搜档网
当前位置:搜档网 › 数学归纳法经典练习及

数学归纳法经典练习及

数学归纳法经典练习及
数学归纳法经典练习及

数学归纳法经典练习及解答过程

第七节数学归纳法

知识点数学归纳法

证明一个与正整数n有关的命题,可按下列步骤进行:

(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立.

(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.

易误提醒运用数学归纳法应注意:

(1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值.

(2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法.

[自测练习]

1.已知f (n )=1n +1n +1+1n +2

+…+1n 2,则( )

A .f (n )中共有n 项,当n =2时,f (2)=12

+13

B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14

C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13

D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14

解析:从n 到n 2共有n 2-n +1个数,所以

f (n )中共有n 2

-n +1项,且f (2)=12+13+14,故选D.

答案:D

2.(2016·黄山质检)已知n 为正偶数,用数

学归纳法证明1-12+13-14+…+1n +1

=2? ??

??1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( )

A .k +1

B .k +2

C .2k +2

D .2(k +2)

解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B.

答案:B

考点一 用数学归纳法证明等式|

求证:(n+1)(n +2)·…·(n+n)=2n·1·3·5·…·(2n-1)(n∈N*).[证明](1)当n=1时,等式左边=2,右边=21·1=2,∴等式成立.

(2)假设当n=k(k∈N*)时,等式成立,即(k +1)(k+2)·…·(k+k)=2k·1·3·5·…·(2k-1).当n=k+1时,左边=(k+2)(k+3)·…·2k·(2k+1)(2k+2)

=2·(k+1)(k+2)(k+3)·…·(k+k)·(2k+1)

=2·2k·1·3·5·…·(2k-1)·(2k+1)

=2k+1·1·3·5·…·(2k-1)(2k+1).

这就是说当n=k+1时,等式成立.

根据(1),(2)知,对n∈N*,原等式成立.

1.用数学归纳法证明下面的等式:

12-22+32-42+…+(-1)n -1·n 2=(-1)n -

1n (n +1)2

. 证明:(1)当n =1时,左边=12=1,

右边=(-1)0

·1×(1+1)2=1, ∴原等式成立.

(2)假设n =k (k ∈N *,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)

k -1·k 2=(-1)k -1k (k +1)2

. 那么,当n =k +1时,则有

12-22+32-42+…+(-1)k -1·k 2+(-1)k ·(k

+1)2=(-1)k -1k (k +1)2

+(-1)k ·(k +1)2

=(-1)k

·k +12[-k +2(k +1)] =(-1)k

(k +1)(k +2)2. ∴n =k +1时,等式也成立,

由(1)(2)知对任意n ∈N *,有

12-22+32-42+…+(-1)

n -1·n 2=(-1)n -1n (n +1)2

.考点二 用数学归纳法证明不等式|

设数列{a n }各项

均为正数,且满足a n +1=a n -a 2n .

求证:对一切n ≥2,都有a n ≤1n +2

.

[证明] ∵数列{a n }各项均为正数,且满足a n +1=a n -a 2n ,

∴a 2=a 1-a 21>0,解得0

当n =2时,a 3=a 2-a 22=14-? ??

???a 2-122≤14,不等式成立,

假设当n =k (k ≥2)时,不等式成立,即a k ≤1k +2

, 则当n =k +1时,a k +1=a k -a 2k =14-? ??

???a k -122≤14-? ??

??1k +2-122=k +1(k +2)2

, ∴当n =k +1时,不等式也成立,

由数学归纳法知,对一切n ≥2,都有a n ≤1n +2

.

2.数列{a n }满足a n +1=a n 2a n +1

,a 1=1. (1)证明:数列??????

????1a n 是等差数列; (2)求数列??????

????1a n 的前n 项和S n ,并证明:1S 1+1S 2+…+1S n >n n +1

. 解:(1)证明:∵a n +1=a n 2a n +1

, ∴1

a n +1=2a n +1a n ,化简得1a n +1=2+1a n , 即1a n +1-1a n =2,故数列??????

????1a n 是以1为首项,2为公差的等差数列.

