搜档网
当前位置:搜档网 › STM32F103RC核心开发板原理图

STM32F103RC核心开发板原理图

STC89C51单片机学习电路板设计

设计题目:STC89C51单片机学习电路板设计 题目性质:一般设计 指导教师:[04054]吕青 毕业设计(论文)要求及原始数据(资料) 1.课题简介: STC89C51系列单片机具有功能强、价格低的特点,是51系列单片机最好的替代机型。本题目就是为入门该系列单片机设计一个学习电路板,满足学习该型号单片机的需求。 该学习电路板用于C8051F330单片机的学习。该板具有RS232接口、数码管、发光二极管显示、键盘、模拟量输入、蜂鸣器和具有扩展实验接口。设计原则是简单实用。 2.技术参数 1)使用美国Silabs公司STC89C51单片机 2)具有1个RS232接口 3)具有8个数码管(HC595驱动) 4)具有4个按钮 5)具有1路模拟量电压输入 6)ISP下载接口与下载电缆电路 7)具有蜂鸣器与驱动电路 8)供电:AC220V 9)具有8个LED 10)具有功率接口(具有AC220V,1A驱动能力) 11)具有D/A输出 毕业设计(论文)主要工作内容 主要内容 1)了解市场上的各种单片机学习板,制定设计方案。 2)学习STC89C51单片机的数据手册 3)学习STC89C51 单片机的相关参考书 4)学习PROTEL软件 5)学习板原理图设计 6)电路板(PCB)设计 7)调试电路板 8)熟悉STC89C51 单片机的C编译器与编程软件 9)编写C语言的电路板测试程序 10)编写学习使用说明 学生应交出的设计文件(论文) 1论文。要求内容准确,叙述清晰流畅,图文详尽,正文不少于60页,不得有错别字,并符合学校对论文的各项要求。主要内容包括: 1)学习板总体设计概述; 2)学习板结构设计说明(包括总体结构总框图); 3)学习板原理图设计说明(包括硬件电路原理图,用Protel98se画); 4)学习板硬件电路板设计说明(包括PCB板图); 5)学习板软件程序设计说明(包括程序流程图和源程序清单及注释); 6)学习板主要示例子程序设计说明(包括程序流程图和源程序清单及注释); 7)设计难点和遗留问题(包括设计中遇到的难题和解决方法,以及尚未解决的问题和解决的思路);

ATMEGA128--AVR教程

AVR教程(1):AVR单片机介绍 作者:微雪电子文章来源:https://www.sodocs.net/doc/8612467021.html, 点击数: 478 更新时间:2008-4-1 23:58:21 AVR,它来源于:1997年,由ATMEL公司挪威设计中心的A先生与V先生利用ATMEL公司的Flash新技术,共同研发出RISC精简指令集的高速8位单片机,简称AVR。 AVR单片机特点 每种MCU都有自身的优点与缺点,与其它8-bit MCU相比,AVR 8-bit MCU最大的特点是:●哈佛结构,具备1MIPS / MHz的高速运行处理能力; ●超功能精简指令集(RISC),具有32个通用工作寄存器,克服了如8051 MCU采用单一ACC 进行处理造成的瓶颈现象; ●快速的存取寄存器组、单周期指令系统,大大优化了目标代码的大小、执行效率,部分型号FLASH非常大,特别适用于使用高级语言进行开发; ●作输出时与PIC的HI/LOW相同,可输出40mA(单一输出),作输入时可设置为三态高阻抗输入或带上拉电阻输入,具备10mA-20mA灌电流的能力; ●片内集成多种频率的RC振荡器、上电自动复位、看门狗、启动延时等功能,外围电路更加简单,系统更加稳定可靠; ●大部分AVR片上资源丰富:带E2PROM,PWM,RTC,SPI,UART,TWI,ISP,AD,Analog Comp arator,WDT等; ●大部分AVR除了有ISP功能外,还有IAP功能,方便升级或销毁应用程序。 ●性价比高。 开发AVR单片机,需要哪些编译器、调试器? 软件名称类型简介官方网址 AVR Studio IDE、汇编编 译器 ATMEL AVR Studio集成开发环境(IDE),可使用 汇编语言进行开发(使用其它语言需第三方软件协 助),集软硬件仿真、调试、下载编程于一体。ATMEL 官方及市面上通用的AVR开发工具都支持AVRStudio。 https://www.sodocs.net/doc/8612467021.html, GCCAVR (WinAVR) C编译器 GCC是Linux的唯一开发语言。GCC的编译器优化 程度可以说是目前世界上民用软件中做的最好的,另 外,它有一个非常大优点是,免费!在国外,使用它 的人几乎是最多的。但,相对而言,它的缺点是,使 https://www.sodocs.net/doc/8612467021.html,

