ?lms does not behave like an ideal dou-ble layer capacitor.It could also indicate that resistance existed for ions of electrolyte to diffuse into the PLD manganese oxide ?lms.Fig.8gives the Galvanostatic charge/discharge cycles of manganese oxide ?lms of different phases at constant currents ranging from 100to 400?A (or 22to 87?A cm ?2).The speci?c capacitance,cal-culated from charge/discharge curves,for crystalline Mn 3O 4

phase

Fig.8.Galvanostatic charge/discharge cycles of various manganese oxide ?lms in 0.1M K 2SO 4at various constant currents.

8848 D.Yang /Journal of Power Sources 196 (2011) 8843–

8849

Fig.9.The Galvanostatic charge/discharge cycling behaviour of the crystalline Mn 2O 3?lm at constant currents of 600?A (131?A cm ?2).

deposited at 500?C and 200?C are 2.5F g ?1and 3.1F g ?1,

respec-tively.The crystalline Mn 2O 3phase has the speci?c capacitance of 75.5F g ?1and the amorphous MnO x was 10.9F g ?1.Again the crystalline Mn 2O 3?lm gives highest speci?c capacitance value and is consistent with the data obtained from CVs.The Galvanostatic charge/discharge cycling behaviour of the crystalline Mn 2O 3?lm at constant current of 600?A (131?A cm ?2)was also studied and the results are shown in Fig.9.The speci?c capacitance of the crystalline Mn 2O 3?lm,calculated from discharge curves,increases from orig-inal value of 78F g ?1to around 91F g ?1after 8cycles which could be attributed to the increase of surface roughness due to cycling,and then becomes almost constant throughout the rest 30cycles.The degradation in speci?c capacitance from cycles 8(91F g ?1)to cycle 30(88F g ?1)is less than 3.3%.Since the cycling data presented in Fig.9is for a very thin Mn 2O 3?lm (around 120nm),it normally should degrade much more than the conventional supercapacitor electrode where much thicker active materials (>100?m)is used.As the pseudo-capacitance behaviour is only originated from sur-face/subsurface redox reactions,thicker ?lm of active materials is expected to degrade more slowly as long as the material is stable and attached well to the current collector.The very slow degrada-tion of such thin Mn 2O 3?lm indicated that the stability and cyclic durability of the crystalline Mn 2O 3?lm is excellent.

Most of the literature reports suggested that MnO 2exhibits bet-ter pseudo-capacitance performance than that of Mn(OH)2,Mn 2O 3,and Mn 3O 4[7–9],in this study,however,crystalline Mn 2O 3?lms was found to be better than amorphous MnO x ?lms (which very likely is an amorphous MnO 2according to the phase diagram).The better performance of the crystalline Mn 2O 3?lm than the amorphous MnO 2?lm may due to relatively higher electrical con-ductivity and better electrical contact with the current collector of a crystalline phase than an amorphous phase.Crystalline MnO 2?lm,unfortunately,was unable to be fabricated in this study,and hence a comparison between the speci?c capacitances of the crystalline MnO 2and Mn 2O 3?lms cannot be given.The crystalline manganese oxide ?lms such as Mn 2O 3and Mn 3O 4prepared by PLD in this study are pure and have very well-de?ned crystal structures and surface morphologies as indicating by XRD.Such pure crystalline phases are hard to be prepared by wet-chemical or electrochemi-cal methods and could provide really reliable pseudo-capacitance data for comparison of manganese oxides of difference phases and valence states.In this study,not all the phases and valance states of manganese oxides have been successfully prepared;there-fore a completed comparison of all materials cannot be given.The

pseudo-capacitance data that were obtained in this study also con-sist with results reported by some other researchers.For example,relatively high speci?c capacitance (~100F g ?1at 5mV s ?1,very close to this study)of Mn 2O 3nanospheres was also reported by Nathan et al.in alkaline medium [22].The authors believed that Mn 2O 3samples exhibit simple redox reaction via Mn 3+/Mn 4+cou-ple yielding one electron transfer and they attributed the high pseudocapacitance to the presence of facile crystal structure that facilitates the easy insertion/removal of electrolyte ions (OH ?)in Mn 2O 3nanospheres.Very low speci?c capacitance value was also observed by Dubal et al.[23]for Mn 3O 4thin ?lms pre-pared by a chemical bath deposition method,however,they found that the interlocked cubelike Mn 3O 4?lm can be transformed to nano?akes of layered birnessite MnO 2using voltammetric cycling in 1M Na 2SO 4electrolyte at 100mV s ?1scan rate within the poten-tial window of 0.1to +0.9V.The speci?c capacitance of Mn 3O 4?lms increased from 11.8to 139.3F g ?1at 100mV s ?1after 3000potential cycles.In an acid medium (e.g.HCl),however,an irre-versible dissolution of Mn 3O 4could take place during the potential scan [24].Actually,Mn 3O 4?lms deposited by PLD in this study were found to delaminate from stainless steel substrate after long time potential cycles which did not occurred for crystalline Mn 2O 3and amorphous MnO x ?lms.The speci?c current and capac-itance of all the manganese oxide ?lms increased after long time cycling between potential ?0.1and 0.9V vs.Ag/AgCl,The crys-talline Mn 2O 3?lms increased the most and its speci?c capacitance reached 108F g ?1at 50mV s ?1.After long time cycling,it was also interested to ?nd that the increase in speci?c capacitance at high scan rate is much larger than at low scan rate and different in spe-ci?c capacitance at various scan rate was decreased.The reason for the increase in speci?c capacitance by cycling is believed to be due to the increase in the surface roughness and porosity of the PLD manganese oxide ?lms after cycling.More rough and porous ?lm will reduce the resistance for ions to move in/out of the manganese oxide ?lm,therefore increase the speci?c capacitance at high scan rates.In the case of Mn 3O 4,the increase in capacitance could also due to transformation of Mn 3O 4to MnO 2as reported in Ref.[23].

4.Conclusion

PLD technique has been used in this study to deposit the man-ganese oxide ?lm on Si(100)and stainless steel substrates.By varying the deposition processing parameter conditions such as substrate temperature and oxygen pressure,pure phases of crys-talline Mn 2O 3,Mn 3O 4as well as an amorphous phase of MnO x were successfully grown.The speci?c current and capacitance of differ-ent manganese oxide ?lms determined by cyclic voltammetry show that polycrystalline Mn 2O 3phase has the highest speci?c current and capacitance,while the values for polycrystalline Mn 3O 4?lms are the lowest.The speci?c current and capacitance values of the amorphous MnO x ?lm are lower than crystalline Mn 2O 3but higher than crystalline Mn 3O 4?lm.The speci?c capacitance of Mn 2O 3?lm reaches 200F g ?1at 1mV s ?1scan with excellent stability and cyclic durability.This work demonstrated that PLD is a very promising technique for supercapacitor material research due to its excellent ?exibility and capability of controlling microstructures and phases of various materials.

Acknowledgements

The authors would like to thank Transport Canada and National Research Council of Canada’s automotive of?ce for supporting this supercapacitors project.The author is also indebted to Mr.B.Gibson and Mr.M.Zeman of NRC-IMI for their technical assistance.

D.Yang/Journal of Power Sources196 (2011) 8843–88498849

References

[1]P.Simon,Y.Gogotsi,Nat.Mater.7(11)(2008)845–854.

[2]Y.U.Jeong,A.Manthiram,J.Electrochem.Soc.149(11)(2002)A1419–A1422.

[3]Q.Huang,X.Wang,Electrochim.Acta52(4)(2006)1758–1762.