(2)由(1)知1a n

=2n -1,∴S n =n (1+2n -1)2=n 2.

证明:法一:1S 1+1S 2+…+1S n

=112+122+…

+1n 2>11×2+12×3+…+1n (n +1)=? ?????1-12+? ??

???12-13+…+? ??

??1n -1n +1=1-1n +1=n n +1. 法二:(数学归纳法)当n =1时,1S 1=1,n n +1

=12

,不等式成立. 假设当n =k 时,不等式成立,即1S 1+1S 2

+…+1S k >k k +1

. 则当n =k +1时,1S 1+1S 2+…+1S k

+1

S k +1>k k +1+1(k +1)2,又k (k +1)+1(k +1)2-k +1k +2=1-1k +1+1(k +1)2-1+1k +2=1k +2-k (k +1)2=1

(k +2)(k +1)2>0, ∴1S 1+1S 2+…+1S k

+1S k +1>k +1k +2,

∴原不等式成立.

考点三归纳—猜想—证明问题|

将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…,分别计算各组包含的正整数的和如下,试猜测S1+S3+S5+…+S2n-1的结果,并用数学归纳法证明.S1=1,

S2=2+3=5,

S3=4+5+6=15,

S4=7+8+9+10=34,

S5=11+12+13+14+15=65,

S6=16+17+18+19+20+21=111,

[解]由题意知,当n=1时,S1=1=14;

当n=2时,S1+S3=16=24;

当n=3时,S1+S3+S5=81=34;

当n=4时,S1+S3+S5+S7=256=44.

猜想:S1+S3+S5+…+S2n-1=n4.

下面用数学归纳法证明:

(1)当n=1时,S1=1=14,等式成立.

(2)假设当n=k(k∈N*)时等式成立,即S1+S3+S5+…+S2k-1=k4,

那么,当n=k+1时,S1+S3+S5+…+S2k

-1+S2k

+1

=k4+[(2k2+k+1)+(2k2+k+2)

+…+(2k2+k+2k+1)]=k4+(2k+1)(2k2+2k +1)=k4+4k3+6k2+4k+1=(k+1)4,这就是说,当n=k+1时,等式也成立.

根据(1)和(2),可知对于任意的n∈N*,S1

+S3+S5+…+S2n-1=n4都成立.

3.设a>0,f(x)=ax

a+x

,令a1=1,a n+1=f(a n),n∈N*.

(1)写出a2,a3,a4的值,并猜想数列{a n}的通项公式;

(2)用数学归纳法证明你的结论.

解:(1)∵a1=1,∴a2=f(a1)=f(1)=

a

1+a

a3=f(a2)=

a

2+a

;a4=f(a3)=

a

3+a

.

猜想a n=a

(n-1)+a

(n∈N*).

(2)证明:①易知n=1时,猜想正确.

②假设n=k时猜想正确,即a k=

a

(k-1)+a

则a k +1=f (a k )=a ·a k a +a k =a ·a (k -1)+a a +a (k -1)+a

=a (k -1)+a +1=a [(k +1)-1]+a

. 这说明,n =k +1时猜想正确.

由①②知,对于任意的n ∈N *,都有a n =a (n -1)+a

成立. 14.数学归纳法在证明不等式中的易误点

【典例】 设函数f (x )=x -sin x ,数列{a n }满足a n +1=f (a n ).

(1)若a 1=2,试比较a 2与a 3的大小;

(2)若0

[解] (1)当a 1=2时,a 2=f (2)=2-sin 2∈(0,2),所以sin a 2>0,又a 3=f (a 2)=a 2-sin a 2,

所以a 3-a 2=-sin a 2<0,所以a 2>a 3.

(2)证明:用数学归纳法证明当0

①当n=1时,0

②假设当n=k(k≥1,k∈N*)时,00,则当n=k+1时,a k+1-a k=-sin a k<0,

所以a k

+1

当x∈(0,1)时,f′(x)=1-cos x>0,

所以f(x)是(0,1)上的单调递增函数,

所以a k

=f(a k)>f(0)=0,即0

+1

故当n=k+1时,结论成立.

