搜档网
当前位置:搜档网 › 高中三角函数定义

高中三角函数定义

高中三角函数定义
高中三角函数定义

三角函数定义

把角度θ作为自变量〃在直角坐标系里画个半径为1的圆(单位圆)〃然后角的一边与X轴重合〃顶点放在圆心〃另一边作为一个射线〃肯定与单位圆相交于一点。这点的坐标为(x,y)。

sin(θ)=y;

cos(θ)=x;

tan(θ)=y/x;

三角函数公式大全

两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A = 2tanA/(1-tan2 A)

Sin2A=2SinA?Co sA

Cos2A = Cos^2 A--Sin2 A

=2Cos2 A—1

=1—2sin^2 A

三倍角公式

sin3A = 3sinA-4(sinA)3;

cos3A = 4(cosA)3 -3cosA

tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

半角公式

sin(A/2) = √{(1--cosA)/2}

cos(A/2) = √{(1+cosA)/2}

tan(A/2) = √{(1--cosA)/(1+cosA)}

cot(A/2) = √{(1+cosA)/(1-cosA)} ?

tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

和差化积

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

积化和差

sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

诱导公式

sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tgA=tanA = sinA/cosA

万能公式

sin(a) = [2tan(a/2)] / {1+[tan(a/2)]2}

cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]2}

tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

其它公式

a?sin(a)+b?cos(a) = [√(a2+b2)]*sin(a+c) [其中〃tan(c)=b/a] a?sin(a)-b?cos(a) = [√(a2+b2)]*cos(a-c) [其中〃tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]2;

1-sin(a) = [sin(a/2)-cos(a/2)]2;

其他非重点三角函数

csc(a) = 1/sin(a)

sec(a) = 1/cos(a)

双曲函数

sinh(a) = [e^a-e^(-a)]/2

cosh(a) = [e^a+e^(-a)]/2

tg h(a) = sin h(a)/cos h(a)

公式一:

设α为任意角〃终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

设α为任意角〃π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)

这个物理常用公式我费了半天的劲才输进来,希望对大家有用

A?sin(ωt+θ)+ B?sin(ωt+φ) =

√{(A2 +B2 +2ABcos(θ-φ)} ? sin{ ωt + arcsin[ (A?sinθ+B?sinφ) / √{A2 +B2; +2ABcos(θ-φ)} }

√表示根号,包括{……}中的内容

三角函数知识点汇总

1.特殊角的三角函数值:

2?角度制与弧度制的互化:

3.弧长及扇形面积公式

弧长公式: 扇形面积公式:

----是圆心角且为弧度制。 r-----是扇形半径

4.任意角的三角函数

设 是一个任意角〃它的终边上一点p(x,y),

(1)正弦余弦正切

(2)各象限的符号:

5.同角三角函数的基本关系:

(1)平方关系:

(2)商数关系:

6.诱导公式:记忆口诀:把的三角函数化为的三角函数〃概括为:奇变偶不变〃符号看象限。

口诀:函数名称不变〃符号看象限?

8、三角函数公式:

两角和与差的三角函数关系

倍角公式

降幂公式:

升幂公式:

9?解三角形正弦定理:

余弦定理:

三角形面积定理.

15、正弦函数、余弦函数和正切函数的图象与性质:

三角函数的基本概念与诱导公式

三角函数的概念、基本关系式及诱导公式 一、角的相关概念 1、按旋转方向的不同形成_________,___________,___________ 2、终边位置的不同形成__________,__________,____________ 例如:第一象限角的集合________________ 终边在y 轴上角的集合_________________ 终边在x 轴上角的集合_________________ 3、终边相同的角的集合________________ 4、注意第一象限角、锐角的不同,钝角与第二象限角的不同 5、已知α是第二象限的角,则 2 α是第几象限的角? 二、弧度制与角度制: 1、弧度制的定义:圆周上弧长等于_______的弧所对的圆心角的大小为1弧度(1rad ) 2、 3602=π 180=π _______1=rad rad _______1= 弧度制与角度制的换算_________________________________ 3、扇形的弧长、面积公式 ____________________________________________ 例1、已知一扇形周长为)0(>C C ,当扇形中心角为多少弧度时,它的面积最大? 例2、扇形中心角为 120,则扇形面积与其内切圆的面积之比为_____________ 三、任意角的三角函数: 1、定义:设α是一个任意角,α的终边上任一点),(y x P O 为坐标原点,则 )(022y x r r OP +=>=则 r y = αsin r x =αcos x y =αtan y r =αcsc _____sec =α _____cot =α 实质是____________________ 2、三角函数的符号___________________________ 3、特殊角的三角函数值: ___________________________________________________________ 四、单位圆与三角函数线: 1、第Ⅰ、Ⅱ、Ⅲ、Ⅳ象限的角的三角函数线 2、三角函数线的应用——用来解决三角不等式

