搜档网
当前位置:搜档网 › 最新数列经典试题(含答案)

最新数列经典试题(含答案)

最新数列经典试题(含答案)
最新数列经典试题(含答案)

强力推荐人教版数学高中必修5习题

第二章 数列

1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).

A .667

B .668

C .669

D .670

2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).

A .33

B .72

C .84

D .189

3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ).

A .a 1a 8>a 4a 5

B .a 1a 8<a 4a 5

C .a 1+a 8<a 4+a 5

D .a 1a 8=a 4a 5

4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为

41的等差数列,则 |m -n |等于( ).

A .1

B .43

C .21

D . 8

3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).

A .81

B .120

C .168

D .192

6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ).

A .4 005

B .4 006

C .4 007

D .4 008

7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).

A .-4

B .-6

C .-8

D . -10

8.设S n 是等差数列{a n }的前n 项和,若

35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2

1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则

212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4

1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

A .38

B .20

C .10

D .9

二、填空题

11.设f (x )=221

+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)

+f (6)的值为 .

12.已知等比数列{a n }中,

(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= .

(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= .

(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .

13.在3

8和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .

15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .

16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= .

三、解答题

17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.

(2)已知

a 1,

b 1,

c 1成等差数列,求证a c b +,b a c +,c

b a +也成等差数列.

18.设{a n }是公比为 q 的等比数列,且a 1,a 3,a 2成等差数列.

(1)求q 的值;

(2)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.

19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=

n n 2+S n (n =1,2,3…). 求证:数列{

n

S n }是等比数列.

20.已知数列{a n }是首项为a 且公比不等于1的等比数列,S n 为其前n 项和,a 1,2a 7,3a 4成等差数列,求证:12S 3,S 6,S 12-S 6成等比数列.

第二章 数列

参考答案

一、选择题

1.C

解析:由题设,代入通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699.

2.C

解析:本题考查等比数列的相关概念,及其有关计算能力.

设等比数列{a n }的公比为q (q >0),由题意得a 1+a 2+a 3=21,

即a 1(1+q +q 2)=21,又a 1=3,∴1+q +q 2=7.

解得q =2或q =-3(不合题意,舍去),

∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84.

3.B .

解析:由a 1+a 8=a 4+a 5,∴排除C .

又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,

∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.

4.C

解析:

解法1:设a 1=

41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,

∴a 1+a 2+a 3+a 4=1+6d =4,

∴d =

21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,16

15分别为m 或n , ∴|m -n |=

21,故选C .

解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .

由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=

47,于是可得等差数列为41,43,45,4

7, ∴m =167,n =16

15, ∴|m -n |=

21. 5.B

解析:∵a 2=9,a 5=243,25a a =q 3=9

243=27, ∴q =3,a 1q =9,a 1=3,

∴S 4=3-13-35=2

240=120. 6.B

解析:

解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有一正数一负数,又a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.

∴S 4 006=

2+006400641)(a a =2+006400420032)(a a >0, ∴S 4 007=20074·(a 1+a 4 007)=2

0074·2a 2 004<0, 故4 006为S n >0的最大自然数. 选B .

解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同

解法1的分析得a 2 003>0,

a 2 004<0,

∴S 2 003为S n 中的最大值.

∵S n 是关于n 的二次函数,如草图所示,

∴2 003到对称轴的距离比2 004到对称轴的距离小, ∴20074在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧

零点B 的左侧,4 007,4 008都在其右侧,S n >0的最大自然数是4 006.

(第6题

)

7.B

解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6,

又由a 1,a 3,a 4成等比数列,

∴(a 1+4)2=a 1(a 1+6),解得a 1=-8,

∴a 2=-8+2=-6.

8.A 解析:∵59S S =2

)(52)(95191a a a a ++=3559a a ??=59·9

5=1,∴选A . 9.A

解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)q 4,

∴d =-1,q 2=2, ∴212b a a -=2q d -=2

1. 10.C

解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,

又a n ≠0,∴a n =2,{a n }为常数数列,

而a n =1212--n S n ,即2n -1=238=19,

∴n =10.

二、填空题

11.23.

解析:∵f (x )=2

21+x , ∴f (1-x )=2211+-x =x x 2222?+=x x 2

2221+, ∴f (x )+f (1-x )=x 221++x x 22221+?=x x 222211+?+=x x 2

2)22(21++=22. 设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6),

则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),

∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,

∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.

12.(1)32;(2)4;(3)32.

解析:(1)由a 3·a 5=24a ,得a 4=2,

∴a 2·a 3·a 4·a 5·a 6=54a =32.