综上可得,当0

[易误点评](1)不会作差比较a2与a3大小,同时忽视了sin 2的值大小.

(2)证明n=k+1成立时用不归纳做证n=k 成立条件导致失误.

[防范措施](1)用数学归纳证明不等式的

关键是由n=k时命题成立,证明n=k+1时命题成立.(2)在归纳假设使用后,注意最后结论证明方法的选择.

[跟踪练习]若函数f(x)=x2-2x-3,定义数列{x n}如下:x1=2,x n+1是过点P(4,5),Q n(x n,f(x n))的直线PQ n与x轴的交点的横坐标,试运用数学归纳法证明:2≤x n

证明:(1)当n=1时,x1=2,f(x1)=-3,Q1(2,-3).∴直线PQ1的方程为y=4x-11,

令y=0,得x2=11

4,因此,2≤x1

n=1时结论成立.

(2)假设当n=k时,结论成立,即2≤x k

<3.

∴直线PQ k

+1的方程为y-5=

f(x k+1)-5

x k+1-4

(x

-4).

又f(x k

+1

)=x2k+1-2x k+1-3,代入上式,令y

=0,得x k +2=3+4x k +12+x k +1=4-52+x k +1

,由归纳假设,2

=3;x k +2-x k +1=(3-x k +1)(1+x k +1)2+x k +1

>0,即x k +1

由(1),(2)知对任;意的正整数n,2≤x n

A 组 考点能力演练

1.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N +,n ≥2).

证明:(1)当n =2时,1+122=54<2-12=32

,命题成立.

(2)假设n =k 时命题成立,即

1+122+132+…+1k 2<2-1k . 当n =k +1时,1+122+132+…+1k 2+1(k +1)2

<2-1k +1(k +1)2<2-1k +1k (k +1)

=2-1k +1k -1k +1=2-1k +1

命题成立. 由(1),(2)知原不等式在n ∈N +,n ≥2时均

成立.

2.已知数列{a n }的前n 项和为S n ,通项公

式为a n =1n f (n )=???

S 2n ,n =1,S 2n -S n -1,n ≥2, (1)计算f (1),f (2),f (3)的值;

(2)比较f (n )与1的大小,并用数学归纳法证明你的结论.

证明:(1)由已知f (1)=S 2=1+12=32

, f (2)=S 4-S 1=12+13+14=1312

f (3)=S 6-S 2=13+14+15+16=1920

; (2)由(1)知f (1)>1,f (2)>1;

下面用数学归纳法证明:当n ≥3时,f (n )<1. ①由(1)知当n =3时,f (n )<1;

②假设n =k (k ≥3)时,f (k )<1,即f (k )=1k +

1k +1

+…+12k <1,那么 f (k +1)=1k +1+1k +2

+…+12k +12k +1+12k +2

=? ??

??1k +1k +1+1k +2+…+12k +12k +1+12k +2-1k <1+? ????12k +1-12k +? ??

??12k +2-12k =1+2k -(2k +1)2k (2k +1)+2k -(2k +2)2k (2k +2)=1-12k (2k +1)

-1k (2k +2)

<1,所以当n =k +1时,f (n )<1也成立.

由①和②知,当n ≥3时,f (n )<1.

所以当n =1和n =2时,f (n )>1;当n ≥3时,f (n )<1.

3.(2015·安庆模拟)已知数列{a n }满足a 1=a >2,a n =a n -1+2(n ≥2,n ∈N *).

(1)求证:对任意n ∈N *,a n >2;

(2)判断数列{a n }的单调性,并说明你的理由;

(3)设S n 为数列{a n }的前n 项和,求证:当a

=3时,S n <2n +43

. 解:(1)证明:用数学归纳法证明a n >2(n ∈N *);

①当n =1时,a 1=a >2,结论成立; ②假设n =k (k ≥1)时结论成立,即a k >2,则n =k +1时,a k +1=a k +2>2+2=2,所以n =k +1时,结论成立.