2015年高中数学学业水平考试专题训练4 三角函数

2015年高中数学学业水平考试专题训练4 三角函数 基础过关 1.tan π 4=( ) A. 1 B. -1 C. 22 D. - 22 2.函数y =sin ? ? ???2x +π4的最小正周期是( ) A. π 2 B. π C. 2π D. 4π 3.已知扇形的周长为6 cm ,面积为2 cm 2,则扇形的中心的弧度数为( ) A. 1 B. 4 C. 1或4 D. 2或4 4.既是偶函数又在区间(0,π)上单调递减的函数是( ) A. f (x )=sin x B. f (x )=cos x C. f (x )=sin2x D. f (x )=cos2x 5.已知cos(π+α)=-12,3π 2<α<2π,则sin(2π-α)的值是( ) A. 1 2 B. ±3 2 C. 3 2 D. -3 2 6.已知 sin α-2cos α 3sin α+5cos α =-5,则tan α的值为( ) A. -2 B. 2 C. 23 16 D. -2316 7.函数y =sin(2x +5π 2)的图象的一条对称轴方程是( ) A. x =-π2 B. x =-π 4 C. x =π 8 D. x =5π4 8.若角的终边落在直线x +y =0上,则sin α1-sin 2α+1-cos 2α cos α的值为( ) A. 2 B. -2 C. 1 D. 0

9.若x ∈R ,则函数f (x )=3-3sin x -cos 2x 的( ) A. 最小值为0,无最大值 B. 最小为0,最大值为6 C. 最小值为-1 4,无最大值 D. 最小值为-1 4,最大值为6 10.函数y =A sin(ωx +φ)(ω>0,||φ<π 2,x ∈R )的部分图象如图, 则函数关系式为( ) A. y =-4sin(π8x +π 4) B. y =4sin(π8x -π 4) C. y =-4sin(π8x -π 4) D. y =4sin(π8x +π 4) 11.函数y =2cos x +1的定义域是( ) A. ??? ???2k π-π3,2k π+π3(k ∈Z ) B. ? ?? ?? ?2k π-π6,2k π+π6(k ∈Z ) C. ??? ???2k π+π3,2k π+2π3(k ∈Z ) D. ? ?? ?? ?2k π-2π3,2k π+2π3(k ∈Z ) 12.若将函数y =f (x )的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x 轴向左平移π 2个单位,沿y 轴向下平移1个单位,得到函数y =1 2sin x 的图象则y =f (x )是( ) A. y =1 2sin(2x +π2)+1 B. y =1 2sin(2x -π2)+1 C. y =1 2sin(2x +π4)+1 D. y =1 2sin(2x -π4)+1 13.已知α,β∈R ,则“α=β”是“sin α=sin β”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 14.设f (x )是定义域为R ,最小正周期为3π 2的函数,若f (x )=

三角函数基本概念

三角函数基本概念 1.角的有关概念 (1)从运动的角度看,角可分为正角、负角和零角.(2)从终边位置来看,可分为象限角和轴线角. (3)若α与β是终边相同的角,则β可用α表示为S ={β|β=α+k ·360°,k ∈Z }(或{β|β=α+2k π,k ∈Z }). 2.象限角 3.弧度与角度的互化 (1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示. (2)角α的弧度数:如果半径为r 的圆的圆心角α所对弧的长为l ,那么l =rα,角α的弧度数的绝对值是|α| = l r . (3)角度与弧度的换算①1°=π 180rad ;②1 rad =?π 180 (4)弧长、扇形面积的公式:设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,又l =rα,则扇形的面积为 S =12lr =12 |α|·r 2 . 4.任意角的三角函数 三角函数 正弦 余弦 正切 定义 设是一个任意角,它的终边与单位圆交于点P (x ,y ),那么 y 叫做的正弦,记作sin x 叫做的余弦,记作cos x y 叫做的正切,记作tan α 三角函数 正弦 余弦 正切 各象限符号 Ⅰ 正 正 正 Ⅱ 正 负 负 Ⅲ 负 负 正 Ⅳ 负 正 负 各象限符号 口诀 一全正,二正弦,三正切,四余弦 5.三角函数线 设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cosα,sinα),即P(cosα,sinα),其中cosα=OM ,sinα=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tanα=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.