基于STC89C52单片机毕业设计完整版附原理图pcb图源程序仿真图

基于STC89C52单片机的电子密码锁 学生姓名: xx 学生学号: xxxxx 院(系):电气信息工程学院 年级专业: 2010级电子信息工程2班 指导教师:陶文英 二〇一三年六月 摘要

随着人们生活水平的提高,如何实现家庭防盗这一问题也变的尤其的突出,传统的机械锁由于其构造的简单,被撬的事情屡见不鲜,电子密码锁具有安全性能高,成本低,功耗低,操作简单等优点使其作为防盗卫士的角色越来越重要。 从经济实用角度出发,采用51系列单片机,设计一款可更改密码,LCD1602显示,具有报警功能,该电子密码锁体积小,易于开发,成本较低,安全性高,能将其存储的现场历史数据及时上报给上位机系统,实现网络实时监控,方便管理人员及时分析和处理数据。其性能和安全性已大大超过了机械锁,特点有保密性好,编码量多,远远大于弹子锁,随机开锁成功率几乎为零;密码可变,用户可以经常更改密码,防止密码被盗,同时也可以避免因人员的更替而使锁的密级下降;误码输入保护。当输入密码多次错误时,报警系统自动启动;电子密码锁操作简单易行,受到广大用户的亲睐。 关键词单片机, 密码锁, 更改密码, LCD1602 目录

错误!未定义书签。 1 绪论 1.1电子密码锁简介 (1) 1.2 电子密码锁的发展趋势 (1) 2 设计方案 (3) 3 主要元器件 (4) 3.1 主控芯片STC89C52 (4) 3.2 晶体振荡器 (8) 3.3 LCD显示密码模块的设计 (9) 3.3.1 LCD1602简介 (9) 3.3.2 LCD1602液晶显示模块与单片机连接电路 (11) 4 硬件系统设计 (12) 4.1 设计原理 (12) 4.2 电源输入电路 (12) 4.3 矩阵键盘 (13) 4.4 复位电路 (14) 4.5 晶振电路 (14) 4.6 报警电路 (15) 4.7 显示电路 (15) 4.8 开锁电路 (16) 4.9 电路总体构成 (16) 5 软件程序设计 (18) 5.1 主程序流程介绍 (18) 5.2 键盘模块流程图 (19) 5.3 显示模块流程图 (21) 5.4 修改密码流程图 (22) 5.5 开锁和报警模块流程图 (23) 6 电子密码锁的系统调试及仿真 (25) 6.1硬件电路调试及结果分析 (25) 6.2软件调试及功能分析 (25) 6.2.1调试过程 (25) 6.2.2 仿真结果分 (26)