故由①②及数学归纳法原理,知对一切的n

(完整版)1数学归纳法习题(含答案)

1# 数学归纳法 一、选择题(每小题5分,共25分) 1.(2011·怀化模拟)用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在 第二步时,正确的证法是 ( ) A .假设n =k (k ∈N +),证明n =k +1命题成立 B .假设n =k (k 是正奇数),证明n =k +1命题成立 C .假设n =2k +1(k ∈N +),证明n =k +1命题成立 D .假设n =k (k 是正奇数),证明n =k +2命题成立 2.(2011·鹤壁模拟)用数学归纳法证明“1+12+13+…+12n -1 1)”时,由n = k (k >1)不等式成立,推证n =k +1时,左边应增加的项数是 ( ) A .2k - 1 B .2k -1 C .2k D .2k +1 3.(2011·巢湖联考)对于不等式n 2+n 12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13 +…+131>52 ,…,由此猜测第n 个不等式为________(n ∈N *). 8.(2011·东莞调研)已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1), (1,4), (2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

数列数学归纳法测试题

数列 数学归纳法测试题 班级 姓名 得分 . 一、选择题: 1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( ) (A )168 (B ) 156 (C )78 (D ) 152 2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( ) (A )0 (B )100 (C )10000 (D )102400 3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( ) (A )6 (B )5 (C )4 (D )3 4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( ) (A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a = 5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( ) (A )5 (B ) 6 (C )7 (D ) 8 6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( ) (A ) 978 (B ) 557 (C ) 467 (D )以上都不对 7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( ) (A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --= 8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( ) (A )n S >n na >1na (B ) n S 45a a (D ) 36a a ≥45a a 10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( ) (A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3 n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90 n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

解析数学归纳法思想

解析数学归纳法思想 嘉兴教育学院吴明华 从数学和思想的含义去理解,所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果.数学思想是人们对数学知识的本质认识,是对数学规律的理性认识(文①第1页).数学思想广泛存在于数学的概念、方法和过程之中,具有奠基性、总结性和广泛性的特征.与数学方法相比,数学思想具有更高的概括抽象水平,因而更本质、更深刻.可以这么说,数学思想是数学方法的精神实质与理论基础,而数学方法则是实施有关数学思想的技术与操作程式. 数学归纳法是一种特殊的证明方法,它的基本形式是:对于一个与自然数(此处约定最小的自然数为1,即正整数)有关的命题,如果①当时命题成立;②假设当时命题成立,则当时命题也成立,那么命题对一切自然数n都成立. 在“中学数学核心概念、思想方法体系及其教学设计”课题第8次活动中,围绕两位教师的课堂展示,课题组对数学归纳法及其教学进行了广泛和深入的讨论,涉及到一些本质性的问题但尚未达成统一的认识.本文阐述笔者对数学归纳法所蕴涵的数学思想的一些认识,试图从本质上去理解数学归纳法. 1.数学归纳法中的归纳思想 对于一个与自然数有关的命题,数学归纳法将命题理解为一系列命题: ,,,…,即N}.然后由命题,,,…都成立去下结论“命题成立”,这就是笔者重点所指的数学归纳法中的归纳思想.所谓归纳,是指从特殊到一般,从局部到整体的推理.命题是一般的、整体的,而命题,,,…中的每一个都是特殊的、局部的,即使从所有命题,,

,…都成立去概括得出命题成立,其思想也是归纳的思想(完全归纳).让我们想想,对于一个与自然数有关的命题,我们是否有过不用归纳法去处理的经历?譬如说,求证,我们曾经这样做过: 设,则, 所以,故. 我们的证明只是“就一般的自然数n而言”,也就是说,我们并没有逐个地去考察 ,,…命题是否成立,而只是把n当作“某个”(当然是任意一个)自然数直接去考察命题是否成立,这在数学上叫做“不失一般性”.其实,这样的例子在数学中比比皆是. 让我们从更一般的情形来阐述归纳思想.对于一个数学对象P,如果P可以分解为若干个种类,,,…,那么从研究,,,…入手,概括得到对象P的属性的思想,就是归纳的思想.这与分类讨论有点相似,但分类讨论常常是获得对象P在各种情况下的不同结果,而归纳则取向于获得,,,…的共性,以及由这些共性所反映的对象P的本质. 有几个问题是必须讲清楚的.首先,数学归纳法中的“归纳奠基”与“归纳递推” 工作,实际上是两个命题的证明,即证明①命题“”成立,②命题“若,则”成立,而这两个命题自身的证明常常用的是“演绎法”.其次,以“归纳递推”为大前提,以命题成立为小前提,得出命题成立,等等的推理过程也是演绎的.还有,若将自然数公理中的归纳公理(见本文后述)理解为大前提,将数学归纳法中的“归纳奠基”与“归纳递推”理解为小前提,那么得出命题成立的推理过程也是演绎的(文①第110页).但这些都不妨碍数学归纳法在处理与自然数有关的命题时所体现出来的归纳思