最新上海高中数学三角函数大题压轴题练习

三角函数大题压轴题练习 1.已知函数()cos(2)2sin()sin()344 f x x x x π ππ =- +-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122 ππ -上的值域 解:(1) ()cos(2)2sin()sin()344 f x x x x πππ =-+-+ 1cos 22(sin cos )(sin cos )2x x x x x x = ++-+ 221cos 22sin cos 2x x x x = ++- 1cos 22cos 222 x x x = +- s i n (2) 6 x π =- 2T 2 π π= =周期∴ 由2(),()6 2 23 k x k k Z x k Z π π ππ π- =+ ∈= +∈得 ∴函数图象的对称轴方程为 ()3 x k k Z π π=+ ∈ (2) 5[,],2[,]122636 x x ππ πππ ∈- ∴-∈- 因为()sin(2)6 f x x π =- 在区间[,]123ππ- 上单调递增,在区间[,]32 ππ 上单调 递减, 所以 当3 x π= 时,()f x 取最大值 1 又 1()()12 222f f π π- =- <=,当12 x π =-时,()f x 取最小值2- 所以 函数 ()f x 在区间[,]122 ππ - 上的值域为[ 2.已知函数2 π()sin sin 2f x x x x ωωω?? =+ ?? ? (0ω>)的最小正周期为π. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03 ?????? ,上的取值范围. 解:(Ⅰ)1cos 2()22x f x x ωω-= +112cos 222 x x ωω=-+ π1sin 262x ω? ?=-+ ?? ?. 因为函数()f x 的最小正周期为π,且0ω>, 所以 2π π2ω =,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262 f x x ??=- + ?? ?. 因为2π03 x ≤≤, 所以ππ7π2666 x --≤≤, 所以1πsin 2126x ??- - ?? ?≤≤, 因此π130sin 2622x ? ?- + ?? ?≤≤,即()f x 的取值范围为302?????? ,. 3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角. (Ⅰ)求角A 的大小; (Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. 解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 1 2sin()1,sin().662 A A ππ-=-= 由A 为锐角得 ,6 6 3 A A π π π - = = (Ⅱ) 由(Ⅰ)知1 cos ,2 A = 所以2 2 1 3()cos 22sin 12sin 2sin 2(sin ).2 2 f x x x x s x =+=-+=--+ 因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值3 2 . 当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332??-???? ,

上海教材三角函数的概念、性质和图象

三角函数的概念、性质和图象 复习要求(以下内容摘自《考纲》) 1. 理解弧度的意义,并能正确进行弧度和角度的换算. 2. 掌握任意角的三角函数的定义、三角函数的符号、特殊角的三角函数值、三角函数的性质、同角三角函数的关系式与诱导公式,了解周期函数和最小正周期的意义.会求y =A sin(ωx +?)的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期,能运用上述三角公式化简三角函数式,求任意角的三角函数值与证明较简单的三角恒等式. 3. 了解正弦、余弦、正切、余切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数y =A sin(ωx +?)的简图,并能解决与正弦曲线有关的实际问题. 4.正弦函数、余弦函数的对称轴,对称点的求法。 5.形如y x y y x y cos sin cos sin -=+=或 的辅助角的形式,求最大、最小值的总题。 6.同一问题中出现y x y x x x cos sin ,cos sin ,cos sin ?-+,求它们的范围。如求y x y x y cos sin cos sin ?++=的值域。 7.已知正切值,求正弦、余弦的齐次式的值。 如已知求,2tan =x 4cos cos sin 2sin 22++?+y y x x 的 8 正弦定理:)R R C c swinB b A a 为三角形外接圆的半径(2sin sin === C B A c b a s i n :s i n :s i n ::= 余弦定理:A ab c b a cos 2222-+=,…ab a c b A 2cos 2 22-+= 可归纳为表9-1. 表9-1 三角函数的图象三、主要内容及典型题例 三角函数是六个基本初等函数之一,三角函数的知识包括三角函数的定义、图象、性质、