Atmega128开发板使用说明书

Atmega128开发板使用说明书 概要介绍 Atmega128开发板上硬件资源丰富,接口齐全,基本上涵盖了Atmega128单片机所能涉及到的所有功能,可以满足单片机开发工程师和电子爱好者的开发实验的需求,或者高校电子、计算机专业学生的学习实验的需要。 按照正规产品的要求设计,不纯粹是实验样品,器件选型、原理图、PCB设计的时候都充分考虑了可靠稳定性。 Atmega128的IO口资源丰富,板上所以接口都是独立使用的,不需要任何跳线进行设置, IO口外围扩展使用了2片锁存器74HC574,既可以使实验变得更加简单方便,又能让实验者掌握更多的单片机设计知识。 提供配套软件源代码,学习板的每个实验都有与其相对应的软件代码,是版主从多年的工作经验中提取出来的,并经过优化,具有较高的参考价值。 编程简单,学习板编程不需要专用烧录器,利用计算机的并口即可进行编程,速度快、操作简单。

1.产品清单 Atmega128开发板的配件清单如下,当您第一次拿到产品的时候,请参照下图认真核对包装内配件是否齐全,以及各配件是否完好无损。 请按照下图安装122*32 LCD,lCD的一脚对准122*32 LCD插座的一脚,切记不要插反

2.硬件布局说明 步 进 电 机 接 口 直 流 电 机 接 口 数 字 温 度 传 感 器 SD 卡 插 座 光 敏 电 阻 ADC 输 入 电 位 器 NTC 热 敏 电 阻 JTAG 接 口 继 电 器 接 口 9V电源输入接口 DAC输出接口 RS485接口 RS232接口 红 外 发 射 管 ISP 编 程 接 口 LCD 对 比 度 调 节 电 位 器 122 * 32 点 阵 LCD 接 口 16 * 2 字 符 LCD 接 口 红 外 接 收 管 433M 射 频 模 块 接 口 3 * 4 矩阵键盘

Mega128熔丝位汇总

附录A ATmega128熔丝位汇总 编程与状态说明: 在AVR的器件手册中,使用已编程(Programmed)和未编程(Unprogrammed)定义熔丝位的状态。“Unprogrammed”表示熔丝状态为“1”(禁止);“Programmed” 表示熔丝状态为“0”(允许) 1:未编程(检查框不打钩) 0:编程 (检查框打钩) AVR的熔丝位可多次编程的,不是OPT熔丝。 熔丝位的配置(编程)可以通过并行方式、ISP串行方式、JTAG串行方式实现。 AVR芯片加密锁定后(LB2/LB1 = 1/0,0/0)不能通过任何方式读取芯片内部Flash 和E2PROM中的数据,但熔丝位的状态仍然可以读取,但不能修改配置。 芯片擦除命令是将Flash和E2PROM中的数据清除,并同时将两位锁定位状态配置成无锁定状态(LB2/LB1 = 1/1)。但芯片擦除命令并不改变其它熔丝位的状态。 下载编程的正确的操作程序是:在芯片无锁定状态下,下载运行代码和数据,配置相关的熔丝位,最后配置芯片的加密锁定位。 芯片被加密锁定后,如果发现熔丝位配置不对,必须使用芯片擦除命令,清除芯片中的数据,解除加密锁定。然后重新下载运行代码和数据,修改配置相关的熔丝位,最后再次配置芯片的加密锁定位。 1. 芯片加密锁定熔丝 加密锁定位 加密锁定方式 LB2 LB1 保护类型(用于芯片加密) 1(默认) 1 1 无任何编程加密锁定保护 2 1 0 禁止串/并行方式对Flash和E2PROM的再编程 禁止串/并行方式对熔丝位的编程 3 0 0 禁止串/并行方式对Flash和E2PROM的再编程和校验 禁止串/并行方式对熔丝位的编程 注:加密锁定熔丝只能使用芯片擦除命令还原为默认的无任何加密锁定保护状态 2.功能熔丝 说 明 熔丝名称 1 0 默认 M103C ATmega128工作模式 ATmega103 兼容模式 0 WDTON 看门狗由软件控制 看门狗始终工作,软件只可以调节溢出时间 1 SPIEN 禁止ISP串行编程 允许ISP串行编程 0 JTAGEN 禁止JTAG口 使能JTAG口 0 EESAVE 芯片擦除时不保留E2PROM数据 芯片擦除时保留E2PROM数据 1 BODEN 禁止低电压检测功能 允许低电压检测功能 1 BODLEVEL 低电压检测门槛电平2.7V 低电压检测门槛电平4.0V 1 OCDEN 禁止JTAG口的在线调试功能 禁止JTAG口的在线调试功能 1