(2)9136

)(324222121=????=+=+q q a a a a , ∴a 5+a 6=(a 1+a 2)q 4=4.

(3)2=+=+++=2=+++=444482

1843214q q S S a a a S a a a a S ?????????, ∴a 17+a 18+a 19+a 20=S 4q 16=32.

13.216. 解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与3

8,227同号,由等比中项的中间数为22738?=6,∴插入的三个数之积为38×2

27×6=216. 14.26.

解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10,

∴6(a 4+a 10)=24,a 4+a 10=4,

∴S 13=2+13131)(a a =2+13104)(a a =2

413?=26. 15.-49.

解析:∵d =a 6-a 5=-5,

∴a 4+a 5+…+a 10 =

2+7104)(a a =2

5++-755)(d a d a

=7(a 5+2d )

=-49.

16.5,2

1(n +1)(n -2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).

由f (3)=2,

f (4)=f (3)+3=2+3=5,

f (5)=f (4)+4=2+3+4=9,

……

f (n )=f (n -1)+(n -1),

相加得f (n )=2+3+4+…+(n -1)=

21(n +1)(n -2). 三、解答题

17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.

证明:(1)n =1时,a 1=S 1=3-2=1,

当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,

n =1时,亦满足,∴a n =6n -5(n ∈N*).

首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*),

∴数列{a n }成等差数列且a 1=1,公差为6.

(2)∵

a 1,

b 1,

c 1成等差数列, ∴b 2=a 1+c

1化简得2ac =b (a +c ). a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2

++2)()(c a b c a =2·b

c a +, ∴a c b +,b a c +,c

b a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,

∵a 1≠0,∴2q 2-q -1=0,

∴q =1或-2

1. (2)若q =1,则S n =2n +2

1-)(n n =23+2n n . 当n ≥2时,S n -b n =S n -1=2

2+1-))((n n >0,故S n >b n .

若q =-21,则S n =2n +2

1-)(n n (-21)=49+-2n n .

当n ≥2时,S n -b n =S n -1=

4-11-)0)((n n ,

故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .

19.证明:∵a n +1=S n +1-S n ,a n +1=

n n 2+S n ,

∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n , 所以

1+1+n S n =n S n 2. 故{

n S n }是以2为公比的等比数列.

20.证明:由a 1,2a 7,3a 4成等差数列,得4a 7=a 1+3a 4,即4 a 1q 6=a 1+3a 1q 3,

变形得(4q 3+1)(q 3-1)=0,

∴q 3=-4

1或q 3=1(舍). 由3612S S =q

q a q q a ----1)1(121)

1(3161=1213q +=16

1;

6612S S S -=612S S -1=q

q a q q a ----1)1(1)

1(61121-1=1+q 6-1=16

1; 得3612S S =6612S S S -.

∴12S 3,S 6,S 12-S 6成等比数列.

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

数列经典题目集锦答案

数列经典题目集锦一 一、构造法证明等差、等比 类型一:按已有目标构造 1、 数列{a n },{b n },{c n }满足:b n =a n -2a n +1,c n =a n +1+2a n +2-2,n ∈N * . (1) 若数列{a n }是等差数列,求证:数列{b n }是等差数列; (2) 若数列{b n },{c n }都是等差数列, 求证:数列{a n }从第二项起为等差数列; (3) 若数列{b n }是等差数列,试判断当b 1+a 3=0时, 数列{a n }是否成等差数列?证明你的结论. 类型二: 整体构造 2、设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n +1+λ)a n =(S n +1)a n +1对一切n ∈N * 都成立. (1) 若λ=1,求数列{a n }的通项公式; (2) 求λ的值,使数列{a n }是等差数列. 二、两次作差法证明等差数列 3、设数列{}n a 的前n 项和为{}n S ,已知11,6,1321===a a a , 且* 1,)25()85(N n B An S n S n n n ∈+=+--+,(其中A ,B 为常数). (1)求A 与B 的值;(2)求数列{}n a 为通项公式; 三、数列的单调性 4.已知常数0λ≥,设各项均为正数的数列{}n a 的前n 项和为n S , 满足:11a =,() 1 1131n n n n n n a S S a a λ+++= +?+(*n ∈N ). (1)若0λ=,求数列{}n a 的通项公式; (2)若11 2 n n a a +<对一切*n ∈N 恒成立,数λ的取值围. 5.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=. (1)求数列{}n a 的通项公式; (2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序 后能构成等差数列”成立的充要条件; (3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --++++L 1 3246n n +=?--, 且集合*| ,n n b M n n N a λ??=≥∈???? 中有且仅有3个元素,求λ的取值围.