高中数学三角函数专题专项练习

高中数学三角函数专题专项练习 一、 忽略隐含条件 例3. 若01cos sin >-+x x ,求x 的取值范围。 正解:1 )4sin(2>+π x ,由22 )4sin(>+π x 得)(432442Z k k x k ∈+<+<+πππππ∴ ) (2 22Z k k x k ∈+ <<π ππ 二、 忽视角的范围,盲目地套用正弦、余弦的有界性 例4. 设α 、β为锐角,且α+β?=120,讨论函数 βα2 2cos cos +=y 的最值。 错解 ) cos(21 1)cos()cos(1)2cos 2(cos 211βαβαβαβα--=-++=++=y ,可见,当1)cos(-=-βα时, 23max = y ;当1)cos(=-βα时,21 min = y 。分析:由已知得?<>+=x b a x b x a y 的最小值。 错解 )12sin 0(42sin 4cos sin 2sin cos )2() 1(2 222≤<≥=≥+=x ab x ab x x ab x b x a y Θ,∴当12sin =x 时, ab y 4min = 分析:在已知条件下,(1)、(2)两处不能同时取等号。正解: 2 222222222222)(2)cot tan ()cot 1()tan 1(b a ab b a x b x a b a x b x a y +=++≥+++=+++=,当且仅当x b x a cot tan =,即 a b x = tan ,时, 2min )(b a y += 【经典题例】 例4:已知b 、c 是实数,函数f(x)=c bx x ++2 对任意α、β∈R 有:,0)(sin ≥αf 且,0)cos 2(≤+βf (1)求f (1)的值;(2)证明:c 3≥;(3)设 )(sin αf 的最大值为10,求f (x )。 [思路](1)令α=2π ,得 ,0)1(≥f 令β=π,得,0)1(≤f 因此,0)1(=f ;(2)证明:由已知,当11≤≤-x 时, ,0)(≥x f 当31≤≤x 时,,0)(≤x f 通过数形结合的方法可得:,0)3(≤f 化简得c 3≥;(3)由上述可知,[-1, 1]是 )(x f 的减区间,那么,10)1(=-f 又,0)1(=f 联立方程组可得4,5=-=c b ,所以45)(2+-=x x x f 例5:关于正弦曲线回答下述问题:

-高中三角函数知识点复习总结

第四章 三角函数 一、三角函数的基本概念 1.角的概念的推广 (1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+?=αβ (3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量 (1)角度制与弧度制的概念 (2)换算关系:8157)180(1) (180'≈==οο ο π π弧度弧度 (3)弧长公式:r l ?=α 扇形面积公式:22 1 21r lr S α== 3.任意角的三角函数 y x x y x r r x y r r y = ===== ααααααcot tan sec cos csc sin 注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式 (一) 诱导公式: α±? 2 k )(Z k ∈与α的三角函数关系是“立变平不变,符号 看象限”。如: ()?? ? ??--??? ??+απαπαπ25sin ;5tan ,27cos 等。 (二) 同角三角函数的基本关系式:①平方关系1 cos sin 22 =+αα; α ααα22 22tan 11cos cos 1tan 1+=?= +②商式关系 α α α tan cos sin =;αααcot sin cos =③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。 (三) 关于公式1cos sin 22 =+αα的深化

() 2 cos sin sin 1ααα±=±; α ααcos sin sin 1±=±; 2 cos 2 sin sin 1α α α+=+ 如: 4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=- 注:1、诱导公式的主要作用是将任意角的三角函数转化为ο0~ο90角的三角函数。 2、主要用途: a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便); b) 化简同角三角函数式; 证明同角的三角恒等式。 三、两角和与差的三角函数 (一)两角和与差公式 ()βαβαβαsin cos cos sin sin ±=± ()β αβαβαsin sin cos cos cos μ=± ()β αβ αβαtan tan 1tan tan tan μ±= ± (二)倍角公式 1、公式βαα cos sin 22sin = cos 2α= 2 2cos 1α + sin 2α= 2 2cos 1α - ααααα2222sin 211cos 2sin cos 2cos -=-=-= α αα2tan 1tan 22tan -= α α ααα sin cos 1cos 1sin 2 tan -= += )sin(cos sin 22?ααα++=+b a b a )sin ,(cos 2 2 2 2 b a a b a b += += ?? 注: (1)对公式会“正用”,“逆用”,“变形使用”。(2)掌握“角的演变”规律(3)将公式和其它知识衔接起来使用。(4)倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。 2、两角和与差的三角函数公式能够解答的三类基本题型: (1)求值 ①“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角 ②“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解 ③ “给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。 ④ “给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次 注意点:灵活角的变形和公式的变形, 重视角的范围对三角函数值的影响,对角的范围要讨论

高三数学三角函数专题训练

高三数学三角函数专题训练 1.为得到函数πcos 23y x ?? =+ ?? ? 的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12 个长度单位 C .向左平移 5π6 个长度单位 D .向右平移 5π6 个长度单位 2.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则M N 的最大值为( ) A .1 B . 2 C . 3 D .2 3.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的1 2倍(纵坐标不变),得到的图 象所表示的函数是( ) A .sin(2)3 y x π =-,x R ∈ B.sin( ) 2 6 x y π =+ ,x R ∈ C.s in (2)3 y x π =+,x R ∈ D.sin(2) 3 2y x π=+ ,x R ∈ 4.设5sin 7 a π=,2cos 7 b π=,2tan 7 c π=,则( ) A.c b a << B.a c b << C.a c b << D.b a c << 5.将函数sin(2)3 y x π =+ 的图象按向量α 平移后所得的图象关于点(,0) 12 π - 中 心对称,则向量α的坐标可能为( ) A .(,0)12π - B .(,0)6 π - C .( ,0)12 π D .( ,0)6 π 6.函数2 ()sin 3sin cos f x x x x =+ 在区间 ,42ππ?? ???? 上的最大值是( ) A.1 B.13 2 + C. 3 2 D.1+ 3 7.若,5sin 2cos -=+a a 则a tan =( ) A.2 1 B. 2 C.2 1- D.2-