[4]K.R.Prasad,N.Miura,J.Power Sources135(1–2)(2004)354–360.

[5]X.Wang,A.Yuan,J.Power Sources172(2)(2007)1007–1011.

[6]J.N.Broughton,M.J.Brett,Electrochim.Acta49(25)(2004)4439–4446.

[7]S.Shiraishi,M.Kibe,T.Yokoyama,H.Kurihara,N.Patel,A.Oya,Y.Kaburagi,Y.

Hishiyama,Appl.Phys.A82(2006)585.

[8]D.-W.Wang,F.Li,Z.-G.Chen,G.Q.Lu,H.-M.Cheng,Chem.Mater.20(2008)

7195.

[9]M.Hughes,M.S.P.Shaffer,A.C.Renouf,C.Singh,G.Z.Chen,D.J.Fray,A.H.Windle,

Adv.Mater.14(2002)382.

[10]M.Hughes,G.Z.Chen,M.S.P.Shaffer,D.J.Fray,A.H.Windle,Chem.Mater.14

(2002)1610.

[11]Girish Arabale,Deepali Wagh,Kulkarni Mahesh,I.S.Mulla,S.P.Vernekar,K.

Vijayamohanan,A.M.Rao,Chem.Phys.Lett.376(2003)207.

[12]S.C.Pang,M.A.Anderson,T.W.Chapman,J.Electrochem.Soc.147(2000)444.[13]C.C.Hu,T.W.Tsou,https://www.sodocs.net/doc/8c10426604.html,mun.4(2002)105.

[14]R.H.Ma,Y.Bando,L.Q.Zhang,T.Sasaki,Adv.Mater.16(2004)918.

[15]T.Brousse,M.Toupin,J.Electrochem.Soc.153(12)(2006)A2171–A2180.

[16]J.K.Chang,Y.L.Chen,J.Power Sources135(1–2)(2004)344–353.

[17]J.K.Chang,W.T.Tsai,J.Electrochem.Soc.152(10)(2005)A2063–A2068.

[18]S.Boughaba,G.I.Sproule,J.P.McCaffrey,M.Islam,M.J.Graham,Thin Solid Films

358(2000)104–113.

[19]Joint Committee on Powder Diffraction Standards,International Center for

Diffraction Data,1996.

[20]D.Kwon,T.Akiyoshi,H.Lee,https://www.sodocs.net/doc/8c10426604.html,naganz,J.Am.Ceram.Soc.91(3)(2008)

906–909.

[21]M.Tabbal,M.Abi-Akl,S.Isber,E.Majdalani,T.Christidis,Proc.SPIE Vol.7201

720104-1-6.

[22]T.Nathan,M.Cloke,S.R.S.Prabaharan,J.Nanomater.2008(2008)8(article ID

948183).

[23]Deepak P.Dubal,Dattatray S.Dhawale,Rahul R.Salunkhe,Chandrakant D.

Lokhande,J.Electrochem.Soc.157(7)(2010)A812–A817.

[24]Vadim B.Fetisov,Galina A.Kozhina,Alexander N.Ermakov,Andrey V.Fetisov,

Elena G.Miroshnikova,J.Solid State Electrochem.11(2007)1205–1210.

郝吉明第三版大气污染控制工程课后答案完整版

大气污染控制工程 课后答案 (第三版)主编:郝吉明马广大王书肖 目录 第一章概论 第二章燃烧与大气污染 第三章大气污染气象学 第四章大气扩散浓度估算模式 第五章颗粒污染物控制技术基础 第六章除尘装置 第七章气态污染物控制技术基础 第八章硫氧化物的污染控制 第九章固定源氮氧化物污染控制 第十章挥发性有机物污染控制 第十一章城市机动车污染控制

第一章 概 论 1.1 干结空气中N 2、O 2、Ar 和CO 2气体所占的质量百分数是多少? 解:按1mol 干空气计算,空气中各组分摩尔比即体积比,故n N2=0.781mol ,n O2=0.209mol ,n Ar =0.00934mol ,n CO2=0.00033mol 。质量百分数为 %51.75%100197.2801.28781.0%2=???= N ,%08.23%100197.2800 .32209.0%2=???=O ; % 29.1%1001 97.2894 .3900934.0%=???=Ar ,%05.0%100197.2801 .4400033.0%2=???=CO 。 1.2 根据我国的《环境空气质量标准》的二级标准,求出SO 2、NO 2、CO 三种污染物日平均浓度限值的体积分数。 解:由我国《环境空气质量标准》二级标准查得三种污染物日平均浓度限值如下: SO2:0.15mg/m 3,NO2:0.12mg/m 3,CO :4.00mg/m 3。按标准状态下1m 3 干空气计算,其摩尔数为mol 643.444 .221013 =?。故三种污染物体积百分数分别为:

SO 2: ppm 052.0643.44641015.03=??-,NO 2:ppm 058.0643.44461012.03 =??- CO : ppm 20.3643 .44281000.43 =??-。 1.3 CCl 4气体与空气混合成体积分数为1.50×10-4的混合气体,在管道中流动的流量为10m 3N 、/s ,试确定:1)CCl 4在混合气体中的质量浓度ρ(g/m 3N )和摩尔浓度c (mol/m 3N );2)每天流经管道的CCl 4质量是多少千克? 解:1)ρ(g/m 3 N )3 3 4/031.110 4.221541050.1N m g =???=-- c (mol/m 3 N )3 33 4/1070.610 4.221050.1N m mol ---?=??=。 2)每天流经管道的CCl 4质量为1.031×10×3600×24×10-3kg=891kg 1.4 成人每次吸入的空气量平均为500cm 3,假若每分钟呼吸15次,空气中颗粒物的浓度为200g μ/m 3,试计算每小时沉积于肺泡内的颗粒物质量。已知该颗粒物在肺泡中的沉降系数为0.12。 解:每小时沉积量200×(500×15×60×10-6)×0.12g μ=10.8g μ 1.5 设人体肺中的气体含CO 为2.2×10-4,平均含氧量为19.5%。如果这种浓度保持不变,求COHb 浓度最终将达到饱和水平的百分率。 解:由《大气污染控制工程》P14 (1-1),取M=210 2369.0105.19102.22102 4 22=???==--∝O p p M Hb O COHb ,

汉民族传统节日表

汉民族传统节日表(附2006西历具体日期) 汉民族15个主要节日: 春节、上元节(元宵节)、花朝节(花神节)、上巳节(女儿节)、寒食节、清明节、端午节、七夕节、中元节(鬼节)、中秋节、重阳节、冬至节、腊八节、祭灶日(小年)、除夕 汉民族传统节日近50个 ●正月 --------------- 初一:春节(元日、元旦、元正、元辰、元朔、正旦、正朔)2006.01.29 立春节(于立春日)2006.02.04 初七:人日节 2006.02.04 初八:谷日节 2006.02.05 初九:天日节 2006.02.06 初十:地日节 2006.02.07 十五:元宵节(上元节、灯节)2006.02.12 二十:天穿节 2006.02.17 廿五:填仓节 2006.02.22 晦日:正月晦 2006.02.27

--------------- 初一:中和节(太阳生日)2006.02.28 初二:春龙节(龙抬头、龙头节、土地会、春社日/属春秋两社日之一)2006.03.01 十二:花朝节(花神节、百花之神生日)2006.03.11 十五:扑蝶会 2006.03.14 十九:观音诞 2006.03.18 春分节(于春分日)2006.03.21 ●三月 --------------- 初三:上巳节(女儿节)2006.03.31 寒食节(冬至日后一百零五日,清明前一二日)2006.04.04 清明节(于清明日)2006.04.05 ●四月 --------------- 初八:浴佛节(释迦牟尼诞辰)2006.05.05 立夏节(于立夏日)2006.05.06 十八:碧霞元君节 2006.05.15

