搜档网
当前位置:搜档网 › 单纯形法练习题

单纯形法练习题

单纯形法练习题

1.设有某个求极大值的线性规划问题,它的某一次迭代结果如下表,试进行再一次迭代,判断迭代的结果是否已求得最优解,写出解的全部内容。

2.设有某个求极大值的线性规划问题,它的某一次迭代结果如下表,试问:

(1) Q 取何值时,该次迭代结果有最优解;

(2) 想使x 3换入,x 1换出,确定Q 、V 、W 的取值范围。

3.试列出下列线性规划问题的初始单纯形表:

Min z x x x =---1232

x x x 12342120+-≥ x 1+ x 2+ x 360= x x x 1230,,≥

4.考虑如下的线性规划问题: Min z x x x =--+2123 x x x 12328++≤ -+-≤x x x 12324 x x x 1230,,≥

(1)用单纯形法求其最优解;

(2)如果问题中增加一个约束条件x x 232+≥,求出相应问题的最优解及最优值。

单纯形法步骤例题详解

单纯形法演算 j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 无穷 0 4x 24 6 2 0 1 0 4 0 5x 5 1 1 0 0 1 5 j j z c -(检验数) 2 1 首先列出表格,先确定正检验数最大值所在列为主列,然后用b 除以主列上对应的同行数字。除出来所得值最小的那一行为主行,根据主行和主列可以确定主元(交点)。接着把主元化为1并把X4换成X1. ??? ??? ?≥=++=++=+++++=0,,524261550002max 5152 14213 25 4321x x x x x x x x x x x x x x x z ??????? ≥≤+≤+≤+=0 ,5 24261552max 21212122 1x x x x x x x x x z

j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 2 1x 4 1 2/6 0 1/6 0 0 5x 5 1 1 0 0 1 j j z c - 2 1 这时进行初等行列变换,把主列换单位向量,主元为1。也就是X5所在行减去X1所在行。并且重新计算检验数。 j c 2 1 B C X B b 1x 2x 3x 4x 5x 0 3x 15 0 5 1 0 0 2 1x 4 1 2/6 0 1/6 0 0 5x 5-4 1-1=0 1-2/6 =4/6 0-1/6=-1/6 1 j j z c - 2-2*1-0*0-0*1=0 1-0*5-2*2/6-0*4/6=1/3 0-0*0-2*1/6-0*-1/6=-1/3 再次确定主元。为4/6。然后把X5换成X2。并且把主元化成1。

用对偶单纯形法求解线性规划问题教学文案

用对偶单纯形法求解线性规划问题

例4-7用对偶单纯形法求解线性规划问题. Min z =5x1+3x 2 s.t.-2 x1 + 3x 2 ≥6 3 x1 - 6 x 2 ≥4 Xj≥0(j=1,2) 解:将问题转化为 Max z = -5 x1 - 3 x 2 s.t. 2 x1 - 3x 2+ x 3 = -6 -3 x1 + 6 x 2+ x 4 ≥-4 Xj≥0(j=1,2,3,4) 其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17. 表4-17 例4-7单纯形表 在表4-17中,b=-16<0,而y≥0,故该问题无可行解. 注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.

若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法. 3.对偶问题的最优解 由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解. (1)设原问题(p)为 Min z=CX s.t. ???≥=0X b AX 则标准型(LP)为 Max z=CX s.t. ???≥=0X b AX 其对偶线性规划(D )为 Max z=b T Y s.t. ???≥=0X b AX 用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0 从而,在最优单纯形表T (B )中,对于检验数,有 (σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I)