ATmega128几个常用程序例子

ATMEGA128相关例程 自己学avr单片机已经有相当一段时间了,一开始用的是atmega128,觉得不是很好用。于是自己去买了一块16L的芯片,觉得还行。一开始用的是ICC AVR,应为它用起来比较简单,不像winavr那样,要写个Makefie ,比较的麻烦,但icc avr的缺点是太过于简陋,调试程序时,感觉不是很好。后来经同学介绍,用起了winavr,其实也是比较的简单,只不过要加一个makefile而已,其实makefile可以用软件自带的组建自动生成,只需修改几个参数就可以用。后来又用起了code vision avr,虽然不太习惯,也谈不上不好用. 需要注意的是,三个不同的软件所带的同文件不一样。icc avr 是iom128v.h(姑且以128为例),winavr 是avr/io.h,不过makefile中要设置芯片为atmega128.而cvavr则是mega128.h。 记得一开始的时候,我对这些不同的同文件不是很理解,是从一个学长那里了解到,才弄明白的。其实前两个软件只需把头文件稍微改一下基本上可以通用。而最后一个软件的中断的写法似乎不太一样,因而和钱两个软件的兼容性是最差的。 总体说winavr给人的感觉是比较专业 自己学习时多总结吧! 1、流水灯 /* 硬件环境:atmega128开发板 软件环境:CodeVisionAVR-C */ #include #define uchar unsigned char #define uint unsigned int uchart; void timer1_init() { TCCR1B=0X00; //先停止定时器1 TCNT1H=0XF0; //设定定时器初值 TCNT1L=0XBE; TCCR1A=0X00; //启动定时器1 TCCR1B=0X05; //使用1024分频 } interrupt [TIM1_OVF] void timer1_ovf_isr(void) { TCNT1H=0XF0; //重载定时器初值 TCNT1L=0XBE;

基于单片机89c51循迹小车原理与程序

自循迹小车 第一章引言 1.1 设计目的 通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 1.2 设计方案介绍 该智能车采用红外对管方案进行道路检测,单片机根据采集到的红外对管的不同状态判断小车当前状态,通过pid控制发出控制命令,控电机的工作状态以实现对小车姿态的控制。 1.3 技术报告内容安排 本技术报告主要分为三个部分。第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术方案的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。

第二章技术方案概要说明 本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块. 在整个系统中,由电源管理模块实现对其他各模块的电源管理。其中,对单片机、光电管提供5V电压,对电机提供6V电压 路径识别电路由3对光电发送与接收管组成。由于路面存在黑色引导线,落在黑线区域内的光电接收管接收到反射的光线的强度与白色的路面不同,进而在光电接收管两端产生不同的电压值,由此判断路线的走向。传感器模块将当前采集到的一组电压值传递给单片机,进而根据一定得算法对舵机进行控制,使小车自动寻线行走。 单片机模块是智能车的核心部分,主要完成对外围各个模块的管理,实现对外围模块的信号发送,以及对传感器模块的信号采集,并根据软件算法对所采集的信号进行处理,发送信号给执行模块进行任务执行,还对各种突发事件进行监控和处理,保证整个系统的正常运作。 电机驱动采用L293驱动芯片,该芯片支持2路电机驱动同时支持PWM 调速

mega128例程

1、流水灯 /* 硬件环境:atmega128开发板 软件环境:CodeVisionA VR-C */ #include #define uchar unsigned char #define uint unsigned int uchar cnt; void timer1_init() { TCCR1B=0X00; //先停止定时器1 TCNT1H=0XF0; //设定定时器初值 TCNT1L=0XBE; TCCR1A=0X00; //启动定时器1 TCCR1B=0X05; //使用1024分频 } interrupt [TIM1_OVF] void timer1_ovf_isr(void) { TCNT1H=0XF0; //重载定时器初值 TCNT1L=0XBE; DDRE|=1<<2; PORTE|=1<<2; DDRA=0xff; PORTA=cnt; //输出led的值到端口B cnt++; if(cnt==255) cnt=0; } void main() { //DDRB=0XFF; SREG|=0X80; TIMSK=0X04; timer1_init(); while(1) {; } } 2、AD转换+数码管显示 /***************************************************************************/