扩散工艺知识

第三章 扩散工艺 在前面“材料工艺”一章,我们就曾经讲过一种叫“三重扩散”的工艺,那是对衬底而言相同导电类型杂质扩散。这样的同质高浓度扩散,在晶体管制造中还常用来作欧姆接触,如做在基极电极引出处以降低接触电阻。除了改变杂质浓度,扩散的另一个也是更主要的一个作用,是在硅平面工艺中用来改变导电类型,制造PN 结。 第一节 扩散原理 扩散是一种普通的自然现象,有浓度梯度就有扩散。扩散运动是微观粒子原子或分子热运动的统计结果。在一定温度下杂质原子具有一定的能量,能够克服某种阻力进入半导体,并在其中作缓慢的迁移运动。 一.扩散定义 在高温条件下,利用物质从高浓度向低浓度运动的特性,将杂质原子以一定的可控性掺入到半导体中,改变半导体基片或已扩散过的区域的导电类型或表面杂质浓度的半导体制造技术,称为扩散工艺。 二.扩散机构 杂质向半导体扩散主要以两种形式进行: 1.替位式扩散 一定温度下构成晶体的原子围绕着自己的平衡位置不停地运动。其中总有一些原子振动得较厉害,有足够的能量克服周围原子对它的束缚,跑到其它地方,而在原处留下一个“空位”。这时如有杂质原子进来,就会沿着这些空位进行扩散,这叫替位式扩散。硼(B )、磷(P )、砷(As )等属此种扩散。 2.间隙式扩散 构成晶体的原子间往往存在着很大间隙,有些杂质原子进入晶体后,就从这个原子间隙进入到另一个原子间隙,逐次跳跃前进。这种扩散称间隙式扩散。金、铜、银等属此种扩散。 三. 扩散方程 扩散运动总是从浓度高处向浓度低处移动。运动的快慢与温度、浓度梯度等有关。其运动规律可用扩散方程表示,具体数学表达式为: N D t N 2?=?? (3-1) 在一维情况下,即为: 22x N D t N ??=?? (3-2) 式中:D 为扩散系数,是描述杂质扩散运动快慢的一种物理量; N 为杂质浓度; t 为扩散时间; x 为扩散到硅中的距离。 四.扩散系数 杂质原子扩散的速度同扩散杂质的种类和扩散温度有关。为了定量描述杂质扩散速度,引入扩散系数D 这个物理量,D 越大扩散越快。其表达式为: KT E e D D ?-=0 (3-3)

大气污染课后答案-4章

四章 大气扩散浓度估算模式 4.1 污染源的东侧为峭壁,其高度比污染源高得多。设有效源高为H ,污染源到峭壁的距离为L ,峭壁对烟流扩散起全反射作用。试推导吹南风时高架连续点源的扩散模式。当吹北风时,这一模式又变成何种形式? 解: 吹南风时以风向为x 轴,y 轴指向峭壁,原点为点源在地面上的投影。若不存在峭壁,则有 ]}2)(exp[]2)(){exp[2exp(2),,,(2 2 2222' z z y z y H z H z y u Q H z y x σσσσσπρ+-+---= 现存在峭壁,可考虑ρ为实源与虚源在所关心点贡献之和。 实源]}2)(exp[]2)(){exp[2exp(22 2 22221z z y z y H z H z y u Q σσσσσπρ+-+---= 虚源]}2)(exp[]2)(]{exp[2)2(exp[222 222 22z z y z y H z H z y L u Q σσσσσπρ+-+----= 因此]}2)(exp[]2)(){exp[2exp(22 2 2222z z y z y H z H z y u Q σσσσσπρ+-+---=+ ]}2)(exp[]2)(]{exp[2)2(exp[22 2 2222z z y z y H z H z y L u Q σσσσσπ+-+---- =]}2)(exp[]2)(]}{exp[2)2(exp[)2{exp(22 2 222222z z y y z y H z H z y L y u Q σσσσσσπ+-+----+- 刮北风时,坐标系建立不变,则结果仍为上式。 4.2 某发电厂烟囱高度120m ,内径5m ,排放速度13.5m/s ,烟气温度为418K 。大气温度288K ,大气为中性层结,源高处的平均风速为4m/s 。试用霍兰德、布里格斯(x<=10H s )、国家标准GB/T13201-91中的公式计算烟气抬升高度。 解: 霍兰德公式 m D T T T u D v H s a s s 16.96)5418 288 4187.25.1(455.13)7 .25.1(=?-?+?=-+= ?。 布里格斯公式 kW kW D v T T T Q s s a s H 210002952155.1341828841810 6.9 7.2106.97.22 3 23>=??-??=-??= --且x<=10Hs 。此时 3/23/213/11 3 /23/180.2429521362.0362.0x x u x Q H H =??==?--。

中国汉族节日风俗

竭诚为您提供优质文档/双击可除 中国汉族节日风俗 篇一:汉族的主要传统节日 主题:汉族的主要传统节日 一、学习任务 1、学习目标 了解中国传统的年节、民俗,主要是汉族的主要传统节日。了解民俗的概念,特别是江苏的传统民俗,主要掌握春节、清明节、端午节、中秋节、重阳节的特色由来及典故。 2、案例导入汉族的节日很多,主要有春节、清明节、 端午节、元宵节、中秋节等等。过“春节”又称为过年,是汉族人千百年来的传统节日,也是一年中最隆重的节日。过年时,除夕要守岁,初一要拜年。汉族传统节日,主要有腊祭、祭灶、春节、元宵、社日、清明、端午、中秋、重阳等。在诸节日中,以春节最隆重。春节在农历正月初一,是一年的开始。这个节日的本意,在除旧布新,送往迎来。春节前的腊祭拉开了年节的序幕。腊祭本来是农事完毕后,打猎取兽祭祀祖先百神的节日。汉朝以立冬后的第三个戌日为腊日。

南北朝以后,定在农历12月8日为腊日,俗称“腊八”。 二、知识点 汉族主要源于黄炎、东夷等部落联盟,同时吸收了周围的部分苗蛮、百越、戎狄等部落联盟的成分而逐渐形成。汉族以先秦华夏为核心,不断吸收其他民族的血统和文化,从而发展成拥有灿烂的古代文明和众多人口的民族。汉族不仅是中国也是全世界人口最多的民族,同时也形成了有民族特色的众多节日,在所有的传统节日中,最广泛、最隆重、最盛大、最丰富多彩的要算春节了。 一、春节 春节为一年的开始,即农历正月初一,是中国最隆重的传统节日,百姓俗称“过年”。关于“年”的来历,民间曾有一种传说:古时候大年三十晚上和年初一,有一种叫“年”的怪物,专门在这两天出来吃人。“年”凶猛异常,任何野兽都抵不过它,但一家挂红帘布和灶堂里正在烧火的人家平安无事,另有一家,几个牧童在比赛甩牛鞭子玩,半空中响起噼噼 啪啪声,“年”被吓跑了。所以,人家知道“年”怕红、怕光、怕响声。后来,等到年三十、初一时,家家户户就贴红纸、穿红衣服、挂红灯、敲铜锣、放爆竹,这样“年”就不会来了。 春节活动因时因地而异,一般春节活动从腊月二十三或