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1) 将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ s.t.: 123412356 1371234567211 42321,,,,,,0 x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 1 -2 1 1 0 0 0 11 x 6 -4 1 2 0 -1 1 0 3 x 7 -2 0 1 0 0 0 1 1 -f -3 1 1 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表 变量 基变量 x 1 x 2 x 3 x 4 x 5 x 6 x 7 b i x 4 -7 5 1 -2 2 3

x2-4120-1103 x7-20100011 -f10-101-10-3 由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43-20100-110 x60100-11-21 x3-20100011 -f-110000-1-1 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形 表为: 表四:第二次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x43001-22-512 x20100-11-21 x3-20100011 -f-10001-11-2 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形 表为: 表五:第三次迭代后的单纯形表 变量 基变量x1x2x3x4x5x6x7 b i x4-7051-22017 x2-4120-1103 x7-20100011 -f10-101-10-3可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。 结论: 综上所述,本线性规划问题,使用单纯形法得不到最优解。

单纯形法典型例题

科学出版社《运筹学》教材 第一章引言 第二章线性规划,姜林 第三章对偶规划,姜林 第四章运输问题,姜林 第五章整数规划,姜林 第六章非线性规划,姜林 第七章动态规划,姜林 第八章多目标规划,姜林 第九章图与网络分析,熊贵武 第十章排队论,熊贵武 第十一章库存论,王勇 第十二章完全信息博弈,王勇 第十三章不完全信息博弈,王勇 第十四章决策论与影响图 第十五章运筹学模型的计算机求解 成年人每天需要从食物中摄取的营养以及四种食品所含营养和价格见下表。问 如何选择食品才能在满足营养的前提下使购买食品的费用最小? 食品名称热量(kcal) 蛋白质(g) 钙(mg)价格(元)猪肉1000 50 400 14 鸡蛋800 60 200 6

大米900 20 300 3 白菜200 10 500 2 营养需求量 2000 55 800 解:设需猪肉、鸡蛋、大米和白菜各需 x1,x2,x3,x4斤。则热量的需求量为: 2000 20090080010004 3 2 1 x x x x 蛋白质 某工厂要做100套钢架,每套有长 3.5米、2.8米和2根2.4米的圆钢组成(如右图)已知原 料长12.3米,问应如何下料使需用的原材料最省。 解:假设从每根 12.3米的原材料上截取 3.5米、2.8米和2根2.4 米,则每根原材料需浪费 1.2米,做100套需浪费材料 120米,现 采用套裁的方法。 方案一二三四五六3.5 2.8 2.4 0 0 5 0 4 0 1 2 1 1 3 0 2 0 2 2 1 1 合计剩余 12 0.3 11.2 1.1 11.5 0.8 11.9 0.4 11.8 0.5 12.2 0.1 现在假设每种方案各下料x i (i=1、2、3、4、5、6),则可列出方程: minZ=0.3x 1+1.1x 2+0.8x 3+0.4x 4+0.5x 5+0.1x 6 约束条件: x 3+x 4+2x 5+2x 6=100 4x 2+2x 3+3x 4+x 6=100 5x 1+x 3+2x 5+x 6=200 ,,,800 50030020040055 102060503000 2009008001000. .23614min 4 3214 3 2 1 4 32 14 32 14321x x x x x x x x x x x x x x x x t s x x x x z

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数 bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 这个函数用来判断是否已经存在最优解 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零 这个函数用来判断线性规划是否是无解的 bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)

用对偶单纯形法求解线性规划问题

例4-7用对偶单纯形法求解线性规划问题. Min z =5x1+3x 2 ≥6 s.t. -2 x1 + 3x 2 ≥4 3 x1 - 6 x 2 Xj≥0(j=1,2) 解:将问题转化为 Max z = -5 x1 - 3 x 2 + x3 = -6 s.t. 2 x1 - 3x 2 -3 x1 + 6 x + x4≥-4 2 Xj≥0(j=1,2,3,4) 其中,x3 ,x4为松弛变量,可以作为初始基变量,单纯形表见表4-17. 在表4-17中,b=-16<0,而y≥0,故该问题无可行解. 注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况. 若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解. 在计算机求解时,只有人工变量法,没有对偶单纯形法. 3.对偶问题的最优解 由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解. (1)设原问题(p)为 Min z=CX

