搜档网
当前位置:搜档网 › 数值分析_第三次上机

数值分析_第三次上机

数值分析_第三次上机
数值分析_第三次上机

4.求f(x)=sin x 在[0,π/2]上的最佳一次逼近多项式。

解:设P 1(x)=a 0+a 1x 是f(x) 的最佳一次逼近多项式,则P 1(x)在[0,π/2]上有三个交错点, 满足0<=x 1

由于 [f(x)- P 1(x)]’’=(cos x-a 1)’= -sin x 在[0,π/2]上小于0,定号, 故(cos x-a 1)’在[0,π/2]上单调递减,且仅有一个驻点。

故f(x)- P 1(x)在[0,π/2]上只有一个偏差点x 2,满足[f(x)- P 1(x)]’|x=x2 =cos x 2-a 1=0 (1)。 另外两个偏差点x 1=0 ,x 3=π/2 .

于是sin 0-a 0 =sin π/2-a 0-π/2a 1 (2), sin x 2 –a 0-a 1x 2= -( sin 0-a 0) (3) 由(1)(2)(3)式得:a 1=2/π x 2=arccos 2/π=0.88 a 0=-1.18 所以P 1= -1.18+2/π x 。

6.求f(x)=2x 4+3x 3-x 2+1在[-1,1]上的三次最佳一致逼近多项式。 解:设f(x)的三次最佳一致逼近多项式为P 3(x),

由切比雪夫多项式的极性可得 1/2[f(x)- P 3(x)]=1/8T 4(x)=1/8(8x 4-8x 2+1)

所以P 3(x)=f(x)-1/4(8x 4-8x 2+1)= 2x 4+3x 3-x 2+1-2x 4+2x 2-1/4 =3x 3+x 2+3/4

9.求函数f(x)在指定区间上关于Φ(x)=span{1,x}的最佳平方逼近多项式。 (3)f(x)=cosπx, x ∈[0,1];(4)f(x)=ln x, x ∈[1,2].

解:(3)在[0,1]上,经计算得 d 0= ?1

)(f dx x =0 ,d 1=?

1

)(x dx x f = -2/π2

得到法方程组为a 0+1/2a 1=0 ,1/2a 0+1/3a 1= -2/π2 由上面两式解得 a 0=12/π2 ,a 1= -24/π2

所以f(x)=cosπx 在[0,1]上的最佳平方逼近多项式为 S 1*

=12/π2 -24/π2 x 。

(4) 在[1,2]上,经计算得d 0=?21

)(f dx x = 2ln2-1 ,d 1=?

2

1

)(x dx x f = 2ln2-3/4

得到法方程组为 a 0+1/2a 1=2ln2-1 ,1/2a 0+1/3a 1= 2ln2-3/4 由上面两式得 a 0= -4ln2+1/2,a 1= 12ln2-3

所以f(x)=ln x 在[1,2]上的最佳平方逼近多项式为 S 1*

= -4ln2+1/2 +(12ln2-3) x 。

11.f(x)=sin(π/2 x)在[-1,1]上按Legendre 多项式展开,求三次最佳平方逼近多项式。 解:在[-1,1]上,Legendre 正交多项组为{1,x ,1/2(3x 2-1),1/2(5x 3-3x)}

则d 0=?

1

1

-)(f dx x =0, d 1=?

1

)(x dx x f =8/π2

d 2= ?

11

-2

x f 1-3x 1/2dx )()(=0 ,d 3=?

1

1

-3x f 3x -5x 1/2dx )()(=60/π2 -480/π4 。

由法方程组

1 1/

2 1/

3 1/

4 a 0 d 0

1/2 1/3 1/4 1/5 a 1 d 1 1/3 1/4 1/5 1/6 a 2 = d 2 1/4 1/5 1/6 1/7 a 3 d 3

得a 0= -0.2585 ,a 1=2.9074,a 2= -7.0253,a 3=4.5862 所以f(x)在[-1,1]上的三次最佳平方逼近多项式为 S *3(x)=a 0P 0(x)+a 1P 1(x)+a 2P 2(x)+a 3P 3(x)

= -0.2585+2.9074x-7.0253/2 (3x 2-1)+4.5862/2 (5x 3-3x) =11.4655x 3-10.538x 2 -3.7919x+3.254

13.求f(x)=arctan x 在[-1,1]上的三次Chebyshev 插值多项式。

解:设f(x)=arctan x 在[-1,1]上的三次Chebyshev 插值多项式为L 3(x),设在[-1,1]上给定的4个互异节点为x 0,x 1,x 2,x 3,函数在[-1,1]上具有四阶连续导数,对f(x)作多项式插值时,拉格朗日余项表达式为

R(x)=f(x)-L 3(x)=

!