汉族的主要传统节日

主题:汉族的主要传统节日 一、学习任务 1、学习目标 了解中国传统的年节、民俗,主要是汉族的主要传统节日。了解民俗的概念,特别是江苏的传统民俗,主要掌握春节、清明节、端午节、中秋节、重阳节的特色由来及典故。 2、案例导入 汉族的节日很多,主要有春节、清明节、端午节、元宵节、中秋节等等。过“春节”又称为过年,是汉族人千百年来的传统节日,也是一年中最隆重的节日。过年时,除夕要守岁,初一要拜年。汉族传统节日,主要有腊祭、祭灶、春节、元宵、社日、清明、端午、中秋、重阳等。在诸节日中,以春节最隆重。春节在农历正月初一,是一年的开始。这个节日的本意,在除旧布新,送往迎来。春节前的腊祭拉开了年节的序幕。腊祭本来是农事完毕后,打猎取兽祭祀祖先百神的节日。汉朝以立冬后的第三个戌日为腊日。南北朝以后,定在农历12月8日为腊日,俗称“腊八”。 二、知识点 汉族主要源于黄炎、东夷等部落联盟,同时吸收了周围的部分苗蛮、百越、戎狄等部落联盟的成分而逐渐形成。汉族以先秦华夏为核心,不断吸收其他民族的血统和文化,从而发展成拥有灿烂的古代文明和众多人口的民族。汉族不仅是中国也是全世界人口最多的民族,同时也形成了有民族特色的众多节日,在所有的传统节日中,最广泛、最隆重、最盛大、最丰富多彩的要算春节了。 一、春节 春节为一年的开始,即农历正月初一,是中国最隆重的传统节日,百姓俗称“过年”。关于“年”的来历,民间曾有一种传说:古时候大年三十晚上和年初一,有一种叫“年”的怪物,专门在这两天出来吃人。“年”凶猛异常,任何野兽都抵不过它,但一家挂红帘布和灶堂里正在烧火的人家平安无事,另有一家,几个牧童在比赛甩牛鞭子玩,半空中响起噼噼

扩散工艺

扩散工艺培训----主要设备、热氧化、扩散、合金

前言: 扩散部按车间划分主要由扩散区域及注入区域组成,其中扩散区域又分扩散老区和扩散新区。扩散区域按工艺分,主要有热氧化、扩散、LPCVD、合金、清洗、沾污测试等六大工艺。本文主要介绍热氧化、扩散及合金工艺。 目录 第一章:扩散区域设备简介…………………………………… 第二章:氧化工艺 第三章:扩散工艺 第四章:合金工艺

第一章:扩散部扩散区域工艺设备简介 炉管设备外观: 扩散区域的工艺、设备主要可以分为: 炉管:负责高温作业,可分为以下几个部分: 组成部分功能 控制柜→对设备的运行进行统一控制; 装舟台:→园片放置的区域,由控制柜控制运行 炉体:→对园片进行高温作业的区域,由控制柜控制升降温 源柜:→供应源、气的区域,由控制柜控制气体阀门的开关。FSI:负责炉前清洗。

第二章:热氧化工艺 热氧化法是在高温下(900℃-1200℃)使硅片表面形成二氧化硅膜的方法。热氧化的目的是在硅片上制作出一定质量要求的二氧化硅膜,对硅片或器件起保护、钝化、绝缘、缓冲介质等作用。硅片氧化前的清洗、热氧化的环境及过程是制备高质量二氧化硅膜的重要环节。 2. 1氧化层的作用 2.1.1用于杂质选择扩散的掩蔽膜 常用杂质(硼,磷,砷等)在氧化层中的扩散系数远小于在硅中的扩散系数,因此氧化层具有阻挡杂质向半导体中扩散的能力。利用这一性质,在硅上的二氧化硅层上刻出选择扩散窗口,则在窗口区就可以向硅中扩散杂质,其它区域被二氧化硅屏蔽,没有杂质进入,实现对硅的选择性扩散。 1960年二氧化硅就已被用作晶体管选择扩散的掩蔽膜,从而导致了硅平面工艺的诞生,开创了半导体制造技术的新阶段。同时二氧化硅也可在注入工艺中,作为选择注入的掩蔽膜。作为掩蔽膜时,一定要保证足够厚的厚度,杂质在二氧化硅中的扩散或穿透深度必须要小于二氧化硅的厚度,并有一定的余量,以防止可能出现的工艺波动影响掩蔽效果。 2.1. 2缓冲介质层 其一:硅与氮化硅的应力较大,因此在两层之间生长一层氧化层,以缓冲两者之间的应力,如二次氧化;其二:也可作为注入缓冲介质,以减少注入对器件表面的损伤。 2.1.3电容的介质材料 电容的计算公式: C=ε0*εr *S/d ε0:真空介质常数 εr :相对介电常数 S :电容区面积 D :介质层厚度 P-Well SiO 2 Si 3N 4

中国主要传统节日及习俗简单罗列

中国主要传统节日及习俗简单罗列 1、(农历正月初一) 即夏历(农历)新年 时间:狭义农历正月初一,广义正月初一至正月十五 英文:The Spring Festival 古称:元日、元旦、元正、元辰、元朔、岁旦、岁首、岁朝、新正、首祚、三 元(“正”即正月之“正”) 俗称“过大年” 从此每年除夕,家家贴红对联、燃放爆竹;户户烛火通明、守更待岁。初一一大早,还要走亲串友道喜问好。这风俗越传越广,成了中国民间最隆重的传统节日。 (看春节联欢晚会) 元日(宋) 爆竹声中一岁除,; 千门万户瞳瞳日,总把新桃换旧符。 2、(农历正月十五) 时间:农历正月十五 英文:Lantern Festival 是中国一个重要的传统节日。正月十五日是一年中第一个月圆之夜,也是 一元复始,大地回春的夜晚,人们对此加以庆祝,也是庆贺新春的延续,因此又称“上元节”,即农历正月十五日。在古书中,这一天称为“上元”,其夜称“元夜”、“元夕”或“”。而元宵这一名称一直沿用至今 习俗:由于元宵有张灯、看灯的习俗,民间又习称为“灯节”。此外还有吃元 宵、踩高跷、猜灯谜、、赏花灯、等风俗。 3、(节气清明) (时间):公历(阳历)四月五日前后 是中国最重要的祭祀节日,是最适合祭祖和扫墓的日子。扫墓俗称上坟,祭祀死者的一

种活动。汉族和一些少数民族大多都是在清明节扫墓。 4、(农历五月初五) 时间:农历五月初五 英语:Drag on Boat Festival 农历五月初五日为“”,是中国一个古老的传统节日。端午节早在西周初期即有记载,并非为纪念屈原而设立的节日,但是端午节之后的一些习俗受到屈原的影响。 习俗:赛龙舟、吃粽子、佩香囊、饮雄黄酒 5、(农历七月初七) 时间:农历七月初七 来源 阴历七月七日的晚上称“”。中国民间传说牛郎织女此夜在天河鹊桥相会。所谓乞巧,即在月光对着织女星用彩线穿针,如能穿过七枚大小不同的针眼,就算很“巧”了。农谚上说“七月初七晴皎皎,磨镰割好稻。”这又是磨镰刀准备收割早稻的时候。 习俗 妇女于七夕夜向织女星穿针乞巧等风俗,受西方国家的影响,中国越来越多的情侣把那天视为中国情人节,男女双方会互赠礼物,或外出约会。 6、(农历八月十五) 时间:农历八月十五 英文:the mid-autumn festival 来源 阴历八月十五日,这一天正当秋季的正中,故称“”。到了晚上,月圆桂香,旧俗人们把它看作大团圆的象征,要备上各种瓜果和熟食品,是赏月的佳节。中秋节还要吃月饼。据传说,元朝末年,广大人民为了推翻残暴的元朝统治,把发起暴动的日期写在纸条上,放在月饼馅子里,以便互相秘密传递,号召大家在八月十五日起义。终于在这一天爆发了全国规模的农民大起义,推翻了腐朽透顶的元朝统治。此后,中秋吃月饼的风俗就更加广泛地流传开来。习俗 中秋夜人们会备上各种瓜果和熟食品到庭院赏月。 7、(农历九月九)