s.t. ?? ?≥=0 X b AX 则标准型(LP)为 Max z=CX s.t. ? ??≥=0X b AX 其对偶线性规划(D )为 Max z=b T Y s.t. ? ? ?≥=0X b AX 用对偶单纯形法求解(LP ),得最优基B 和最优单纯形表T (B )。对于(LP )来说,当j=n+i 时,有Pj=-e i ,c j =0 从而,在最优单纯形表T (B )中,对于检验数,有 (σn+1,σn+2…σn+m )=(c n+1,c n+2…,c n+m )-C B B -1(Pn +1,Pn+2…,Pn+m )=- C B B -1 (-I) 于是,Y*=(σn+1,σn+2…σn+m )T 。可见,在(LP )的最优单纯形表中,剩余变量对应的检验数就是对偶问题的最优解。 同时,在最优单纯形表T (B )中,由于剩余变量对应的系数 所以 B -1 =(-y n+1,-y n+2…-y n+m ) 例4-8 求下列线性规划问题的对偶问题的最优解。 Min z =6x 1+8x 2 s.t. x 1 + 2x 2≥20 3 x 1 + 2x 2≥50 Xj ≥0(j=1,2) 解: 将问题转化为 Max z =-6x 1-8x 2 s.t. -x 1 — 2x 2 + x 3=20 -3 x 1 - 2x 2+ x 4 =50 Xj ≥0(j=1,2,3,4)

(完整word版)单纯形法的解题步骤

三、单纯形法的解题步骤 第一步:作单纯形表. )(1)把原线性规划问题化为标准形式; )(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵; )(3)目标函数非基化; )(4)作初始单纯形表. 第二步:最优解的判定. (1) 若所有检验数都是非正数,即,则此时线性规划问题已取 得最优解. (2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划 问题无最优解. 如果以上两条都不满足,则进行下一步. 第三步:换基迭代. ,并确定所在列的非基变量为进基变量. (1)找到最大正检验数,设为 (2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号. 主元是最大正检验数 所在列,用常数项与进基变量所对应的列向 量中正分量的比值最小者; 替换出基变量,从而得到新的基变量.也就是主元所在 (3)换基:用进基变量 (4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表; (5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止. 例3 求.

解(1)化标准型:令 ,引进松弛变量 ,其标准型为 求 (2)作单纯形表:在约束方程组系数矩阵中 的系数构成单位矩阵,故取 为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).表 6.8

(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为 目标函数取得最优值. 原线性规划问题的最优解为:.目标函数的最优值为14,即. 例4 用单纯形方法解线性规划问题. 求. 解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出 ,, 代入目标函数 , 经整理后,目标函数非基化了. 作单纯形表,并进行换基迭代(见表6.9). 最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变出基,非基变量进基. 换,基变量

单纯形法求最优解问题及一些知识点整理

单纯形法求最优解问题 题目(老师布置的那道作业题):2153m ax x x f +=,其中 ??? ??? ?=≥=++=+=+5,4,3,2,1,0182312245214 231j x x x x x x x x j ,求2153m ax x x f +=的最大值。 这张表是根据题目画的,Cj (行向量)为5432100053m ax x x x x x f ++++=中各个变量的系数,Ci (列向量)为与X B (列向量)相对应的各项的系数,X B 称为基变量(3列,由题目中的方程个数决定),起初的基变量由构造的变量x3、x4、x5组成,b 为对应三个方程等式右边的常数,z j 为Ci 各列与xj 各列乘积的和,如z1=0*1+0*0+0*3=0。i θ为判别将哪个基变量换出的依据,根据c j -z j 为正,要先将x2换入XB 中,关键是判断x3、x4、x5哪个跟x2换,这就要根据各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,如上表可知x2跟x4换,换完之后注意原来x4所对应的列向量为[0 1 0]T ,故要将x2所对应的列向量变换为为[0 1 0]T ,注意b 也要跟着变化,于是得下表.