5.2 三角函数的概念(解析版).docx

5.2 三角函数的概念 A 组-[应知应会] 1.(2020·周口市中英文学校高一期中)已知角α终边经过点122P ?? ? ??? ,则 cos α=( ) A . 1 2 B C D .12 ± 【参考答案】B 【解析】由于1,r OP x === ,所以由三角函数的定义可得cos x r α==,应选参考答案B . 2.(2019·渝中·重庆巴蜀中学高一期末)若cos 0θ<,cos sin θθ-=那么θ的( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角 【参考答案】C 【解析】由题意得sin cos θθ==-, 即cos sin sin cos θθθθ-=-,所以sin θcos θ 0,即sin cos θθ≤,又cos 0θ<,所以sin 0,θ<θ位于第三象限,故选C. 3.若α为第二象限角,则下列各式恒小于零的是( ) A .sin cos αα+ B .tan sin αα+ C .cos tan αα- D .sin tan αα- 【参考答案】B 【分析】画出第二象限角的三角函数线,利用三角函数线判断出sin tan 0αα+<,由此判断出正确选项. 【解析】如图,作出sin ,cos ,tan ααα的三角函数线,显然~OPM OTA ??,且MP AT <,∵0MP >,0AT <,∴MP AT <-.∴0MP AT +<,即sin tan 0αα+<.故选B. 4.若角α的终边经过点()() sin 780,cos 330P ?-?,则sin α=( ) A B . 12 C D .1 【参考答案】C 【分析】利用诱导公式化简求得P 点的坐标,在根据三角函数的定义求得sin α的值.

高三三角函数专题训练及答案

肇庆市实验中学2005届高三《三角函数》专题训练 三角函数训练(一)-同角三角函数关系 1.命题p :α是第二象限角,命题q:α是钝角,则p 是q 的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 2.若角α满足sin αcos α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.集合M ={x |x = 42ππ±k ,k ∈Z }与N ={x |x = 4 π k ,k ∈Z }之间的关系是( ) A.M N B.N M C.M =N D.M ∩N=? 4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是( ) A.(1)、(2) B.(2)、(3) C.(1)、(3) D.(2)、(4) 5.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于( ) A.52 B.-52 C.51 D.-5 1 6.若cos(π+α)=-2 3 ,21π<α<2π,则sin(2π-α)等于( ) A.- 23 B.23 C.2 1 D.±23 7.已知sin α>sin β,那么下列命题成立的是( ) A.若α、β是第一象限角,则cos α>cos β B.若α、β是第二象限角,则tan α>tan β C.若α、β是第三象限角,则cos α>cos β D.若α、β是第四象限角,则tan α>tan β 8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( ) A.2 B. 1sin 2 C.2sin1 D.sin2 9.如果sin x +cos x =5 1 ,且0

三角函数基本概念和表示

第三章三角函数 第一节三角函数及概念 复习要求: 1.任意角、弧度 了解任意角的概念和弧度制,能进行弧度与角度的互化; 2.三角函数 (1)借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; (2)借助单位圆中的三角函数线推导出诱导公式。 知识点: 1.任意角的概念 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止 位置,就形成角。旋转开始时的射线叫做角的始边,叫终边,射 线的端点叫做叫的顶点。 2.角的分类 为了区别起见,我们规定: 按逆时针方向旋转所形成的角叫正角, 按顺时针方向旋转所形成的角叫负角。如果一条射线没有做任何旋转,我们称它为零角。 3.象限角 角的顶点与原点重合,角的始边与轴的非负半轴重合。那么,角的终边(除端点外)落在第几象限,我们就说这个角是第几象限角。 (1)第一象限角的集合: |22, 2 k k k Z π απαπ ?? <<+∈ ???? (2)第二象限的集合:。 O