4)(4εf ∏=-4

0j )(j

x x

其中?∈(-1,1)

显然L 3(x)=f(x) -!

4)

(4εf ∏=-4

j )(j

x x

当R(x)最小时,L 3(x)即为所求。 设M 4=max|f 4

(x)|=12

则有|R(x)|<=!

4M

4|

∏=-4

j )(j

x x |

由插值节点为x k =cos(2k+1)π/(2n+2) ,k=0,1,2,···,n 得x 0=cos π/8 ,x 1=cos 3π/8,x 2=cos 5π/8,x 3=cos 7π/8.

此时,有余项R(x)=|f(x)-L 3(x)| <=!

4M 4|

∏=-4

j )(j x x |=

3

4

*2!4M =1/16 所以L 3(x)=arctan x+1/16

18.已知数据如下表,试求一次、二次代数多项式对其拟合。 x -1 -0.5 0 0.5 1 y -0.22

0.88

2.00

3.13

4.28

解:在matlab 命令窗口执行 >>x=[-1 -0.5 0 0.5 1];

>>y=[-0.22 0.88 2.00 3.13 4.28]; >>polyfit(x,y,1) >>polyfit(x,y,2) 得到

ans=2.2500 2.0140

ans=0.0314 2.2500 1.9983 即其所求一次多项式对其拟合为: y=2.25x+2.014 二次多项式对其拟合为: y=0.0314x 2+2.25x+1.9983

19.已知数据见下表,试求拟合公式y=ae bx。

x 1 2 3 4 5 6 7 8

y 15.3 20.5 27.4 34.6 49.1 65.6 87.8 117.6

解:要求拟合曲线y=ae bx

可先求lny=lna+bx

在matlab命令窗口执行

>>x=[1 2 3 4 5 6 7 8];

>>y=[15.3 20.5 27.4 34.6 49.1 65.6 87.8 117.6];

>>y1=log(y);

>>polyfit(x,y1,1)

得到

ans=0.2919 2.4268

即b=0.2919 lna=2.4268

所以a=e2.4268=11.3226 b=0.2919

所求拟合公式为

y=11.3226e0.2919x

20.已知数据见下表,试求拟合公式y=a+bx2

x 19 25 31 38 44

y 19.0 32.3 49.0 73.3 97.8

解:在matlab命令窗口执行

>>x=[19 25 31 38 44];

>>y=[19.0 32.3 49.0 73.3 97.8];

>>polyfit(x,y,2)

得到

ans=0.0497 0.0193 0.6882

所求拟合公式为

y=0.6882+0.0497x2

22.已知数据见下表,试求拟合公式y=a+blnx。

x 3 5 10 20 y 3.5 4.8 4.2 4.5

解:令x1=lnx

则y=a+bx1

在matlab命令窗口执行

>>x=[3 5 10 20];

>>y=[3.5 4.8 4.2 4.5];

>>x1=log(x);

>>polyfit(x1,y,1)

得到

ans=0.3394 3.5707

即b=0.3394 a=3.5707

所求拟合公式为

y=3.5707+0.3394lnx

东南大学数值分析上机题答案

数值分析上机题 第一章 17.(上机题)舍入误差与有效数 设∑=-= N j N j S 2 2 11 ,其精确值为)111-23(21+-N N 。 (1)编制按从大到小的顺序1 -1 ···1-311-21222N S N +++=,计算N S 的通用 程序; (2)编制按从小到大的顺序1 21 ···1)1(111 222-++--+ -=N N S N ,计算N S 的通用程序; (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数(编制程序时用单精度); (4)通过本上机题,你明白了什么? 解: 程序: (1)从大到小的顺序计算1 -1 ···1-311-21222N S N +++= : function sn1=fromlarge(n) %从大到小计算sn1 format long ; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end (2)从小到大计算1 21 ···1)1(111 2 22 -++--+-= N N S N function sn2=fromsmall(n) %从小到大计算sn2 format long ; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end (3) 总的编程程序为: function p203()

clear all format long; n=input('please enter a number as the n:') sn=1/2*(3/2-1/n-1/(n+1));%精确值为sn fprintf('精确值为%f\n',sn); sn1=fromlarge(n); fprintf('从大到小计算的值为%f\n',sn1); sn2=fromsmall(n); fprintf('从小到大计算的值为%f\n',sn2); function sn1=fromlarge(n) %从大到小计算sn1 format long; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end function sn2=fromsmall(n) %从小到大计算sn2 format long; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end end 运行结果:

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析上机题目

数值分析上机题目 1、 分别用不动点迭代与Newton 法求解方程250x x e -+=的正根与负根。 2、 Use each of the following methods to find a solution in [0.1,1] accurate to within 10^-4 for 4326005502002010x x x x -+--= a. Bisection method b. Newton’s method c. Secant method d. Method of False Position e. Muller’s method 3、 应用Newton 法求f (x )的零点,e=10^-6,这里f (x )=x-sin (x )。 再用求重根的两种方法求f (x )的零点。 4、 应用Newton 法求f (x )的零点,e=10^-6,f(x)=x-sin(x) 再用Steffensen’s method 加速其收敛。 5、 用Neville’s 迭代差值算法,对于函数2 1 (),11125f x x x = -≤≤+进行lagrange 插值。取不同的等分数n=5,10,将区间[-1,1]n 等分,取等距节点。把f(x)和插值多项式的曲线画在同一张图上进行比较。 6、 画狗的轮廓图 7、 Use Romberg integration to compute the following approximations to ? a 、 Determine R1,1,R2,1,R3,1,R4,1and R5,1,and use these approximations to predict the value of the integral. b 、 Determine R2,2 ,R3,3 ,R4,4 ,and R5,5,and modify your prediction. c 、 Determine R6,1 ,R6,2 ,R6,3 ,R6,4 ,R6,5 and R6,6,and modify your prediction.

数值分析MATLAB上机实验

数值分析实习报告 姓名:gestepoA 学号:201******* 班级:***班

序言 随着计算机技术的迅速发展,数值分析在工程技术领域中的应用越来越广泛,并且成为数学与计算机之间的桥梁。要解决工程问题,往往需要处理很多数学模型,不仅要研究各种数学问题的数值解法,同时也要分析所用的数值解法在理论上的合理性,如解法所产生的误差能否满足精度要求:解法是否稳定、是否收敛及熟练的速度等。而且还能减少大量的人工计算。 由于工程实际中所遇到的数学模型求解过程迭代次数很多,计算量很大,所以需要借助如MATLAB,C++,VB,JAVA的辅助软件来解决,得到一个满足误差限的解。本文所计算题目,均采用MATLAB进行编程,MATLAB被称为第四代计算机语言,利用其丰富的函数资源,使编程人员从繁琐的程序代码中解放出来MATLAB最突出的特点就是简洁,它用更直观的、符合人们思维习惯的代码。它具有以下优点: 1友好的工作平台和编程环境。MATLAB界面精致,人机交互性强,操作简单。 2简单易用的程序语言。MATLAB是一个高级的矩阵/阵列语言,包含控制语言、函数、数据结构,具有输入、输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编好一个较大的复杂的应用程序(M 文件)后再一起运行。 3强大的科学计算机数据处理能力。包含大量计算算法的集合,拥有600多个工程中要用到的数学运算函数。 4出色的图像处理功能,可以方便地输出二维图像,便于我们绘制函数图像。

目录 1 第一题 (4) 1.1 实验目的 (4) 1.2 实验原理和方法 (4) 1.3 实验结果 (5) 1.3.1 最佳平方逼近法 (5) 1.3.2 拉格朗日插值法 (7) 1.3.3 对比 (8) 2 第二题 (9) 2.1实验目的 (9) 2.2 实验原理和方法 (10) 2.3 实验结果 (10) 2.3.1 第一问 (10) 2.3.2 第二问 (11) 2.3.3 第三问 (11) 3 第三题 (12) 3.1实验目的 (12) 3.2 实验原理和方法 (12) 3.3 实验结果 (12) 4 MATLAB程序 (14)

数值分析上机题目详解

第一章 一、题目 设∑ =-= N N j S 2 j 2 1 1,其精确值为)11 123(21+--N N 。 1) 编制按从大到小的顺序1 1 13112122 2-+??+-+-=N S N ,计算S N 的通用程序。 2) 编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 3) 按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) 4) 通过本次上机题,你明白了什么? 二、通用程序 N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0); for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('The value of Sn (N=%d)\n',N); fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2); disp('____________________________________________________')