少数民族传统节日表汇编

中国少数民族主要节日 民族主要节日时间 阿昌族火把节农历六月二十五日会街节农历九月初十 泼水节农历二月二十九日撒神农历七月初一 尝新节农历八月十五日 白族三月街农历三月十五日火把节农历六月二十四日渔潭会农历八月十五日 保安族圣纪节伊斯兰教历三月十二日开斋节伊斯兰教历九月三十日古尔邦节伊斯兰教历十二月十日 布郎族开门节傣历十二月十五日关门节傣历九月十五日泼火节农历二月十九日 布依族 六月六农历六月初六 三月三农历三月初三朝鲜族 元日农历正月初一 上元节农历正月初五 寒食节农历四月初五 端午农历五月初五 哈尼族 十月节农历十月初一 六月节农历六月二十四日 哈萨克族 圣纪节伊斯兰教历三月十二日 开斋节伊斯兰教历九月三十日 古尔邦节伊斯兰教历十二月十日赫哲族赫哲年农历正月初一 回族 圣纪节伊斯兰教历三月十二日 开斋节伊斯兰教历九月三十日 古尔邦节伊斯兰教历十二月十日基诺族 打铁节农历一月 火把节农历六月 京族哈节农历六月初十 德昂族泼水节农历四月十五日 东乡族 圣纪节伊斯兰教历三月十二日 开斋节伊斯兰教历九月三十日 古尔邦节伊斯兰教历十二月十日

四月八农历四月初八 朝鲜族元日农历正月初一上元节农历正月初五寒食节农历四月初五端午农历五月初五 哈尼族 十月节农历十月初一 六月节农历六月二十四日 哈萨克族圣纪节伊斯兰教历三月十二日开斋节伊斯兰教历九月三十日古尔邦节伊斯兰教历十二月十日 赫哲族赫哲年农历正月初一 回族圣纪节伊斯兰教历三月十二日开斋节伊斯兰教历九月三十日古尔邦节伊斯兰教历十二月十日 基诺族 打铁节农历一月 火把节农历六月 京族哈节农历六月初十 德昂族泼水节农历四月十五日 东乡族圣纪节伊斯兰教历三月十二日

第四章-扩散

第四章--扩散 1.在恒定源条件下820℃时,钢经1小时的渗碳,可得到一定厚度的表面渗碳层,若在同样条件下.要得到两倍厚度的渗碳层需要几个小时? 2.在不稳定扩散条件下800℃时,在钢中渗碳100分钟可得到合适厚度的渗碳层,若在1000℃时要得到同样厚度的渗碳层,需要多少时间(D 0=2.4×10-12m 2/ sec :D 1000℃=3×10-11m 2/sec )? 4.在制造硅半导体器体中,常使硼扩散到硅单品中,若在1600K 温度下.保持硼在硅单品表面的浓度恒定(恒定源半无限扩散),要求距表面10-3cm 深度处硼的浓度是表面浓度的一半,问需要多长时间(已知D1600℃=8×10-12cm 2/sec ;当5.02=Dt x erfc 时,5 .02≈Dt x )? 5.Zn2+在ZnS 中扩散时,563℃时的扩散系数为3×10-14cm2/sec;450℃时的扩散系数为1.0×10-14cm2/sec ,求: 1)扩散的活化能和D 0; 2)750℃时的扩散系数。 6.实验册的不同温度下碳在钛中的扩散系数分别为2×10-9cm2/s(736℃)、5×10-9cm2/s(782℃)、1.3×10-8cm2/s(838℃)。 a)请判断该实验结果是否符合)exp(0RT G D D ?-=, b)请计算扩散活化能(J/mol ℃),并求出在500℃时的扩散系数。 7.在某种材料中,某种粒子的晶界扩散系数与体积扩散系数分别为Dgb=2.00×10-10exp (-19100/T )和Dv=1.00×10-4exp(-38200/T),是求晶界扩散系数和温度扩散系数分别在什么温度范围内占优势? 8. 能否说扩散定律实际上只要一个,而不是两个? 9. 要想在800℃下使通过α-Fe 箔的氢气通气量为2×10-8mol/(m 2·s),铁箔两侧氢浓度分别为3×10-6mol/m 3和8×10-8 mol/m 3,若D=2.2×10-6m 2/s,试确定: (1) 所需浓度梯度; (2) 所需铁箔厚度。 10. 在硅晶体表明沉积一层硼膜,再在1200℃下保温使硼向硅晶体中扩散,已知其浓度分布曲线为 )4ex p(2),(2 Dt x DT M t x c -=π

大气扩散浓度估算模式

第四章 大气扩散浓度估算模式 4.1 污染源的东侧为峭壁,其高度比污染源高得多。设有效源高为H ,污染源到峭壁的距离为L ,峭壁对烟流扩散起全反射作用。试推导吹南风时高架连续点源的扩散模式。当吹北风时,这一模式又变成何种形式? 解: 吹南风时以风向为x 轴,y 轴指向峭壁,原点为点源在地面上的投影。若不存在峭壁,则有 ]}2)(exp[]2)(){exp[2exp(2),,,(22 22 22' z z y z y H z H z y u Q H z y x σ σ σ σ σπρ+- +-- - = 现存在峭壁,可考虑ρ为实源与虚源在所关心点贡献之和。 实源]}2)(exp[]2)(){exp[2exp(222 22 221z z y z y H z H z y u Q σ σ σ σ σπρ+- +-- - = 虚源]}2)(exp[]2)(]{exp[2)2(exp[222 22 22 2z z y z y H z H z y L u Q σ σ σσσπρ+- +-- -- = 因此]}2)(exp[]2)(){exp[2exp(222 22 22z z y z y H z H z y u Q σ σ σ σ σπρ+- +-- - =+ ]}2)(exp[]2)(]{exp[2)2(exp[222 22 22 z z y z y H z H z y L u Q σ σ σ σ σπ+- +-- -- = ]}2)(exp[]2)(]}{exp[2)2(exp[)2{exp(222 22 22 22z z y y z y H z H z y L y u Q σ σ σ σ σ σπ+- +-- -- +- 刮北风时,坐标系建立不变,则结果仍为上式。 4.2 某发电厂烟囱高度120m ,内径5m ,排放速度13.5m/s ,烟气温度为418K 。大气温度288K ,大气为中性层结,源高处的平均风速为4m/s 。试用霍兰德、布里格斯(x<=10H s )、国家标准GB/T13201-91中的公式计算烟气抬升高度。 解: 霍兰德公式 m D T T T u D v H s a s s 16.96)5418 2884187.25.1(4 5 5.13)7 .25.1(=?-? +?= -+= ?。 布里格斯公式 kW kW D v T T T Q s s a s H 210002952155.13418 28841810 6.9 7.210 6.9 7.22 3 2 3 >=??-? ?= -? ?= --且x<=10Hs 。此时 3 /23 /21 3 /11 3 /23 /180.24 29521 362.0362.0x x u x Q H H =??==?--。