/*ADC测试程序*/ /*目标器件:ATmega128 */ /*晶振:RC 8MHZ */ /*编译环境:ICCA VR 7.13A */ /*E-Mail:number007cool@https://www.sodocs.net/doc/8612467021.html, */ /*时间:2010年11月13日*/ //Aref接A VCC(+5V),采用Aref作参考电压 /*用数码管显示AD转换的结果*/ /***************************************************************************/ /*********************************包含头文件********************************/ #include #include /********************************数码管段码表*******************************/ extern const unsigned char tab[]={0x3f,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07, 0x7F,0x6F}; /*********************************全局变量**********************************/ unsigned int adc_rel=0; /**************************************************************************** 函数功能:ADC初始化函数 入口参数: 出口参数: ****************************************************************************/ void adc_init(void) { DDRF&=0XFE; //PORTF0设置为输入,即作为ADC0口输入模拟电压 PORTF&=0XFE; //PORTF0设置为输入低电平 ADCSRA=0x00; //关ADC ADMUX = 0X00; //采用Aref作为参考电压,ADC0单端输入,右对齐 ACSR=(1<

基于AVRmega128的modbus程序

可读性非常好的MODBUS源代码 (1)为了加快发送采用了:数据空中断 (2)为了保证最后一个字节能够发送到上位机采用了:发送完成中断 #include #include #define _USART1_H #include "DMS2000.h" const UCHAR auchCRCHi[] = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; const UCHAR auchCRCLo[] = { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4,

STM32 开发板的介绍

STM32 开发板的介绍 STM32的开发板硬件资源如下: 1、STM32F103RBT6 TQFP64 FLASH:128K SRAM:20K; 2、MAX232通讯口可用于程序代码下载和调试实验; 3、SD卡接口; 4、RTC后备电池座; 5、两个功能开关; 6、复位连接; 7、两个状态灯; 8、所有I/O输出全部引用; 9、USB接口、可用于USB与MCU通讯实验; 10、标准的TJAG/SWDT仿真下载; 11、BOOT0 BOOT1Q启动模式; 12、电源开关; 13、电源指示灯

STM32开发板硬件详解 1、MCU部分原理图 该开发板采用3.3V工作电压,几个耦合电容使系统更加稳定。系统工作频率8M晶振、时钟频率32.768。 这里STM32的VBAT采用CR1220纽扣电池和VCC3.3混合供电方式,在有外部电源(VCC3.3)的时候,CR1220不给VBAT供电,而在外部电源断开的时候,则由CR1220给VBAT供电。这样,VBAT 总是有电的,以保证RTC的走时以及后备寄存器的内容不丢失。2、启动模式电路图 上图中的BOOT1用于设置STM32的启动方式,其对应启动模式如下表所示

PCB板标志图解如下: 3、TJAG电路 4、LED状态灯原理图 两个LED状态灯,其中LED0接在PA8、LED1接在PD2。 5、SD卡原理图

SD卡我们使用的是SPI1模式通讯,SD卡地SPI接口连接到STM32的SPI1上,SD-CS接在PA3上,MOSI接MCU PA7(MOSI)、SCK 接在MCU PA5(SCK)、MIS0接在MCU PA6(MIS0). 6、按键原理图 KEY1和KEY2用作普通按键输入,分别接在PA13和PA15上,