由上表知c 1-z 1=3>0,故仍需将x1换入XB 中,用各列各列除以2x B i X =θ,与所得的最小的i θ对应的XB 换,结合i θ可知,x1跟x5换,于是得下表。 由上表可知c j -z j 均非正,故5432100053m ax x x x x x f ++++=取最大值时,????? ?? ?????????=00662x , 对应的最大值36max =f . 系统工程导论知识点整理: 系统是由相互作用和相互依赖的若干组成部分(要素)结合的具有特定功能的有机整体。 系统的特征:整体性、相关性、目的性、环境适应性。 系统的功能是指系统与外部环境相互作用所反映的能力。 结构是功能的内在根据,功能是结构的外在表现。 系统功能的特性:易变性、相关性。 系统工程就是用科学的方法规划和组织人力、物力、财力,通过最优途径的选择,使人们的工作在一定期限内收到最合理、最经济、最有效的效果。 科学的方法:从整体观念出发,通盘筹划,合理安排整体中的每一个局部,以求得整体的最优规划、最优管理和最优控制,使每个局部都服从一个整体目标,力求避免资源的损失和浪费。

单纯形法求解原理过程

单纯形法 需要解决的问题: 如何确定初始基本可行解; 如何由一个基本可行解迭代出另一个基本可行解,同时使目标函数获得较大的下降; 如何判断一个基本可行解是否为最优解。 min f(X)=-60x1-120x2 s.t. 9x1+4x2+x3=360 3x1+10x2+x4=300 4x1+5x2+x5=200 x i≥0 (i=1,2,3,4,5) (1) 初始基本可行解的求法。当用添加松弛变量的方法把不等式约 束换成等式约束时,我们往往会发现这些松弛变量就可以作为 初始基本可行解中的一部分基本变量。 例如:x1-x2+x3≤5 x1+2x2+x3≤10 x i≥0 引入松弛变量x4,x5后,可将前两个不等式约束换成标准形式 x1-x2+x3+x4=5 x1+2x2+x3+x5=10 x i≥0 (i=1,2,3,4,5) 令x1=x2=x3=0,则可立即得到一组基本可行解 x1=x2=x3=0,x4=5,x5=10 同理在该实例中,从约束方程式的系数矩阵 中可以看出其中有个标准基,即 与B对应的变量x3,x4,x5为基本变量,所以可将约束方程写成 X3=360-9x1-4x2 x4=300-3x1-10x2 x5=200-4x1-5x2 若令非基变量x1=x2=0,则可得到一个初始基本可行解X0 X0=[0,0,360,300,200] T 判别初始基本可行解是否是最优解。此时可将上式代入到目标函数中,得:

F(X)=-60x1-120x2 对应的函数值为f(X0)=0。 由于上式中x1,x2系数为负,因而f(X0)=0不是最小值。因此所得的解不是最优解。 (2) 从初始基本可行解X0迭代出另一个基本可行解X1,并判断X1是否 为最优解。从一个基本可行解迭代出另一个基本可行解可分为 两步进行: 第一步,从原来的非基变量中选一个(称为进基变量)使其成为基本变量; 第二步,从原来的基本变量中选一个(称为离基变量)使其成为新的非基变量。 选择进基和离基变量的原则是使目标函数值得到最快的下降和使所有的基本变量值必须是非负。 在目标函数表达式中,非基变量x1,x2的系数是负值可知,若x1,x2不取零而取正值时,则目标函数还可以下降。因此,只要目标函数式中还存在负系数的非基变量,就表明目标函数还有下降的可能。也就还需要将非基本变量和基本变量进行对换。一般选择目标函数式中系数最小的(即绝对值最大的负系数)非基变量x2换入基本变量,然后从x3,x4,x5中换出一个基本变量,并保证经变换后得到的基本变量均为非负。 当x1=0,约束表达式为: X3=360-4x2≥0 x4=300-10x2≥0 x5=200-5x2≥0 从上式中可以看出,只有选择 x2=min{}=30 才能使上式成立。由于当x2=30时,原基本变量x4=0,其余x3和x5都满足非负要求。因此,可以将x2,x4互换。于是原约束方程式可得到:4x2+x3=360-9x1 10x2 =300-3x1-x4 5x2+x5=200-4x1 用消元法将上式中x2的系数列向量变[4,10,5]T换成标准基向量[0,1,0]T。其具体运算过程如下: -*4/10 : x3=240-78x1/10+4 x4/10 /10 : x2 =30-3x1/10-x4/10