三、结果 从结果可以看出有效位数是6位。 感想:可以得出,算法对误差的传播有一定的影响,在计算时选一种好的算法可以使结果更为精确。从以上的结果可以看到从大到小的顺序导致大数吃小数的现象,容易产生较大的误差,求和运算从小数到大数所得到的结果才比较准确。

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

2014级硕士研究生数值分析上机实习报告

2014级硕士研究生数值分析上机实习(第一次) 姓名:学号:学院: 实习题目:分别用二分法和Newton迭代法求方程x3■ 2x210x-20=0的根.实习目的:掌握两种解法,体会两种解法的收敛速度. 实习要求:用C程序语言编程上机进行计算,精确到8位有效数字. 报告内容: 1.确定实根的个数以及所在区间 2.将最后两次计算结果填入下表(保留8位数字): 3.实习过程中遇到哪些问题?如何解决?有何心得体会?

4.两种解法的计算程序(此页写不下时可以加页):

2014级硕士研究生数值分析上机实习(第二次)姓名:学号:学院: 实习题目:计算8阶三对角矩阵A=tridiag(0.235, 1.274, 0.235)的行列式.实习目的:掌握计算行列式的方法. 实习要求:首先选择一种算法,然后用C程序语言编程上机进行计算.报告内容: 1.简单描述所采用的算法: 2?计算结果: A 3.实习过程中遇到哪些问题?如何解决?有何心得体会?

4.写出C语言计算程序(此页写不下时可以加页):

2014级硕士研究生数值分析上机实习(第三次) 姓名:学号:学院: 分别用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组实习题目: 2lx + 9.8y+ 3.4z= 6.7 <2.7x + 1.8y+ 7.2z= 2.4 8.6x + 1.5y + 3.4z = 1.9 实习目的:感受两种迭代法的收敛速度. 首先构造收敛的Jacobi迭代法和Gauss-Seidel迭代法,然后用实习要求: C程序语言编程上机进行求解,初始值均取为0,精确到4位小 数. 报告内容: 1.写出收敛的Jacobi迭代法和Gauss-Seidel迭代法:

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

贵州大学数值分析上机实验

数值分析上机实验报告 课程名称:数值分析上机实验 学院:机械工程学院专业:机械制造 姓名:张法光学号:2012021691 年级:12级任课教师:代新敏老师 2012年12月30日

一.已知A 与b 12.38412 2.115237 -1.061074 1.112336 -0.1135840.718719 1.742382 3.067813 -2.031743 2.11523719.141823 -3.125432 -1.012345 2.189736 1.563849 -0.784165 1.112348 3.123124 -1.061074 -3.125A =43215.567914 3.123848 2.031454 1.836742-1.056781 0.336993 -1.010103 1.112336 -1.012345 3.12384827.108437 4.101011-3.741856 2.101023 -0.71828 -0.037585 -0.113584 2.189736 2.031454 4.10101119.8979180.431637- 3.111223 2.121314 1.784317 0.718719 1.563849 1.836742 -3.741856 0.4316379.789365-0.103458 -1.103456 0.238417 1.742382 -0.784165 -1.056781 2.101023-3.111223-0.1034581 4.7138465 3.123789 -2.213474 3.067813 1.112348 0.336993-0.71828 2.121314-1.103456 3.12378930.719334 4.446782 -2.031743 3.123124 -1.010103-0.037585 1.7843170.238417-2.213474 4.44678240.00001[ 2.1874369 33.992318 -2 5.173417 0.84671695 1.784317 -8 6.612343 1.1101230 4.719345 -5.6784392]T B ????? ? ?? ? ? ???? ? ? ???? ? ? ????? ?=(2)用超松弛法求解Bx=b (取松弛因子ω=1.4,x (0)=0,迭代9次)。 (3)用列主元素消去法求解 Bx=b 。 解:(3)、用列主元素消去法求解Bx=b (一)、理论依据: 其基本思想是选取绝对值尽量大的元素作为主元素,进行行与列的交换,再进行回代,求出方程的解。 将方阵A 和向量b 写成C=(A b )。将C 的第1列中第1行的元素与其下面的此列的元素逐一进行比较,找到最大的元素1j c ,将第j 行的元素与第1行的元素进行交换,然后通过行变换,将第1列中第2到第n 个元素都消成0。将变换后的矩阵(1)C 的第二列中第二行的元 素与其下面的此列的元素逐一进行比较,找到最大的元素(1) 2k c ,将第k 行的元素与第2行的 元素进行交换,然后通过行变换,将第2列中第3到第n 个元素都消成0。以此方法将矩阵的左下部分全都消成0。 (二)、计算程序: #include "math.h" #include "stdio.h" void main() { double u[9],x1[9],y[9],q[9],b1[9][10],x[9],a[9][9]={ {12.38412,2.115237,-1.061074,1.112336,-0.113584,0.718719,1.742382,3.067813,-2.031743 },