mega128串口通讯测试程序

/******************************************************** 说明: 需要串口调协助实验(波特率设为9600) 在串口调试助手中输入要发送的内容, 点发送后M128会返回相同的数据 CPU型号: ATMEGA128 时钟: 8MHZ 日期:2014.7.22 默认9600 8 1 ********************************************************/ #include #include void USART0_Init( void ); void USART0_Transmit( unsigned char data ); unsigned char USART0_Receive( void ); void main(void) { unsigned char n=0,tmp=0; DDRB |=0X10; //PB4设为输出 PORTB|=0X10; //关闭PB4外接的LED DDRF |=0X0E; //LED及数码管锁存IO口设为输出PORTF|=0X0E; DDRA=0XFF; //LED IO口设为输出 PORTA=0XFF; PORTF&=0xF7; //锁存数据关闭LED PORTA=0X00; PORTF&=0XF8; //锁存数据关闭数码管 USART0_Init(); //波特率9600 初始化串口 while(1) { if(UCSR0A&(1<

ATXMEGA128A3U-AUR;中文规格书,Datasheet资料

8-bit Atmel XMEGA AU Microcontroller XMEGA AU MANUAL This document contains complete and detailed description of all modules included in the Atmel?AVR?XMEGA?AU microcontroller family. The Atmel AVR XMEGA AU is a family of low-power, high-performance, and peripheral-rich CMOS 8/16-bit microcontrollers based on the AVR enhanced RISC architecture. The available Atmel AVR XMEGA AU modules described in this manual are: ?Atmel AVR CPU ?Memories ?DMAC - Direct memory access controller ?Event system ?System clock and clock options ?Power management and sleep modes ?System control and reset ?Battery backup system ?WDT - Watchdog timer ?Interrupts and programmable multilevel interrupt controller ?PORT - I/O ports ?TC - 16-bit timer/counters ?AWeX - Advanced waveform extension ?Hi-Res - High resolution extension ?RTC - Real-time counter ?RTC32 - 32-bit real-time counter ?USB - Universal serial bus interface ?TWI - Two-wire serial interface ?SPI - Serial peripheral interface ?USART - Universal synchronous and asynchronous serial receiver and transmitter ?IRCOM - Infrared communication module ?AES and DES cryptographic engine ?CRC - Cyclic redundancy check ?EBI - External bus interface ?ADC - Analog-to-digital converter ?DAC - Digital-to-analog converter ?AC - Analog comparator ?IEEE 1149.1 JTAG interface ?PDI - Program and debug interface ?Memory programming ?Peripheral address map ?Register summary ?Interrupt vector summary ?Instruction set summary

xmega128学习笔记

XMEGA128学习笔记1-bootloader下载程序 首先需要感谢AVR和与非网举办这次AVR大赛,其次要感谢在学习板申请当中阿呆给予我们小组的帮助,最后要感谢我们的指导老师。我们小组将在论坛版块连载《XMEGA128学习笔记》系列,分享学习心得与大家共同探讨,也欢迎大家分享自己学习的心得,共同进步。 今天主要是叙述如何使用XMEGA的BOOTLODER功能下载程序。 首先请大家将附近的内容下载,由于论文附件大小的限制,Flip Installer - 3.4.3这个软件分成三个压缩包,需要大家一起解压,解压后进行安装,安装过程大家点击下一步就可以了。 第二个附件是“AVR1927_XMEGA-A1_Xplained_Example_Applications.zip”,这个压缩包是板子的程序和驱动。大家解压后将“ATxmega128A1.xml”文件拷贝到“X:\Program Files\Atmel\Flip 3.4.3\bin\PartDescriptionFiles”,其中X表示您安装FLIP软件所在的盘符,如图所示: 第三步:将XMEGA开发板用USB连接线插入到电脑中,这时候电脑会提示发现新硬件,有驱动需要安装,如图2所示,选择“从列表或指定位置安装(高级)”