对偶单纯形法

1.对偶单纯形法 2.F(x)=3x1+4x2+5x3 X1+2x2+3x3>=5 2x1+2x2+x3>=6 xi>=0 f=[3;4;5]; A=[-1 -2 -3 -2 -2 -1]; b=[-5;-6]; lb=zeros(3,1); [x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb) x = 1.0000 2.0000 0.0000 fval = 11.0000 exitflag = 1 output = iterations: 8 algorithm: 'large-scale: interior point' cgiterations: 0 message: 'Optimization terminated.' lambda = ineqlin: [2x1 double] eqlin: [0x1 double] upper: [3x1 double] lower: [3x1 double] x, lambda.ineqlin, lambda.lower x = 1.0000 2.0000 0.0000 ans = 1.0000 1.0000 ans = 0.0000 0.0000 1.0000

2.单纯形法 f(x)=-9x1+-16x2 x1+4x2+x3=80 2x1+3x2+x4=90 xi>=0 f=[-9;-16;0;0]; Aeq=[1 4 1 0 2 3 0 1]; beq=[80;90]; lb=zeros(4,1); [x,fval,exitflag,output,lambda] = linprog(f,[],[],Aeq,beq,lb) Optimization terminated. x = 24.0000 14.0000 0.0000 0.0000 fval = -440.0000 exitflag = 1 output = iterations: 5 algorithm: 'large-scale: interior point' cgiterations: 0 message: 'Optimization terminated.' lambda = ineqlin: [0x1 double] eqlin: [2x1 double] upper: [4x1 double] lower: [4x1 double] x, lambda.ineqlin, lambda.lower x = 24.0000 14.0000 0.0000 0.0000 ans = Empty matrix: 0-by-1 ans =

图解法和单纯形法求解线性规划问题

图解法和单纯形法求解以下线性规划问题 1.1 图解法解线性规划问题 只含两个变量的线性规划问题,可以通过在平面上作图的方法求解,步骤如下: (1)以变量x1为横坐标轴,x2为纵坐标轴,适当选取单位坐标长度建立平面坐标直 角坐标系。由变量的非负性约束性可知,满足该约束条件的解均在第一象限内。 (2)图示约束条件,找出可行域(所有约束条件共同构成的图形)。 (3)画出目标函数等值线,并确定函数增大(或减小)的方向。 (4)可行域中使目标函数达到最优的点即为最优解。 然而,由于图解法不适用于求解大规模的线性规划问题,其实用意义不大。 1.2 单纯形法解线性规划问题 它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。 单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 单纯形法的一般解题步骤可归纳如下:①把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。②若基本可行解不存在,即约束条件有矛盾,则问题无解。③若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。④按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。⑤若迭代过程中发现问题的目标函数值无界,则终止迭代。 1.3 线性规划问题的标准化 使用单纯形法求解线性规划时,首先要化问题为标准形式

使用单纯形法解线性规划问题

使用单纯形法解线性规划 问题 The Standardization Office was revised on the afternoon of December 13, 2020

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1)将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ .: 1234123561371234567211 42321,,,,,,0x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2)找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一 次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表

由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形表为: 表四:第二次迭代后的单纯形表 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形表为: 表五:第三次迭代后的单纯形表