(3)第三象限角的集合: 。 (4)第四象限角的集合: 4.轴线角 角的顶点与原点重合,角的始边与轴的非负半轴重合。若角的终边落在坐标轴上,称这个角为轴线角。它不属于任何象限,也称为非象限角。 5.终边相同的角 所有与角α终边相同的角连同角α在内,构成的角的集合,称之为终边相同的角。记为: {} |360,S k k Z ββα==+?∈或 {} |2,S k k Z ββαπ==+∈。它们彼此相差 2()k k Z π∈,根据三角函数的定义知,终边相同的角的各种三角函数值都相等。 6.区间角 区间角是指介于两个角之间的所有角,如5| ,6 666π πππααα? ??? =≤≤ =????? ???。 7,角度制与弧度制 角度制:规定周角的1 360为1度的角,记作0 1,它不会因圆的大小改变而改变, 与r 无关 弧度制:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad 或1弧度或1(单位可以省略不写)。 角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。 8.角的度量 (1)角的度量制有:角度制,弧度制 (2)换算关系:角度制与弧度制的换算主要抓住180rad π=o 。

高中数学三角函数经典练习题专题训练(含答案)

高中数高中数学三角函数经典练习题专题训练 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题3分,共60分) 1.已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则ω,φ的值分别为() A.2,-B.2,-C.4,-D.4, 2.下列说法正确的个数是() ①小于90°的角是锐角;

②钝角一定大于第一象限角; ③第二象限的角一定大于第一象限的角; ④始边与终边重合的角为0°. A.0B.1C.2D.3 3.若0<y<x<,且tan2x=3tan(x-y),则x+y的可能取值是()A.B.C.D. 4.已知函数y=tan(ωx)(ω>0)的最小正周期为2π,则函数y=ωcosx的值域是()A.[-2,2]B.[-1,1]C.[-,]D.[-,] 5.在△ABC中,sin2=(a、b、c分别为角A、B、C的对应边),则△ABC的形状为() A.正三角形B.直角三角形 C.等腰直角三角形D.等腰三角形 6.已知函数f(x)=cosxsin2x,下列结论中错误的是() A.f(x)既是偶函数又是周期函数 B.f(x)最大值是1 C.f(x)的图象关于点(,0)对称 D.f(x)的图象关于直线x=π对称 7.sin55°sin65°-cos55°cos65°值为() A.B.C.-D.- 8.若角α终边上一点的坐标为(1,-1),则角α为() A.2kπ+B.2kπ-C.kπ+D.kπ-,其中k∈Z

三角函数知识点汇总

1三角函数的概念 【知识网络】 【考点梳理】 考点一、角的概念与推广 1.任意角的概念:正角、负角、零角 2.象限角与轴线角: 与α终边相同的角的集合:},2|{Z k k ∈+=απββ 第一象限角的集合:{|22,}2 k k k Z π βπβπ<<+∈ 第二象限角的集合:{| 22,}2 k k k Z π βπβππ+<<+∈ 第三象限角的集合:3{|22,}2 k k k Z π βππβπ+<<+∈ 第四象限角的集合:3{| 222,}2 k k k Z π βπβππ+<<+∈ 终边在x 轴上的角的集合:{|,}k k Z ββπ=∈ 终边在y 轴上的角的集合:{|,}2 k k Z π ββπ=+∈ 终边在坐标轴上的角的集合:{|,}2 k k Z π ββ=∈ 要点诠释: 要熟悉任意角的概念,要注意角的集合表现形式不是唯一的,终边相同的角不一定相等,但相等的角终边一定相同,还要注意区间角与象限角及轴线角的区别与联系. 三角函数的概念 角的概念的推广、弧度制 正弦、余弦的诱导公式 同角三角函数的基本关系式 任意角的三角函数

考点二、弧度制 1.弧长公式与扇形面积公式: 弧长l r α= ?,扇形面积21 122 S lr r α==扇形(其中r 是圆的半径,α是弧所对圆心角的弧度数). 2.角度制与弧度制的换算: 180π=;180 10.017451()57.305718'180 rad rad rad π π = ≈=≈=; 要点诠释: 要熟悉弧度制与角度制的互化以及在弧度制下的有关公式. 考点三、任意角的三角函数 1. 定义:在角α上的终边上任取一点(,)P x y ,记r OP ==则sin y r α= , cos x r α=, tan y x α=,cot x y α=,sec r x α=,csc r y α= 2. 三角函数线:如图,单位圆中的有向线段MP ,OM ,AT 分别叫做α的正弦线,余弦线,正切线. 3. 三角函数的定义域:sin y α=,cos y α=的定义域是R α∈;tan y α=,sec y α=的定义域是 {|,}2 k k Z π ααπ≠+ ∈;cot y α=,csc y α=的定义域是{|,}k k Z ααπ≠∈. 4. 三角函数值在各个象限的符号: 考点四、同角三角函数间的基本关系式 1. 平方关系:2 2 2222sin cos 1;sec 1tan ;csc 1cot α+α=α=+αα=+α. 2. 商数关系:sin cos tan ;cot cos sin α α α= α= α α . 3. 倒数关系:tan cot 1;sin csc 1;cos sec 1α?α=αα=α?α= 要点诠释: ①同角三角函数的基本关系主要用于:(1)已知某一角的三角函数,求其它各三角函数值;(2)证明三角恒等式;(3)化简三角函数式. ②三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如2 2 1sin cos =α+α, 221sec tan tan 45=α-α== ,则可以事半功倍;同时三角变换中还要注意使用“化弦法”、消去法 及方程思想的运用. 考点五、诱导公式 1.2(),,,2k k Z πααπαπα+∈-±-的三角函数值等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值所在象限的符号.