位置选择“AVR1927_XMEGA-A1_Xplained_Example_Applications\Driver” 安装后效果如图4,电脑多个一个虚拟串口,我的电脑显示的是COM8。 第三步:拔掉USB,如何安装板上的SW0按键不放,在插上USB,使得XMEGA进入BOOTLOADER状态。 第四步:打开第一步安装的FLIP软件,首先选择器件和串口的端口,成功后效果如图:

tm1627测试程序(mega128)

TM1627_CN: https://www.sodocs.net/doc/8612467021.html,/view/b3a01509763231126edb116a.html 注: 1、上述说明文档中图18的上拉电阻和电容是成对的接在STB、CLK、DIO上的。 2、我在测试电路中仅在DIO上使用了2kΩ的上拉电阻,没有使用电容。且在使用10kΩ上拉电阻时没有读到正确的值,原因未知。 3、我使用的主控芯片为mega128(16MHz),使用引脚见程序。 4、说明文档中提到读取数据时需要在CLK上升沿读取DIO电平,但是我在使用中遇到CLK上升沿读取DIO电平不准确的情况,最后改为在CLK下降沿读取DIO电平,数据准确。 5、在下属程序使用前PA口的0、1、2位已初始化为输出状态。 6、对IO口初始化后调用disp()即可显示数字,调用key_get()可得到处理后的键值(处理方法因键盘设计而异)等待按键按下、松开与两个按键同时按下检测的程序段为: /*************************************************************************/ unsigned char temp_kv=0,kv=0; /*************************************************************************/ temp_kv = key_get();//将键值赋给temp_kv while((temp_kv==13)||(inover==1)) //等待按键按下 temp_kv = key_get(); kv = temp_kv; //获得键值 while((temp_kv!=13)||(inover==1)) //等待按键松开或输入完成 { temp_kv=key_get(); if(temp_kv==12) //若两个功能键都被按下, kv=12; } /**************************************************************************/ //头文件tm1627.h #define TM1627_H //#include #define CLR_0_STB PORTA&=0xFE //STB:PA0 #define SET_1_STB PORTA|=0x01 #define CLR_0_CLK PORTA&=0xFD //CLK:PA1 #define SET_1_CLK PORTA|=0x02 #define CLR_0_DIO PORTA&=0xFB //DIO:PA2 #define SET_1_DIO PORTA|=0x04 #define DIO_READ DDRA&=0xFB /*DIO设为输入电平读取*/ #define DIO_SEND DDRA|=0x04 /*DIO设为输出*/

STC89C51

3.1 STC89C51单片机的介绍 STC系列单片机是美国STC公司最新推出的一种新型51内核的单片机。片内含有Flash 程序存储器、SRAM、UART、SPI、A\D、PWM等模块。该器件的基本功能与普通的51单片机完全兼容。 3.1.1主要功能、性能参数 1.内置标准51内核,机器周期:增强型为6时钟,普通型为12时钟; 2.工作频率范围:0~40MHZ,相当于普通8051的0~80MHZ; 3.STC89C5xRC对应Flash空间:4KB\8KB\15KB; 4.内部存储器(RAM):512B; 5.定时器\计数器:3个16位; 6.通用异步通信口(UART)1个; 7.中断源:8个; 8.有ISP(在系统可编程)\IAP(在应用可编程),无需专用编程器\仿真器; 9.通用I\O口:32\36个; 10.工作电压:3.8~5.5V; 11.外形封装:40脚PDIP、44脚PLCC和PQFP等 3.1.2 89C51单片机的引脚功能说明 (1)VCC:电源电压 (2)GND:地 (3)P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口P0写“1”时可作为高阻抗输入端用。 在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复位,在访问期间激活内部上拉电阻。 (4)P1口:P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTE逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(ILL)。 与A T89C51不同之处是,P1.0和P1.1还可分别作为定时/计数器2的外部计数输入(P 1.0/T2)和输入(P 1.1/T2EX ),参见表4-1。