(完整版)数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

数列经典例题

类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式 故. 总结升华: 1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列. 2.当数列的递推公式是形如的解析式, 而的和是可求的,则可用多式累(迭)加法得. 举一反三: 【变式1】已知数列,,,求. 【答案】

【变式2】数列中,,求通项公式. 【答案】. 类型二:迭乘法求数列通项公式 2.设是首项为1的正项数列,且 ,求它的通项公式. 解析:由题意 ∴ ∵,∴, ∴, ∴,又, ∴当时, , 当时,符合上式 ∴. 总结升华: 1. 在数列中,,若为常数且 ,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列. 2.若数列有形如的解析关系,而

的积是可求的,则可用多式累(迭)乘法求得. 举一反三: 【变式1】在数列中,,,求. 【答案】 【变式2】已知数列中,, ,求通项公式. 【答案】由得,∴, ∴, ∴当时, 当时,符合上式 ∴ 类型三:倒数法求通项公式 3.数列中,

,,求. 思路点拨:对两边同除以得即可. 解析:∵,∴两边同除以得, ∴成等差数列,公差为d=5,首项, ∴, ∴. 总结升华: 1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而 恰是等差数列.其通项易求,先求的通项,再求的通项. 2.若数列有形如的关系,则可在 等式两边同乘以,先求出,再求得. 举一反三: 【变式1】数列中,,,求. 【答案】

(完整版)等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以,故,选B 3.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, , 则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解 析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 2 1 222q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

等差数列经典试题(含答案) 百度文库

一、等差数列选择题 1.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107 C .109 D .105 2.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21 2 ,则该数列的项数是( ) A .8 B .4 C .12 D .16 3.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10- B .8 C .12 D .14 4.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 5.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n - B .n C .21n - D .2n 6.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了 3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 7.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10 B .9 C .8 D .7 8.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A . 4 7 B . 1629 C . 815 D . 45 9.已知各项不为0的等差数列{}n a 满足2 6780a a a -+=,数列{}n b 是等比数列,且 77b a =,则3810b b b =( ) A .1 B .8 C .4 D .2 10.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9 B .12 C .15 D .18 11.已知数列{}n a 中,11a =,22a =,对*n N ?∈都有333 122n n n a a a ++=+,则10a 等于

数列经典例题(裂项相消法)

数列经典例题(裂项相消法)

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为, 15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101 100 2.数列, )1(1 += n n a n 其前n 项之和为,109 则在平面直角坐标系中, 直线0)1(=+++n y x n 在y 轴上的截距为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且6 22 321 9,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设, log log log 32313n n a a a b +++= 求数列}1{n b 的前n 项和. 4.正项数列}{n a 满足0 2)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令, )1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且1 2,4224 +==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,2 1 1*221 1N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26 ,7753 =+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;

数列的概念经典试题(含答案) 百度文库

一、数列的概念选择题 1.若数列的前4项分别是 1111,,,2345 --,则此数列的一个通项公式为( ) A .1(1)n n -- B .(1)n n - C .1 (1)1 n n +-+ D .(1)1 n n -+ 2.已知数列{}n a 满足: 12a =,11 1n n a a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007 B .1008 C .1009.5 D .1010 3.已知数列{}n a 满足12a =,11 1n n a a +=-,则2018a =( ). A .2 B . 12 C .1- D .12 - 4.在数列{}n a 中,10a = ,1n a +,则2020a =( ) A .0 B .1 C .D 5.已知数列2233331131357135 1,,,,,,,...,,,,...2222222222n n n ,则该数列第2019项是( ) A . 1019892 B . 10 2019 2 C . 11 1989 2 D . 11 2019 2 6.已知数列{}n a 的前n 项和为n S ,且2 1n S n n =++,则{}n a 的通项公式是( ) A .2n a n = B .3,1 2,2n n a n n =?=? ≥? C .21n a n =+ D .3n a n = 7.在数列{}n a 中,11a =,对于任意自然数n ,都有12n n n a a n +=+?,则15a =( ) A .151422?+ B .141322?+ C .151423?+ D .151323?+ 8.数列23451,,,,,3579 的一个通项公式n a 是( ) A . 21n n + B . 23 n n + C . 23 n n - D . 21 n n - 9.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( ) A .存在正整数0N ,当0n N >时,都有n a n ≤. B .存在正整数0N ,当0n N >时,都有n a n ≥. C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