中国的传统节日及习俗

中国的传统节日及习俗 【春节】时间:农历正月初一习俗:熬年守岁 【元宵节】时间:农历正月十五习俗:看灯、吃元宵、踩高跷、猜灯谜 【寒食节】时间:清明节前一天习俗:起火烧饭、吃冷食。 【清明节】时间:农历三月初八(农历二十四节气中的“清明”那一天,公历4月5日左右)习俗:扫墓、踏青。 【端午节】时间:农历五月初五习俗:吃粽子、赛龙舟。 【七夕节】时间:农历七月初七习俗:穿针乞巧。 【重阳节】时间:九月初九习俗:登高、插茱萸。 【中秋节】时间:农历八月十五习俗:赏月。 【腊八节】时间:农历腊月初八习俗:喝腊八粥。 【春节】我国传统习俗中最隆重的节日。此节乃一岁之首。古人又称元日、元旦、元正、新春、新正等,而今人称春节,是在采用公历纪元后。古代“春节”与“春季”为同义词。春节习俗一方面是庆贺过去的一年,一方面又祈祝新年快乐、五谷丰登、人畜兴旺,多与农事有关。迎龙舞龙为取悦龙神保佑,风调雨顺;舞狮源于镇慑糟蹋庄稼、残害人畜之怪兽的传说。随着社会的发展,接神、敬天等活动已逐渐淘汰,燃鞭炮、贴春联、挂年画、耍龙灯、舞狮子、拜年贺喜等习俗至今仍广为流行。春节,是我国各族人民的传统节日。100多年前,民间艺人“百本张”曾在他的曲本中这样写道:“正月里家家贺新年,元宵佳节把灯观,月正圆,花盒子处处瞅,炮竹阵阵喧,惹得人大街小巷都游串。”这是历史上关于岁首春节的生动写照。相传尧舜时期,我国就有了这个节日。殷商甲骨文的卜辞中,亦有关于春节的记载,有庆祝岁首春节的风俗。但当时的历法,是靠“观象授时”,是否准确,尚难确定。到了公元前104年汉武帝太初元年,我国人民创造了“太初历”,明确规定以农历正月为岁首。从这时起,农历新年的习俗就流传了2000多年。直到新中国成立,改用公元以后,这个节日就改为春节。 【元宵】我国民间传统节日。又称正月半、上元节、灯节。元宵习俗有赏花灯、包饺子、闹年鼓、迎厕神、猜灯谜等。宋代始有吃元宵的习俗。元宵即圆子,用糯米粉做成实心的或带馅的圆子,可带汤吃,也可炒吃、蒸吃。农历正月十五日,是中国的传统节日元宵节。正月为元月,古人称夜为“宵”,而十五日又是一年中第一个月圆之夜,所以称正月十五为元宵节。又称为“上元节”。按中国民间的传统,在一元复始,大地回春的节日夜晚,天上明月高悬,地上彩灯万盏人们观灯、猜灯谜、吃元宵合家团聚、其乐融融。元宵节起源于汉朝,据说是汉文帝时为纪念“平吕”而设。汉惠帝刘盈死后,吕后篡权,吕氏宗族把持朝政。周勃、陈平等人在吕后死后,平除吕后势力,拥立刘恒为汉文帝。因为平息诸吕的日子是正月十五日,此后每年正月十五日之夜,汉文帝都微服出宫,与民同乐以示纪念。并把正月十五日定为元宵节。汉武帝时,“太一神”的祭祀活动在正月十五。司马迁在“太初历”中就把元宵节列为重大节日。 【寒食】我国民间传统节日。节日里严禁烟火,只能吃寒食。在冬至后的一百零五天或一百零六天,在清明前一、二日。相传,春秋时晋公子重耳流亡在外,大臣介子推曾割股啖之。重耳做国君后,大封功臣,独未赏介子推。子推便隐居山中。重耳闻之甚愧,为逼他出山受赏,放火烧山。子推抱木不出而被烧死。重耳遂令每年此日不得生火做饭,追念子推,表示对自己过失的谴责。因寒食与清明时间相近,后人便将寒食的风俗视为清明习俗之一。【清明】我国民间传统节日。按农历算在三月上半月,按阳历算则在每年四月五日或六日。此时天气转暖,风和日丽,“万物至此皆洁齐而清明”,清明节由此得名。其习俗有扫墓、踏

扩散参数。

扩散过程;高方阻工艺;电池性能参数。祝飞 属于恒定表面浓度的扩散,浓度沿纵深的浓度分布为余误差型。磷源在扩散温度下分解并沉积在硅面上向内部扩散。此时表面浓度为P在Si中的固溶度,结深随时间逐渐推进,扩散层方阻随通源时间变小。 ?停源再分布过程,理论上是恒定杂质总量的扩散,但实际上还需考虑到此时:硅面上还有已沉积但未扩散的 磷;炉内仍有残留磷源;表面高磷浓度薄层被氧化为PSG。这个过程中表面浓度可能会降低,结深继续向纵深推进,不排除方阻有逐渐变大的可能。 这有效降低了表面杂质复合中心,提高了表面少子寿命,增加了短波响应,从而有效的提高I SC和V OC,从而提高N cell。 ?高方阻的问题:高方阻还意味着表面薄层电阻的明显增加,这将增大R S,降低FF。所以高方阻工艺的关键 是使得I SC和V OC的提高大于FF的损失。 ?高方阻扩散要求:(1)保证方阻均匀性是一切的前提,其影响因素为:设备因素包括温度、尾气负压、排风; 工艺因素包括预沉积氧化层的厚度、磷源浓度等。要求极差值小于8,通过实验确定各参数。(2)高方阻的扩散方案:原则是降低掺杂量,如降温、减小源的浓度等,但需配合diffusion time和drive in time的调整。 通过DOE(Desire of experiments)确定具体参数。(3)在原有制程工艺上进行试生产,若看到I SC和V OC的提升,尤其是V OC的提高,则证明高方阻扩散成功。 ?高方阻镀膜要求:(1)若表面钝化效果糟糕,则高方阻造成的I SC提升会因此而再次损失。(2)为了配合高 方阻对短波响应的提升,PECVD镀膜时要考虑对n和d做出调整,从而减少短波反射。(3)用椭圆偏振光法(即椭偏仪)可以测量膜厚和折射率,本质是通过检测、分析入射光和反射光的偏振状态,是间接获得结果的一种非接触测量方法。需DOE实验确定具体参数。 ?高方阻印刷要求:按原有的印刷工艺,对N cell进行确认,若有提高,则只需调节烧结工艺;若没有提高或 者提高很少,则需变更正电极网版的设计,原则一是“细线密栅”,二是不增加遮光面积。同样需要DOE。 ?高方阻烧结要求:烧结温度的调节简单说就是升降每个温区的温度。一般要求“高温快烧”。 太阳电池的电性能 ?理想电池的伏安特性【I-V Curve】 太阳电池本质上是一个大面积的二极管,二极管伏安特性为:I=I0exp[(qV/nkT)-1],I0为暗电流,表征二极管中性区少子复合的强弱,正向偏压下的多子扩散电流由少子复合决定。光照下太阳电池可以等效为二极管并联电流源,电流源方向与外加电压方向相反,其伏安特性为I=I0exp[(qV/nkT)-1]-I L,考虑到太阳电池本身是一个电源,无需外接电压,因此太阳电池的伏安特性表示为:I=I L-I0exp[(qV/nkT)-1]。 ?短路电流【Short-Circuit Current】 短路电流由光生载流子的产生和收集情况决定,理想电池的I SC=I L(不考虑寄生电阻),其大小受以下因素影响:电池面积,其与短路电流密度J SC共同影响I SC;光强度,即光子数目,同样的光强,紫光的光子数要比红光光子数少;电池的光学性能,能否减少光损失;电池收集性能,取决于表面钝化和少子寿命。?开路电压【Open-Circuit Voltage】 太阳电池静电流为0时的电压值。V OC =(nkT/q)ln[(I L/I0)+1],开路电压随暗饱和电流增大而减小。暗饱和电流与中性区少子复合相关。因此少子复合越弱,则开路电压越高。 ?寄生电阻【Parasitic Resistance】 寄生电阻用来表征太阳电池内部的能量浪费,根据浪费形式不同,分为串联电阻(Series Resistance)和并联电阻(Shunt Resistance)两部分。寄生电阻对电性能的影响主要体现在Fill Factor上。 R S的来源一是电流在电池发射极和基区的损失;二是MS接触电阻;三是电池正栅和背接触电阻。R S 会减小FF;严重时会减小I SC;不会影响V OC;其大小用V OC处的斜率来表征。 R Sh的来源主要是制造过程中引入的缺陷,与电池设计无关。低并阻为光生电流提供了另一条通路,消 ?