AVR单片机ATmega32学习板mega32开发板

A VR单片机A Tmega32学习板mega32开发板 A VR单片机A Tmega32学习板mega32开发板核心芯片A Tmega32是性价比较高的芯片,适用于中级应用,芯片存储空间比mega16大。本A VR单片机A Tmega32学习板mega32开发板包含所有基本电路,可以作为一个产品的核心板,同时也可以做为一个学习板或A VR单片机的开发板。 A VR单片机A Tmega32学习板mega32开发板板载的硬件资源: ⊕支持主控芯片:A Tmega16A Tmega32A Tmega8535A Tmega164A Tmega324A Tmega644 ⊕可设置时钟:高达16M,处理速度16Mips ⊕ADPWM:8路10bit AD,4路PWM ⊕总线通讯接口:USART,SPI,TWI ⊕A VR JTAG在线仿真和A VR ISP在线编程 ⊕32K Flash 2K SRAM 1K EEPROM A VR单片机A Tmega32学习板mega32开发板结构特点: ⊕采用模块积木式架构,符合统一标准的外形尺寸,便于应用 ⊕3.3V5V可调内核电源管理 ⊕内置标准RS232通信接口,便于直接连接PC ⊕可设置AD参考电压源 ⊕标准DIP40引脚,便于直接替换用户目标板CPU ⊕可单独使用A VR单片机A Tmega32学习板mega32开发板、也用于二次开发,为电子设计大赛、课程设计、毕业设计提高设计效率 ⊕附带详细实验教程及大量实用的程序函数库,节省用户的宝贵时间 ⊕与Labview无缝连接,配以丰富的数据处理软件实现各种虚拟仪器功能 ⊕快速搭建虚拟仪器原型验证平台,支持高速数据采集处理及仪器控制 ⊕支持IAP在线系统编程,配专用Bootloader程序 ⊕独有的Mega bus总线,更好的支持各种模块的堆叠 A VR单片机A Tmega32学习板mega32开发板包含的基本电路: ⊕复位线路 ⊕晶振线路 ⊕AD转换滤波线路 ⊕A VR ISP下载接口 ⊕A VR JTAG仿真接口 ⊕稳压电源电路,输入DC(7~12V) ⊕RS232串行通讯(USART) ⊕直插式引脚,方便扩展 A VR单片机A Tmega32学习板mega32开发板同类产品:A VR单片机A Tmega32开发板,A VR A Tmega32单片机学习板,A Tmega32单片机核心板,A VR A Tmega32开发板 另我司有A Tmega32的A VR开发工具:A VR A Tmega32仿真器、A VR A Tmega32编程器、A VR A Tmega32下载器、A VR A Tmega32调试器、A VR单片机mega32模拟器、A VR A Tmega32

PLL配置详细说明

PLL配置详细说明 PLL的配置需求 假定设计者已经新建了一个工程,然后需要配置一个PLL。该PLL的输入时钟为FPGA 外部的25MHz晶振,希望得到一个50MHz(输入时钟的2倍频)的系统时钟供FPGA内部使用。该PLL的输入输出接口如表1所示。 表1 PLL的接口定义 信号名 方向 功能描述 inclk0 input PLL输入时钟 areset input PLL复位信号,高电平有效 c0 output PLL输出时钟 locked output 该信号用于指示PLL处理后的时钟已经稳定输出,高有效 PLL的配置步骤 ①如图1所示,在Quartus II的菜单栏选择“Tools—>MegaWizard Plug-In Manager…”。 图1 选择MegaWizard ② 如图2所示,使用默认选项“Create a new custom megafunction variation”,

点击“Next>”。 图2 新建megagunction ③ 如图3所示,进行以下配置: z在“Select a megafunction from the list below”窗口内打开“I/O”下拉框,选择“ALTPLL”。 z在“Which type of output file do you wangt to create?”下选择“Verilog HDL”,这是配置的PLL内核使用的语言,一般选择此项。 z在“What name do you want for the output file?”里默认会出现当前设计的工程路径,需要设计者在最后面手动输入例化的PLL的名字,这里输入了 “PLL_ctrl”。 完成以上配置,点击“Next>”。 图3 新建PLL

相关主题