高中数学(三角函数)练习题及答案

第一章 三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ??? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θtan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =51 (0≤x <π),则tan x 的值等于( ). A .- 4 3 B .- 3 4 C . 4 3 D . 3 4 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B D .B ?C ?A 8.已知cos (α+β)=1,sin α=3 1 ,则sin β 的值是( ).

高中数学人教A版(2019)必修第一册第五章三角函数的概念教案

《521三角函数的概念(第一课时)》 教学设计 教学目标 1.了解三角函数的背景,体会三角函数与现实世界的密切联系: 2.经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正 切)的左义,发展数学抽象素养. 教学重难点 教学重点:正弦函数、余弦函数、正切函数的立义. 教学难点:理解三角函数的对应关系,包括影响单位圆上点的坐标变化的因素分析,以及三角函数的宦义方式的理解;对符号Slna, COS◎和tana的认识. 课前准备 PPT课件 教学过程 (一)创设情境 引导语:我们知道,现实世界中存在着各种各样的“周而复始”变化现象,圆周运动是这类现象的代表.如图1, G)O上的点P以ZI为起点做逆时针方向的旋转?在把角的范圉推广到 任意角后,我们可以借助角a的大小厂 变化刻画点P的位置变化.又根据弧度制的左义 00的半径无关,因此,不失一般性,我们可以先研究单位圆上点的运动?现在的任务是: 如图1,单位圆OO上的点P以J为起点做逆时针方向旋转,

建立一个函数模型,刻画点P的位置变化情况. 问题1:根据已有的研究函数的经验,你认为我们可以按怎样的路径研究上述问题? 预设的师生活动;学生在独立思考的基础上进行交流、讨论. 预设答案:明确研究背景一对应关系的特点分析一下左义一研究性质. 设计意图:明确研究的内容、过程和基本方法,为具体研究指明方向. (二)新知探究 引导语:下而我们利用直角坐标系来研究上述问题?如图2,以单位圆的圆心O为原点, 以射线CU为X轴的非负半轴,建立直角坐标系,点ZI的坐标为(1, 0), 点P的坐标为(X, 0.射线OA从X轴的非负半轴开始,绕点O按逆时针方向 旋转角α,终I匕位置为OR 问题2:当α=-时,点P的坐标是什么?当―壬或迹时,点P 6 2 3 的坐标又是什么?它们是唯一确泄的吗? 一般地,任意给定一个角久它的终边OP与单位圆交点P的坐标能唯一确定吗? 预设的师生活动:在学生求出O=Z时点P的坐标后追问以下问题. 6 追问:(1)求点P的坐标要用到什么知识? (2)求点P的坐标的步骤是什么?点P的坐标唯一确泄吗? (3)如何利用上述经验求O=还时点P的坐标? 3 (4)利用信息技术,任意画一个角α,观察它的终边OP与单位圆交点P的坐标,你有什么发现?你能用函数的语言刻画这种对应关系吗? 预设答案:(I)直角三角形的性质;

高中数学三角函数专题专项练习(非常好)