使用单纯形法解线性规划问题

使用单纯形法解线性规划问题 要求:目标函数为:123min 3z x x x =-- 约束条件为: 123123 1312321142321,,0 x x x x x x x x x x x -+≤??-++≥?? -+=??≥? 用单纯形法列表求解,写出计算过程。 解: 1) 将线性规划问题标准化如下: 目标函数为:123max max()3f z x x x =-=-++ s.t.: 123412356 1371234567211 42321,,,,,,0 x x x x x x x x x x x x x x x x x x x -++=??-++-+=??-++=??≥? 2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下: 表一:最初的单纯形表 3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。迭代后新的单纯形表为: 表二:第一种换入换出变量取法迭代后的单纯形表

由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。 表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为: 表三:第二种换入换出变量取法迭代后的单纯形表 4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。之后的单纯形表为: 表四:第二次迭代后的单纯形表 5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。之后的单纯形表为: 表五:第三次迭代后的单纯形表 可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。 结论: 综上所述,本线性规划问题,使用单纯形法得不到最优解。

单纯形法例题(20210121173229)

单纯形法例题 1、例1、目标函数max z=2 * +3 禹+ 2x2 W 8' 4xi W 16 4x2 W 12 k Ki,财鼻0』 解:首先要将约束条件化为标准形:由此可以看出我们需要加上三个松弛变量, ;汁Hi吃:弋"審得到的标准形式为: max z=2~ +3-+ 0 勺+g +O 5 'xt + 2xj + x] = 8 1 4?i X4 =16 4x;+ 巧=12 11 巾弓^3j 乂4, ^5 $ ? 2 3 0 0 0 C R b *4 0 8 1 2 1 0 0 4 0 16 4 0 0 1 0 - 0 ◎12 0[E(|00 1 3 k - z) 2 3 0 0 0 引」一弋木日lk(i才I) 熙=') (也就是如果与主元素同行,则用现在的值除以主元素即可得到即将要填入的值, 否则,就用现在的值减去与主元素构成矩形的边角上的值的乘积再除以主元素之后 的值。例如:上面的第一行所对应的b值为8-(12*2)/4=2 ,故填入值应该为2。而「 则是由我们根据非基变量的检验数的大小,挑选出最大的那个,作为换入变量,然 后用b的值除以该换入变量所在的列的所有值,得到 约束条件:

由于在检验数中仍然存在大于等于的数,而且, 的坐标中有正分量存在,所以需要继续进行迭代运算。通过观察可以看出主元素为1,换入变量为|勒,换出 由于检验数中存在正数,且P5和P3中有正分量存在,所以需要继续迭代(换入变 此时可以发现检验数中没有大于的数,表明已经得到了最优解,所以最优解是: (4,2,0,0,4 ),故目标函数值z=2*4+2*3=14 2、合理利用线材问题,现在要做100套钢架,每套用长为,,和的钢各一根,

单纯形法例题讲解

例1 max z=2x1+3x2 (标准形式即所有的变量均为负、所有约束条件为等式、所有的右端项系数非负) a=(2,3) b1=(80,160,120) A2=NULL b2=NULL A3=NULL b3=NULL n.iter=n+2*m maxi=TRUE ● simplex(a=a,A1=A1,b1=b1,maxi=TRUE): m1=3,m2=0,m3=0 m=3,n=2 a.o=a=(2,3) if(maxi) a=-a(-2,-3) if(m2+m3==0) a=(-2,-3,0,0,0) b=(80,160,120) init=(0,0,0,80,160,120) basic=(3,4,5) eps=1e -10 out1<-simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps) ? simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps): N=5,M=3 nonbasic=(1,2) if(stage==2) obfun=(-2,-3) it=1 ◆ while(!all(obfun > -eps) && (it <= n.iter))循环 pcol=3 if(stage==2) neg=(1,3) x1+2x2<=80 4x1<=160 4x2<=120 x1,x2>=0 A1= 1 2 4 0 0 4 A= 1 2 1 0 0 4 0 0 1 0 0 4 0 0 1 tableau= 80 -1 -2 160 -4 0 120 0 -4 tableau= 80 -1 -2 160 -4 0 120 0 -4 0 -2 -3 转化为标准形式 x1+2x2+x3=80 4x1+x4=160 4x2+x5=120 x1,x2,x3,x4,x5>=0