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

数学归纳法例题讲解

数学归纳法例题讲解 例1.用数学归纳法证明: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?n n n n . 请读者分析下面的证法: 证明:①n =1时,左边3 13 11=?= ,右边3 11 21= += ,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()() 1 212121 7 515 313 11+= +-+ +?+ ?+ ?k k k k . 那么当n =k +1时,有: ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ?? ??????? ??+-++??? ??+--++??? ??-+??? ??-+??? ??-= 321121121121 7151513131121k k k k 3 22 221321121++? =??? ??+-= k k k ()1 1213 21+++= ++= k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()() 32121 12121 7 515 313 11+++ +-+ +?+ ?+ ?k k k k ()() 321211 2+++ += k k k k

()() ()()()() 321211232121 322 ++++= ++++= k k k k k k k k ()1 1213 21+++= ++= k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ??? ??=++=+=60 3224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…

导数典型例题(含答案)

导数典型例题 导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点. 一、与导数概念有关的问题 【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 .1002 C ! 解法一 f '(0)=x f x f x ?-?+→?) 0()0(lim = x x x x x ?--?-?-??→?0 )100()2)(1(lim 0 Λ =lim 0 →?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D. 解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D. 点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解. 【例2】 已知函数f (x )=n n n k k n n n n x c n x c k x c x c c 11212210 ++++++ΛΛ,n ∈N *,则 x x f x f x ??--?+→?) 2()22(lim 0 = . 解 ∵ x x f x f x ??--?+→?) 2()22(lim 0 =2x f x f x ?-?+→?2) 2()22(lim + []x f x f x ?--?-+→?-) 2()(2lim 0 =2f '(2)+ f '(2)=3 f '(2), 又∵f '(x )=1 1 2 1 --+++++n n n k k n n n x c x c x c c ΛΛ, ∴f '(2)= 21(2n n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2 1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如 x m x f x m x f x ?--?-→?-)()(000 lim ,且其定义形式可以是 x m x f x m x f x ?--?-→?) ()(000 lim ,也可以是 00 ) ()(lim x x x f x f x --→?(令Δx =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关 知识的综合题,连接交汇、自然,背景新颖. 【例3】 如圆的半径以2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

各种数学归纳法

1.5 归纳法原理与反归纳法 数学归纳法是中学教学中经常使用的方法.中学教材中的数学归纳法是这样叙述的:如果一个命题与自然数有关,命题对n =1正确;若假设此命题对n -1正确,就能推出命题对n 也正确,则命题对所有自然数都正确.通俗的说法:命题对n =1正确,因而命题对n =2也正确,然后命题对n =3也正确,如此类推,命题对所有自然数都正确.对于中学生来说,这样形象地说明就足够了;但是毕竟自然数是无限的,因而上述描述是不够严格的,有了皮阿罗公理后,我们就能给出归纳法的严格证明. 定理1.19 如果某个命题T,它的叙述含有自然数,如果命题T对n =1是正确的,而且假定如果命题T对n 的正确性就能推出命题T对n +1也正确,则命题T对一切自然数都成立.(第一数学归纳法) 证明 设M是使所讨论的例题T正确的自然数集合,则 (1) M ∈1. 设M n ∈,则命题T对n 正确,这时命题对n n '=+1也正确,即 (2) M n ∈' 所以由归纳公理D,M含有所有自然数,即命题T对所有自然数都成立. 下面我们给出一个应用数学归纳法的命题. 例1 求证 6 ) 12)(1(212 2 2 ++= +++n n n n 证明 (1)当n =1时,有 16 ) 112()11(112 =+?++?= 所以n =1,公式正确. (2)假设当k =n 时,公式正确,即 6 ) 12)(1(212 2 2 ++= +++n n n n 那么当k =n +1时,有 =+++++=+++++2 2222222)1()21()1(21n n n n =++++2 ) 1(6 ) 12)(1(n n n n =++++6 ) 1(6)12)(1(2 n n n n =++++6 )] 1(6)12()[1(n n n n =+++6 ) 672)(1(2 n n n =+++6) 32)(2)(1(n n n =+++++6 ) 1)1(2)(1)1)((1(n n n 所以公式对n +1也正确.