扩散的工艺

----主要设备、热氧化、扩散、合金 扩散部 2002年7月

前言: 扩散部按车间划分主要由扩散区域及注入区域组成,其中扩散区域又分扩散老区和扩散新区。扩散区域按工艺分,主要有热氧化、扩散、LPCVD、合金、清洗、沾污测试等六大工艺。本文主要介绍热氧化、扩散及合金工艺。 目录 第一章:扩散区域设备简介…………………………………… 第二章:氧化工艺 第三章:扩散工艺 第四章:合金工艺

第一章:扩散部扩散区域工艺设备简介 炉管设备外观: 扩散区域的工艺、设备主要可以分为: 炉管:负责高温作业,可分为以下几个部分: 组成部分功能 控制柜→对设备的运行进行统一控制; 装舟台:→园片放置的区域,由控制柜控制运行 炉体:→对园片进行高温作业的区域,由控制柜控制升降温 源柜:→供应源、气的区域,由控制柜控制气体阀门的开关。FSI:负责炉前清洗。

第二章:热氧化工艺 热氧化法是在高温下(900℃-1200℃)使硅片表面形成二氧化硅膜的方法。热氧化的目的是在硅片上制作出一定质量要求的二氧化硅膜,对硅片或器件起保护、钝化、绝缘、缓冲介质等作用。硅片氧化前的清洗、热氧化的环境及过程是制备高质量二氧化硅膜的重要环节。 2. 1氧化层的作用 2.1.1用于杂质选择扩散的掩蔽膜 常用杂质(硼,磷,砷等)在氧化层中的扩散系数远小于在硅中的扩散系数,因此氧化层具有阻挡杂质向半导体中扩散的能力。利用这一性质,在硅上的二氧化硅层上刻出选择扩散窗口,则在窗口区就可以向硅中扩散杂质,其它区域被二氧化硅屏蔽,没有杂质进入,实现对硅的选择性扩散。 1960年二氧化硅就已被用作晶体管选择扩散的掩蔽膜,从而导致了硅平面工艺的诞生,开创了半导体制造技术的新阶段。同时二氧化硅也可在注入工艺中,作为选择注入的掩蔽膜。作为掩蔽膜时,一定要保证足够厚的厚度,杂质在二氧化硅中的扩散或穿透深度必须要小于二氧化硅的厚度,并有一定的余量,以防止可能出现的工艺波动影响掩蔽效果。 2.1. 2缓冲介质层 其一:硅与氮化硅的应力较大,因此在两层之间生长一层氧化层,以缓冲两者之间的应力,如二次氧化;其二:也可作为注入缓冲介质,以减少注入对器件表面的损伤。 2.1.3电容的介质材料 电容的计算公式: C=ε 0*εr *S/d ε0:真空介质常数 εr :相对介电常数 S :电容区面积 D :介质层厚度 P-Well SiO 2 Si 3N 4

传统节日的调查报告

关于家乡传统节日的调查报告 不同的地方的风俗特色不同,以下是关于我的家乡吉林省辽源市的传统节日——春节的详细调查报告。 春节是我国传统节日,辽源人在庆贺这个节日时,形成了一些较为固定的风俗习惯。春节前夕,始兴人家家户户都忙于打扫环境,清洗器具,拆洗被褥,洒扫庭院,疏浚沟渠,辽源人谓之“除尘”。因“尘”与“陈”谐音,新春扫尘有“除尘布新”的涵义,其用意是要把一切穷运、晦气统统扫出门。过年了,大家都将精选的春联和福字年画张贴在门框、门楣和门板上,将节日装点得红火富丽,寄托人们喜庆祈年的美好愿望。 除夕之夜,各家的老老小小都团聚在一起吃着丰盛的年夜饭,说着一年来的趣事,可谓是其乐融融。有些家庭在除夕之夜还会通宵守夜,以待天明,这叫“守岁”。年初一零时起,家家户户开始鸣响“开门爆竹”,焚香烛祀神,喜迎新年的到来。那天人们早早地起来,穿上漂漂亮亮的新衣服,走亲访友相互拜年。晚辈们祝长辈们长寿安康,长辈们将压岁钱分给晚辈,因“岁”与“祟”谐音,压岁钱可以压住邪祟,晚辈们得到压岁钱就可以平平安安地度过一岁,并以互送年料小叙为乐。 年初二时,如亲戚家去岁有亡者,则要前往拜祭亡灵,谓之“拜新台”。年初三是个特别的日子,谓之“穷鬼日”,是要将初一、初二忌扫之地清扫干净,把垃圾送去郊外焚烧,届时烧香鸣爆竹,谓之“送穷鬼”。年初四是各家宴请亲朋好友,并约请已嫁的姐妹、大姑回娘

家小住。 当然,春节也有严忌的事情,如正月初一不向屋外倒垃圾、泼水,忌进菜园摘菜,这天忌开口骂人,要尽量说吉利话;除夕、春节及大的节日和喜庆日,都忌碗筷掉地;正月初一至十五,忌向他人借款或催贷;新年“出行”,忌有女人在场;正月初五是“五谷神”生日,这天家家不能煮生米,只在前晚煮好夹生饭,第二天早晨蒸熟,黎明时,家家烧香迎接“五谷神”上谷仓,祈求保佑“五谷丰登”。 以上是我的家乡的传统节日——春节的调查报告,体现了我们辽源人的满腔热情与地道的风俗特色。