单纯形法求解线性规划的步骤

单纯形法求解线性规划的步骤 1>初始化 将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示 2>最优化测试 如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为0 3>确定输入变量 从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列 4>确定分离变量 对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行 5>建立下一张表格 将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步 为求简单 在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式: 1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0); 2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法) 程序中主要的函数以及说明 ~SimpleMatrix(); 销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数 bool Is_objectLine_All_Positive();其中row2为主元所在的行,col为主元所在的列,row1为要处理的行 void PrintAnswer();数不合法"<

用对偶单纯形法求对偶问题的最优解

用对偶单纯形法求对偶问题的最优解 摘要:在线性规划的应用中,人们发现一个线性规划问题往往伴随着与之配对的另一个线性规划问题.将其中一个称为原问题,另一个称为对偶问题.对偶理论深刻揭示了原问题与对偶问题的内在联系.由对偶问题引申出来的对偶解有着重要的经济意义.本文主要介绍了对偶问题的基本形式以及用对偶单纯形法求解对偶问题的最优解. 关键词:线性规划;对偶问题;对偶单纯形 Using Dual Simplex Method To Get The Optimal Solution Of The Dual Problem Abstract:In the application of the linear programming,people find that a linear programming problem is often accompanied by another paired linear programming problem. One is called original problem. Another is called the dual problem. Duality theory reveals the internal relations between the dual problem and the original problem. The solution of the dual problem is of a great economic significance. In this paper,we mainly discuss the basic form of the dual problem and how to use dual simplex method to get the optimal solution of the dual problem. Key words: linear programming;dual problem;dual simplex method 1 引言 首先我们先引出什么是线性规划中的对偶问题.任何一个求极大化的线性规划问题都有一个求极小化的线性规划问题与之对应,反之亦然,如果我们把其中一个叫原问题,则另一个就叫做它的对偶问题,并称这一对互相联系的两个问题为一对对偶问题.每个线性规划都有另一个线性规划(对偶问题)与它密切相关,对偶理论揭示了原问题与对偶问题的内在联系.下面将讨论线性规划的对偶问题的基本形式以及用对偶单纯形法求最优解.在一定条件下,对偶单纯形法与原始单纯形法相比有着显著的优点. 2 对偶问题的形式 对偶问题的形式主要包括对称形对偶问题[]3和非对称性对偶问题. 2.1对称形对偶问题 设原线性规划问题为 Max 1122... n n Z c x c x c x =+++

用单纯形法求解线性规划问题

目录 一.摘要 (2) 二.实验目的 (2) 三.实验内容 (2) 四.建立数学模型 (3) 五.实验原理 (5) 六.MALTAB程序代码及注释 (7) 七.结果运行测试 (13) 八.心得与感悟 (15)

一.摘要: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.研究线性约束条件下线性目标函数的极值问题的数学理论和方法,英文缩写LP。 自1946年G.B.Dantizig提出单纯形法以来,它一直是求解线性规划问题的最有效的数学方法之一。单纯形法的理论根据是:线性规划问题的可行域是 n 维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。通过引入普通单纯形法,依次迭代并判断,逐步逼近,最后得到最优解。若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。 关键字:线性规划,单纯形法,最优值,最优解 二.实验目的: 1.加强学生分析问题能力,锻炼数学建模能力。 2.了解并掌握MATLAB软件中的线性规划问题的编程、求解和分析。 3.利用所学的MALTAB语言,完成对单纯形法问题的编程设计。 三.实验内容: 某商场决定,营业员每周连续工作5天后连续休息2天,轮流休息,据统计,商场每天需要营业员如下:星期一:300,二:300;三:350,四:400,五:480,六:600;日:500; (1)商场人力资源部应如何安排每天上班的人数才能使商场总的营业员最少 (2)若商场可以雇佣临时工,上班时间同正式工,若正式工每天工资80,临时工每天100,问商场是否应雇佣临时工及雇佣多少名?