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n个数a ij(i 1,2, ,m; j 1,2, , n)组成的m行n 列的矩形数表 a11 a12 a1n a2n a m1 a m2 a mn 称为m×n矩阵,记为 A (a ij )m n 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是 1 的对角阵,记为E; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设 A (a ij )mn; B (b ij )mn 若a ij b ij(i 1,2, ,m; j 1,2, ,n),则称 A 与B相等,记为A=B 2.1.2 矩阵的运算

1.加法 (1)定义:设 A (A ij )mn ,B (b ij ) mn ,则 C A B (a ij b ij )mn (2) 运算规律 ① A+B=B+A ; ②( A+B )+C=A+(B+C ) ③ A+O=A ④ A+(-A ) =0, –A 是 A 的负矩阵 2.数与矩阵的乘法 (1)定义:设 A (a ij ) mn , k 为常数,则 kA (ka ij )mn (2)运算规律 ①K (A+B) =KA+KB , ② (K+L )A=KA+LA , ③ (KL) A= K (LA) 3.矩阵的乘法 (1)定义:设 A (a ij )mn ,B (b ij )np .则 n AB C (C ij )mp ,其中 C ij a ik b kj k1 (2) 运算规律 ① (AB)C A (BC) ;② A(B C) AB AC ③ (B C)A BA CA 3)方阵的幂 ①定义:A (a ij ) n ,则 A k A K A ②运算规律: A m A n A m n (A m )n A (4)矩阵乘法与幂运算与数的运算不同之处。 ① AB BA ② AB 0, 不能推出 A 0或B 0; ③ (AB)k A k B k 4.矩阵的转置 (1) 定义:设矩阵 A=(a ij )mn ,将 A 的行与列的元素位置交换,称为矩阵 A 的转置,记为 A T (a ji )nm , (2) 运算规律 ①(A T )T A; ②(A B)T A T B T ; ③(kA)T KA T ; ④ (AB)T B T A T 。

数学归纳法巧记高中数学公式大全

高中数学公式大全及巧记口诀 离2012年高考只剩63天了,因为高中数学在高考中占有较大的比分,很多同学在数学上失分很多,其主要原因是同学们对数学基础知识记忆和掌握不够到位。因此我们乐恩特教育网整理了高中数学公式大全及巧计口诀,以便同学们轻松掌握数学公式,在高考数学复习上达到事半功倍的效果!以下就是整理的高中数学公式大全及巧记口诀: 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

高中数学高考总复习数学归纳法习题及详解(可编辑修改word版)