高中数列经典例集

一、 经典例题剖析 考点一:等差、等比数列的概念与性质 例题1.(1)数列{a n }和{b n }满足)(121n n b b b n a +++= (n=1,2,3…), (1)求证{ b n }为等差数列的充要条件是{a n }为等差数列。 (2)数列{a n }和{c n }满足*)(21N n a a c n n n ∈+=+,探究}{n a 为等差数列的充分必要条例题2.已知数列{}n a 的首项 121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。 (1)证明:{}n b 从第2项起是以2为公比的等比数列; (2)设n S 为数列{}n b 的前n 项和,且{}n S 是等比数列,求实数a 的值; (3)当a>0时,求数列{}n a 的最小项。 例题4. 已知数列{}n a 满足411=a ,()),2(2 111N n n a a a n n n n ∈≥--=--. (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)设21 n n a b =,求数列{}n b 的前n 项和n S ; (Ⅲ)设2 )12(sin π-=n a c n n ,数列{}n c 的前n 项和为n T .求证:对任意的*∈N n ,74+1; ⑶ 求证:),2(21111111*21N n n a a a n ∈≥<++++++< 例题6已知数列{}n a 满足()111,21n n a a a n N *+==+∈ (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列; (Ⅲ)证明:()23111123n n N a a a *++++<∈

高中数列经典题型大全

高中数列经典题型大全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121==x x ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a

最新数列知识点大全及经典测试题

数列知识点回顾 第一部分:数列的基本概念 1.理解数列定义的四个要点 ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列. 2.数列的通项公式 一个数列{ a n }的第n 项a n 与项数n 之间的函数关系,如果用一个公式a n =)(n f 来表示,就把这个公式叫做数列{ a n }的通项公式。若给出数列{ a n }的通项公式,则这个数列是已知的。若数列{ a n } 的前n 项和记为S n ,则S n 与a n 的关系是:a n =???≥-=-2 .1,11n S S n S n n 。 第二部分:等差数列 1.等差数列定义的几个特点: ⑴公差是从第一项起,每一项减去它前一项的差(同一常数),即d = a n -a 1-n (n ≥2)或d = a 1+n -a n (n ∈N +). ⑵要证明一个数列是等差数列,必须对任意n ∈N +,a n -a 1-n = d (n ≥2)或d = a 1+n -a n 都成立.一般采用的形式为: ① 当n ≥2时,有a n -a 1-n = d (d 为常数). ②当n +∈N 时,有a 1+n -a n = d (d 为常数). ③当n ≥2时,有a 1+n -a n = a n -a 1-n 成立.

若判断数列{ a n }不是等差数列,只需有a 3-a 2≠a 2-a 1即可. 2.等差中项 若a 、A 、b 成等差数列,即A=2b a +,则A 是a 与b 的等差中项;若A=2 b a +,则a 、A 、 b 成等差数列,故A= 2 b a +是a 、A 、 b 成等差数列,的充要条件。由于a n =211-++n n a a ,所以,等差数列的 每一项都是它前一项与后一项的等差中项。 3.等差数列的基本性质 ⑴公差为d 的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d . ⑵公差为d 的等差数列,各项同乘以常数k 所得数列仍是等差数列,其公差为kd . ⑶若{ a n }、{ b n }为等差数列,则{ a n ±b n }与{ka n +b}(k 、b 为非零常数)也是等差数列. ⑷对任何m 、n +∈N ,在等差数列{ a n }中有:a n = a m + (n -m)d ,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性. ⑸、一般地,如果l ,k ,p ,…,m ,n ,r ,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a n }为等差数列时,有:a l + a k + a p + … = a m + a n + a p + … . ⑹公差为d 的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k 为取出项数之差). ⑺如果{ a n }是等差数列,公差为d ,那么,a n ,a 1-n ,…,a 2、a 1也是等差数列,其公差为-d ;在等差数列{ a n }中,a l m +-a l = a k m +-a k = md .(其中m 、k 、l ∈+N ) ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项. ⑼当公差d >0时,等差数列中的数随项数的增大而增大;当d <0时,等差数列中的数随项数的减少而减小;d =0时,等差数列中的数等于一个常数. ⑽设a l ,a m ,a n 为等差数列中的三项,且a l 与a m ,a m 与a n 的项距差之比 n m m l --=λ(λ≠-1),

数列经典例题集锦.

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=. (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++ ++=, 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,

数列经典例题(裂项相消法)20392

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101100 2.数列,)1(1+=n n a n 其前n 项之和为,10 9 则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距 为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且622 3219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1 { n b 的前n 项和. 4.正项数列}{n a 满足02)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足 ,,2 1 1*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(1 1*2 N n a b n n ∈-= 求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 2 11)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;

相关主题