单纯形法的计算方法

第4章 单纯形法的计算方法 单纯形法求解线性规划的思路: 一般线性规划问题具有线性方程组的变量数大于方程个数, 这时有不定的解。但可以从线性方程组中找出一个个的单纯形, 每一个单纯形可以求得一组解, 然后再判断该解使目标函数值是增大还是变小, 决定下一步选择的单纯形。这就是迭代, 直到目标函数实现最大值或最小值为止。 4.1 初始基可行解的确定 为了确定初始基可行解, 要首先找出初始可行基, 其方法如下。 (1)第一种情况:若线性规划问题 max z =n j j j=1c x ∑ 1,1,2,...,0,1,2,...n ij j i j j a x b i m x j n =?==???≥=?∑ 从Pj ( j = 1 , 2 , ? , n )中一般能直接观察到存在一个初始可行基 121(,,...,)n B P P P 0 0?? ?0 1 0 ?== ? ?0 0 1?? (2)第二种情况:对所有约束条件是“ ≤”形式的不等式, 可以利用化为标准型的方法, 在每个约束条件的左端加上一个松弛变量。经过整理, 重新对 j x 及ij a ( i = 1 , 2 , ? , m ; j = 1 , 2 , ? , n )进行编号, 则可得下列方 程组 11,1111 22,1122,1112.........,,...,0 m m n n m m n n m m m m nn n n n x a x a x b x a x a x b x a x a x b x x x +++++++++=?? +++=?? ??+++=??≥? 显然得到一个m ×m 单位矩阵

单纯形法例题

单纯形法例题 1、例1、目标函数 max z=2+3 约束条件: 解:首先要将约束条件化为标准形:由此可以看出我们需要加上三个松弛变量, .得到的标准形式为: max z=2+3+ 0+0+0 然后要将其初始的单纯形表画出来: 23000 b 08121004 01640010- 01200013 23000 由初始单纯形表可以看出,为换入变量,而为换出变量;然后根据:= (也就是如果与主元素同行,则用现在的值除以主元素即可得到即将要填入的值,否则,就用现在的值减去与主元素构成矩形的边角上的值的乘积再除以主元素之后的值。例如:上面的第一行所对应的b值为8-(12*2)/4=2,故填入值应该为2。而则是由我们根据非基变量的检验数的大小,挑选出最大的那个,作为换入变量,然后用b的值除以该换入变量所在的列的所有值,得到列的值。 23000 b 02010-1/22 016400104 3301001/4- 2000-3/4由于在检验数中仍然存在大于等于0的数,而且P1,P5的坐标中有正分量存在,所以需要继续进行迭代运算。通过观察可以看出主元素为1,换入变量为,换出变量为,故得到的单纯形表如下:

23000 b 221010-1/2- 0800-414 3301001/412 00-201/4由于检验数中存在正数,且P5和P3中有正分量存在,所以需要继续迭代(换入变 23000 b 241001/40 0400-21/21 32011/2-1/80 00-3/2-1/80 (4,2,0,0,4),故目标函数值z=2*4+2*3=14 2、合理利用线材问题,现在要做100套钢架,每套用长为,,和的钢各一根, 已知原料长,问应如何下料,使用的原材料最省; 解:首先我们必须要清楚该问题的需要设立的变量是什么。我们分析一下问题,做100套钢架,需要长的钢100根,的钢100根,的钢100根。而一份原料长度是, 长度/m 下料根数 截取方案 12345 112 212 3132所用长度 剩余长度0 方案,使得剩余的总长度最少。由此,我们可以将目标函数和约束条件表述出来: 目标函数:min z=+++ 约束条件 首先可以写出线性方程组的矩阵形式:发现不存在单位矩阵,所以要采用人造基的方式,也就是要添加人工变量:,那么线性方程组可以

相关主题