A. n -1 B. n +1-1 C. n +1-2 D. n +2-2 高中数学高考总复习数学归纳法习题及详解 一、选择题 1 1 . 已知a = ,数列{a }的前n 项和为S ,已计算得S = 2-1, S = 3-1,S =1, n n +1+ n n n 1 2 3 由此可猜想 S n =( ) [答案] B 1 1 1 1 2.已知 S k = + + + + + +…+ (k =1,2,3,…),则 S k +1 等于( ) k 1 k 2 k 3 2k 1 A. S k + + 2(k 1) 1 1 B. S k + + - + 2k 1 k 1 1 1 C. S k + + - + 2k 1 2k 2 1 1 D. S k + + + + 2k 1 2k 2 [答案] C 1 1 1 1 1 1 1 [解析] S k +1= + + + + + +…+ = + + + + +…+ = + + + (k 1 1 1 1) 1 1 (k 1) 2 1 2(k 1) 1 1 k 2 k 3 2k 2 k 1 +…+ + + + - + + + =S k + + - + . k 2 2k 2k 1 2k 2 k 1 2k 1 2k 2 3. 对于不等式 1°当 n =1 时, n 2+n ≤n +1(n ∈N *),某人的证明过程如下: 12+1≤1+1,不等式成立. 2°假设 n =k (k ∈N *)时不等式成立,即 k 2+k

数学归纳法典型例题

实用文档 文案大全数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 数学归纳法的原理及应用 四. 知识分析 【知识梳理】 数学归纳法是证明关于正整数n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察—-归纳—-猜想—-证明”的思维模式,就显得特别重要。 一般地,证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n = n0时命题成立; (2)(归纳递推)假设n= k()时命题成立,

证明当时命题也成立。 只要完成这两个步骤,就可以断定命题对从开始的所有正整数n 都成立。上述证明方法叫做数学归纳法。 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步 实用文档 文案大全各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n =k+1时也成假设了,命题并没有得到证明。 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。 2、运用数学归纳法时易犯的错误 (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。

数学归纳法、同一法、整体代换法

数学归纳法、同一法、整体代换法 一、函数方程思想 从而解决问题的一种思维方式,函数方程思想就是用函数、方程的观点和方法处置变量或未知数之间的关系。很重要的数学思想。 并研究这些量间的相互制约关系,1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达进去。最后解决问题,这就是函数思想; 确立变量之间的函数关系是一关键步骤,2.应用函数思想解题。大体可分为下面两个步骤:1根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;2根据需要构造函数,利用函数的相关知识解决问题;3方程思想:如何学好高中数学某变化过程中,往往需要根据一些要求,确定某些变量的值,这时经常列出这些变量的方程或(方程组)通过解方程(或方程组)求出它这就是方程思想; 之间相互渗透,3.函数与方程是两个有着密切联系的数学概念。很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。 二、数形结合思想 对于所研究的代数问题,数形结合是中学数学中四种重要思想方法之一。有时可研究其对应几何的性质使问题得以解决(以形助数)或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形)这种解决问题的方法称之为数形结合。 发挥数的思路的规范性与严密性,1.数形结合与数形转化的目的为了发挥形的生动性和直观性。两者相辅相成,扬长避短。 宇宙间万事万物无不是数和形的和谐的统一。因此,2.恩格斯是这样来定义数学数学研究现实世界的量的关系与空间形式的科学”这就是说:数形结合是数学实质特征。数学学习中突出数形结合思想正是充分掌握住了数学精髓和灵魂。 数量关系决定了几何图形的性质。 3.数形结合的实质是几何图形的性质反映了数量关系。形少数时难入微;数形结合百般好,隔裂分家万事非。数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,4.华罗庚先生曾指出:数缺性时少直观。或者借助于形的几何直观性来说明数之间的某种关系. 历年高考解答题都有关于这个方面的考查(即用代数方法研究几何问题)而以形为手段的数形结合在高考客观题中体现。 5.把数作为手段的数形结合主要体现在解析几何中。 6.要抓住以下几点数形结合的解题要领: 可直接从几何图形入手进行求解即可; 1对于研究距离、角或面积的问题。 可通过函数的图象求解(函数的零点,2对于研究函数、方程或不等式(最值)问题。顶点是关键点)作好知识的迁移与综合运用; 3对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的 三、分类讨论的数学思想 当问题的对象不能进行统一研究时,分类讨论是一种重要的数学思想方法。就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。 引起分类讨论的原因大致可归纳为如下几种: 1.有关分类讨论的数学问题需要运用分类讨论思想来解决。 1涉及的数学概念是分类讨论的 2运用的数学定理、公式、或运算性质、法则是分类给出的 3求解的数学问题的结论有多种情况或多种可能性;

相关主题