云南著名旅游景点和少数民族重大节日简介

云南著名旅游景点和少数民族重大节日简介 泼水节: 傣族的传统节日。于傣历六月(清明节前后)举行。 傣历以六月为岁首,也是傣历新年。源于小乘佛教用水为佛洗尘,故又称浴佛节。相传这是为纪念一位战胜魔王的姑娘而举行的节日。传说有一个魔王作恶多端,人民十分痛恨。一位姑娘被魔王抢去为妻,她立志为民除害,于是,乘魔王熟睡,拔下魔王头发,将魔王脑袋勒下。但魔王的头颅仍会作崇,用火烧则四处起火,丢到河里则河水滚沸泛滥成灾,埋到地里则臭气四溢。于是,魔王的12个妻子便轮流把魔王的头抱在自己身上,每天用水冲洗一次魔王的头。傣族人民为了感谢这12个妻子,在每年的傣历新年时以泼水表示纪念,以示冲洗身上的污秽,以后逐渐演变成俗 泼水节一般为三四天,开始的这一天送旧,最后一天迎新。此节西双版纳州傣族称"尚罕",德宏州傣族称"尚链",意为周转、转移,指太阳在黄道十二宫运转一周又开始了新的一年。节日清晨,人们要采摘鲜花到佛寺供奉,在寺中堆沙造塔,听佛爷念经;中午挑来清水为佛像洗尘。礼毕拥出大街小巷,嬉戏追逐,互相泼水以示祝福。清水象征吉祥,可消灾除病,故大家互相泼水。此外,人们还在澜沧江上进行划龙舟比赛,各村赛还要放高升和开展群众性歌舞活动。龙舟比赛时,两岸挤满观众,锣鼓齐鸣,欢笑声、呐喊声汇成一片。高升是傣族人民自制的烟花焰火。用一根几米长的竹子,中间掏空,填满火药,置于高架上,点燃引线,将竹筒推入高空,空中闪现的烟花花团锦簇,光彩夺目,夜间放高升更显壮观。青年男女则用象脚鼓和铓锣伴奏起舞,进行丢包游戏,谈情说爱,选择配偶,更增添了节日的欢乐所氛。柬埔寨、泰国、缅甸、老挝等国也有此习俗。 刀杆节: 傈僳族传统节日。傈僳语称"阿堂得"。在每年农历二月初八举行。盛行于云南、福贡等地区。届时,男女老少身穿民族盛装,聚集在刀杆广场。广场上竖立着两根20多米长的粗木杆,把36或72把锋利长刀,刀口朝上绑在木杆上,形成一字形梯状,凡有三或六的地方,两刀交叉成X字形,刀杆顶端挂着小红旗和鞭炮。爬刀杆者多为青壮年,他们身穿红布衣服,头缠红布,赤足。 爬杆在燃烧着的熊熊烈火和回荡四方的铓锣声中开始,小伙子们在人们的欢呼声中赤足跳进火堆,在火堆中跳来跳去,称为下"火海"、打"火滚"。他们还将烧红的铁链在手上传来传去,称为"拉火链";双手将火焰捧往脸上压,称为"洗火脸"。歌舞完毕,事先训练过的小伙子赤脚跃上刀杆,踩着利刀,双手攀扶刀口,一级一级向上爬去,爬至顶端点燃鞭炮,将小旗子抛向欢呼的人群后又一级级下到地上。人们纷纷上前敬献美酒。青年们对歌谈情,开展社交活动。相传此节始于明代,兵部尚书王骥带兵到云南傈僳族居住地区收复外族侵占的土地,组织傈僳族同胞练武自卫。后王骥遭到请便陷,于二月初八被害。傈僳族同胞为发扬勇敢顽强的抗敌精神,以象征上刀山下火海的爬刀杆活动来鼓舞勇敢精神,随之形成固定节日。现代这一活动已成为傈僳族的传统体育活动。 火把节: 火把节在古代被称为"星回节"。对节日的说法,各民族有不同的解释。彝族主要是为除虫害、庆丰收。火把节由来传说不一:一说天神与地神斗争,人们用火把助地神灭虫战胜天神;一说出自《南诏野史》及师范《滇系》,这两书载:南诏首领皮罗阁企图并吞另五

云南少数民族节日一览表

云南少数民族节日一览表 民族节日名称主要活动内容时间(农历) 彝族火把节耍火把、摔交、斗牛、歌舞表演六月二十四日插花节插花、对歌二月初八 赛衣节歌舞、鲜艳服饰三月二十八日 彝族虎节跳虎笙、虎舞农历正月初八至正月十五日 彝族密枝节祭神仪式 牟定“三月会”物资交流、民间歌舞表演三月二十七日至二月十九日白族大理三月街物资交流、赛马、歌舞表演三月十五至二十一日白族青姑娘节歌舞正月十五日 白族绕三灵祭祀、栽秧四月二十三至二十五日 白族栽秧会祭祀、栽秧、对歌芒种节令 白族火把节树火把、赛龙舟、唱大本曲六月二十五日 白族石宝山歌会庙会、对歌七月底 白族梨花会梨园里野餐每年梨花盛开时节 白族本主会祭祀、歌舞、洞经音乐各村寨不同 傣族傣族泼水节赛龙舟、泼水、歌舞阳历四月中旬 傣族送龙节祭祀、歌舞公历一月 傣族关门节琰佛塔、歌舞阳历七月中旬 傣族开门节串寨、放高升、歌舞阳历10月中旬 哈尼族哈尼族阿玛突祭祀、歌舞、摆街宴农历二月属龙日 “苦扎扎”(六月年节)打秋千、摔交、歌舞六月二十四日 哈尼族“里玛主”节歌舞、摔交阳春三月 哈尼族捉蚂蚱节捉蚂蚱来食用农历六月二十四日 哈尼族姑娘节秋千、歌舞农历二月初四 哈尼族祭龙日/新米节鋩锣、牛皮鼓,巴乌、四弦琴农历二月二日 哈尼族米索扎节秋千、歌舞 哈尼族苗爱拿节篝火、歌舞五月上旬 苗族苗族花山节爬花杆、芦笙、歌舞正月

僳僳族僳僳族澡堂会温泉沐浴、赛歌正月初二 僳僳族“盍什”节吃团圆饭、射弩比赛正月初一至十五 僳僳族刀杆节爬刀杆、下火海、丢包、歌舞二月初八 纳西族纳西族米拉会/棒棒会野炊、赛马、歌舞、农具交易二月初八纳西族三多节祭祀、对歌、斗牛六月二十五日 纳西族骡马大会物质交流、文体表演农历三月中旬/七月中下旬 纳西族祭天祭祀春祭在正月/秋祭在七月 纳西族七月会物质交流、文体表演夏历七月中旬 纳西族祭龙节物资交流、文体表演正月十五 拉祜族拉祜族库扎节(年节)象脚鼓舞、对歌傣历三月底或四月初拉祜族葫芦节篝火、歌舞农历的十月初十 拉祜族祭太阳神祭祀、歌舞立夏日 佤族佤族拉木鼓节祭祀、歌舞佤历“格瑞月”/公历12月 布朗族布朗族冈永节祭祀、歌舞四月和九月 独龙族独龙族卡雀哇(年节)祭祀、剽牛、歌舞冬月或正月 景颇族景颇族目脑纵歌祭祀、歌舞农历正月 怒族怒族年节敬祖、祭土、歌舞十二月至次年正月十日 怒族鲜花节采集鲜花、歌舞农历三月十五日 阿昌族阿昌族会街耍白象、跳象脚鼓舞农历九月中旬 普米族普米族“大年”节荡秋千、赛马、歌舞腊月初六 普米族转山会游山、歌舞五月五日 藏族藏族草地藏民节/藏历年赛马、野餐、跳锅庄农历正月 藏族“花儿”会对歌农历六月十四 藏族跳神法会祭祀、歌舞藏历除夕 藏族赛马会赛马农历五月初五 回族回族古尔帮节团拜、宰牲回历十月 回族开斋节礼拜、颂经、歌舞六月 回族肉孜节减食五月二十三日 回族宰牲节宰杀一些牛羊、祭祀回历的+月十二月 回族圣纪节伊斯兰教历的3月12日 基诺族基诺族特懋克节歌舞、串寨、打陀螺基诺历法一月

相关主题