《数值分析》上机实验报告

数值分析上机实验报告 精选

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+K 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f Θ 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

矩阵与数值分析上机实验题及程序

1.给定n 阶方程组Ax b =,其中 6186186186A ?? ? ? ?= ? ? ??? ,7151514b ?? ? ? ?= ? ? ??? 则方程组有解(1,1,,1)T x = 。对10n =和84n =,分别用Gauss 消去法和列主元消去法解方程组,并比较计算结果。 Gauss 消去法: Matlab 编程(建立GS.m 文件): function x=GS(n) A=[];b=[]; for i=1:n-1 A(i,i)=6; A(i,i+1)=1; A(i+1,i)=8; b(i)=15; end A(n,n)=6;b(1)=7;b(n)=14;b=b'; for k=1:n-1 for i=k+1:n m(i,k)=A(i,k)/A(k,k); A(i,k:n)=A(i,k:n)-m(i,k)*A(k,k:n); b(i)=b(i)-m(i,k)*b(k); end end b(n)=b(n)/A(n,n); for i=n-1:-1:1 b(i)=(b(i)-sum(A(i,i+1:n).*b(i+1:n)'))/A(i,i); end clear x; x=b; disp( 'AX=b 的解x 是') end 计算结果: 在matlab 命令框里输出GS (10)得: >> GS(10) AX=b 的解x 是 ans = 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 在matlab命令框里输出GS(84)得:>> GS(84) AX=b的解x是 ans = 1.0e+008 * 0.0000 … … … 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0001 0.0002 -0.0003 0.0007 -0.0013 0.0026 -0.0052 0.0105 -0.0209 0.0419 -0.0836 0.1665 -0.3303

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

东南大学《数值分析》-上机题

数值分析上机题1 设2 21 1N N j S j ==-∑ ,其精确值为1311221N N ??-- ?+?? 。 (1)编制按从大到小的顺序222 111 21311 N S N = +++---,计算N S 的通用程序。 (2)编制按从小到大的顺序22 21111(1)121 N S N N =+++----,计算N S 的通用程序。 (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数。(编制程序时用单精度) (4)通过本上机题,你明白了什么? 程序代码(matlab 编程): clc clear a=single(1./([2:10^7].^2-1)); S1(1)=single(0); S1(2)=1/(2^2-1); for N=3:10^2 S1(N)=a(1); for i=2:N-1 S1(N)=S1(N)+a(i); end end S2(1)=single(0); S2(2)=1/(2^2-1); for N=3:10^2 S2(N)=a(N-1); for i=linspace(N-2,1,N-2) S2(N)=S2(N)+a(i); end end S1表示按从大到小的顺序的S N S2表示按从小到大的顺序的S N 计算结果

通过本上机题,看出按两种不同的顺序计算的结果是不相同的,按从大到小的顺序计算的值与精确值有较大的误差,而按从小到大的顺序计算的值与精确值吻合。从大到小的顺序计算得到的结果的有效位数少。计算机在进行数值计算时会出现“大数吃小数”的现象,导致计算结果的精度有所降低,我们在计算机中进行同号数的加法时,采用绝对值较小者先加的算法,其结果的相对误差较小。

数值分析上机题(matlab版)(东南大学)

数值分析上机题(matlab版)(东南大学)

数值分析上机报告

第一章 一、题目 精确值为)1 1 123(21+--N N 。 1) 编制按从大到小的顺序 1 1 131121222-+??+-+-= N S N ,计算S N 的通用程序。 2) 编制按从小到大的顺序 1 21 1)1(111222-+??+--+-= N N S N ,计算S N 的通用程序。 3) 按两种顺序分别计算6 42 10,10, 10S S S ,并指出有效位 数。(编制程序时用单精度) 4) 通过本次上机题,你明白了什么? 二、通用程序 clear N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0); for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('The value of Sn using different algorithms (N=%d)\n',N); disp('____________________________________________________') fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2);

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

相关主题