【三角函数疑难点拔】 一、 忽略隐含条件 例3. 若01cos sin >-+x x ,求x 的取值范围。 正解:1)4sin(2>+πx ,由22)4sin(>+πx 得)(432442Z k k x k ∈+<+<+πππππ∴)(2 22Z k k x k ∈+ <<π ππ 二、 忽视角的范围,盲目地套用正弦、余弦的有界性 例4. 设α、β为锐角,且α+β?=120,讨论函数βα22cos cos +=y 的最值。 错解 )cos(21 1)cos()cos(1)2cos 2(cos 211βαβαβαβα--=-++=++=y ,可见,当1)cos( -=-βα时, 2 3max = y ;当1)cos(=-βα时,21min =y 。分析:由已知得?<>+=x b a x b x a y 的最小值。 错解 )12sin 0(42sin 4cos sin 2sin cos )2() 1(2222≤<≥=≥+=x ab x ab x x ab x b x a y ,∴当12sin =x 时,ab y 4min = 分析:在已知条件下,(1)、(2)两处不能同时取等号。正解: 2 222 222222222)(2)cot tan ()cot 1()tan 1(b a ab b a x b x a b a x b x a y +=++≥+++=+++=, 当且仅当x b x a cot tan =,即a b x = tan ,时, 2min )(b a y += 【经典题例】 例4:已知b 、c 是实数,函数f(x)=c bx x ++2 对任意α、β∈R 有:,0)(sin ≥αf 且,0)cos 2(≤+βf (1)求f (1)的值;(2)证明:c 3≥;(3)设)(sin αf 的最大值为10,求f (x )。 [思路](1)令α=2 π ,得,0)1(≥f 令β=π,得,0)1(≤f 因此,0)1(=f ;(2)证明:由已知,当11≤≤-x 时,, 0)(≥x f 当31≤≤x 时,,0)(≤x f 通过数形结合的方法可得:,0)3(≤f 化简得c 3≥; (3)由上述可知,[-1,1]是)(x f 的减区间,那么 ,10)1(=-f 又,0)1(=f 联立方程组可得4,5=-=c b ,所以45)(2+-=x x x f 例5:关于正弦曲线回答下述问题: (1)函数 )43sin(log 2 1x y ππ-=的单调递增区间是? Z k k x k ∈+<≤-]348328[; (2)若函数x a x y 2cos 2sin +=的图象关于直线8 π =x 对称,则a 的值是 1 ; (3)把函数)4 3sin(π+=x y 的图象向右平移8π 个单位,再将图象上各点的横坐标扩大到原来的3倍(纵坐标不变),则所得 的函数解析式子是 )8 sin(π -=x y ;

高中数学专题讲义-三角函数基本概念

题型一:任意角与弧度制 【例1】 下列各对角中终边相同的角是( )。 A 2π和2()2Z k k ππ-+∈ B 3π-和22 3 C 79π-和119π D 203π和1229π 【例2】 若角α、β的终边相同,则αβ-的终边在 . A.x 轴的非负半轴上 B.y 轴的非负半轴上 C.x 轴的非正半轴上 D.y 轴的非正半轴上 【例3】 当角α与β的终边互为反向延长线,则αβ-的终边在 . A.x 轴的非负半轴上 B.y 轴的非负半轴上 C.x 轴的非正半轴上 D.y 轴的非正半轴上 【例4】 时钟经过一小时,时针转过了( )。 A 6 rad π B 6 rad π - C 12 rad π D 12 rad π - 【例5】 两个圆心角相同的扇形的面积之比为1:2,则两个扇形周长的比为( ) A 1:2 B 1:4 C 1:2 D 1:8 典例分析 板块一.三角函数的基本概念

【例6】 下列命题中正确的命题是( ) A 若两扇形面积的比是1:4,则两扇形弧长的比是1:2 B 若扇形的弧长一定,则面积存在最大值 C 若扇形的面积一定,则弧长存在最小 D 任意角的集合可以与实数集R 之间建立一种一一对应关系 【例7】 一个半径为R 的扇形,它的周长是4R ,则这个扇形所含弓形的面积是( ) A. 21 (2sin1cos1)2R -? B 21 sin1cos12 R ? C 2 12 R D 2(1sin1cos1)R -? 【例8】 下列说法正确的有几个( ) (1)锐角是第一象限的角;(2)第一象限的角都是锐角; (3)小于90o 的角是锐角;(4)090o o :的角是锐角。 A 1个 B 2个 C 3个 D 4个 【例9】 已知角的顶点与坐标系原点重合,始边落在x 轴的正半轴上,则角855o 是第 ( )象限角。 A 第一象限角 B 第二象限角 C 第三象限角 D 第四象限角 【例10】 下面四个命题中正确的是( ) A.第一象限的角必是锐角 B.锐角必是第一象限的角 C.终边相同的角必相等 D.第二象限的角必大于第一象限的角 【例11】 已知角α的终边经过点(3P -,则与α终边相同的角的集合是 . A.2π2π3x x k k ?? =+∈???? Z , B.5π2π6x x k k ?? =+∈???? Z , C.5ππ6x x k k ?? =+∈???? Z , D.2π2π3x x k k ?? =-∈???? Z , 【例12】 若α是第四象限角,则180α-o 是( ) A 第一象限角 B 第二象限角 C 第三象限角 D 第四象限角 【例13】 若α与β的终边互为反向延长线,则有( )

相关主题