搜档网
当前位置:搜档网 › ZBRUSH4重新拓扑教程

ZBRUSH4重新拓扑教程

ZBRUSH4重新拓扑教程
ZBRUSH4重新拓扑教程

ZBRUSH4 重新拓扑笔记

沈俊玮

1.新建Z球一个

2.RIGGING里面,选择SELECT MESH,绑定要拓扑的模型

3.绑定以后的状态

4.激活EDIT TOPOLOGY,开始工作

5.随便拓扑了一个头部

6.按A是切换模型预览模式和拓扑线框模式

7.完成拓扑以后,需要映射高模细节到低模上;激活PROJECTION。

注意,TOPOSMOOTH级别可以调高一些,这将影响重新拓扑后模型的最高级别的细节

8.映射以后的模型如右图,和映射前的模型对比,拥有高模几乎所有的细节

9.点击ADAPTIVE SKIN里的MAKE ADAPTIVE SKIN,生成拓扑后的模型,自带分级模型

10.最终生成的模型的最高级别如图

11.最低级别模型的拓扑线预览

点集拓扑学

点集拓扑学 注明:这篇文章是一篇读后感,绝大部分是引用别人的观点,其中有本人不同的观点,写出来是和大家共同研究与学习交流。本文灵感来源主要有这些作者或老师:张德学,张景祖,熊金城。由于篇幅比较长,本人也正在学习中,只能一部分一部分续写。 点集拓扑学是几何学的分支,研究的是更一般的几何图形,即拓扑空间中的集合,是研究拓扑不变性与不变量的学科,主要表现在图形的弹性变形后的那些不变性和不变量,比如联通性,可数性,分离性等。其中有几个代表性的例子:1,一笔画问题,2,哥尼斯堡七桥问题,3,四色问题。这种弹性变形指的是拓扑学中的同柸,相近点变相近点的连续概念。拓扑学包括点集拓扑学,代数拓扑学,几何拓扑学,微分拓扑学,其中点集拓扑学是基础,称为一般拓扑学。 集合概念的发展历程: 集合论的最早创立是由德国数学家康托尔创立的朴素集合论,运用于纯数学中,然后经过进一步的规范公理化使其理论更加严谨规范化。朴素集合论对集合没有做出严格的定义,只是表示对元素或者对象的搜集,没有形式化的理解,而公理集合论只使用明确定义的公理列表,是对集合这门学科的进一步认识在现实中得到了广泛的运用。 集合的定义: ① 公认定义:具有共同属性的对象的全体成为集合,对象又可以理解为个体或者集合中的元素。 ② 个人(本人)定义:我们把各种对象按照某种要求抽样集中起来构成一个群体称为集合,这种对象可能是独立的个体或者群体,也可能对象之间本身就有包涵关系的集合但不相同或相等,当我们把所有对象集中在一起称为全集或者幂集族。全集的一部分称为子集,幂集的一部分称为子集族。集合一般用大写字母表示,其中元素用小写。 集合的表示方式: 1枚举法 一般在大括号里罗列出集合的元素,如下: {}{}{}{}香蕉,大象,人,,3,2,1,3,2,1,,, c b a 2文字语言表述法 用文字语言来表达构成集合的要求: 某个班级的全体男生,一盒象棋,一箱牛奶等。 3图示法 4数学关系描述法或者数学语言描述法 用数学关系式来抽象表达构成集合的要求,我们平时研究的最多的也就是这种表达方法: (){}(){}x P X x x x P X x ,∈∈或者 对集合的描述必须合理,要不然会出现悖论比如:理发师只给不给自己理发的人理发,这种表述就不合理,导致理发师傅是给自己理发还是不给自己理发都是矛盾,这句话应该理解为理发师只给除自己以外不给自己理发的人理发。 又比如:

【精品】统计学专业复变函数大纲.doc

《复变函数》教学大纲 统计学(非师范类)专业用 —、说明部分(一)课程性质、目的和教学任务 本课程为统计学专业的专业限选课。 复变函数是数学专业的一门专业必修课,又是数学分析的后继课。已经形成了非常系统的理论并且深刻地渗入到代数学,解析数论、微分方程、概率统计、计算数学和拓扑学等数学分支, 同时,它在热力学, 流体力学和电学等方面也有很多的应用。先 修课程:数学分析,解析几何,高等代数,普通物理,常微分方 程。 本课程主要讲述解析函数的分析理论,级数理论和几何理论;主要内容为复平面和复变函数,解析函数的初等函数及多值性问题,复函数的积分和调和函数,级数,留数理论及应用,保形映照等。 通过本课程的讲授和学习,使学生了解和掌握解析函数的一般理论,接受严密的复分析训练,并为将来从事教学,科研及其它实际工作打好基础。 通过本门课程的教学,使学生掌握复变函数论的基本概念、基本理论与方法,增强数学工作能力,为进一步学习其他课程并为将来从事教学、科研以及其他实际工作打好基础。 (二)课程的教学原则和方法

本课程的教学原则:理论课与习题课并重的原则:单项训练与综合训练相互结合的原则:经典的、基本的内容与现代数学的方法尽量结合的原则:直觉想象和审慎推敵相互结合和转化的原则。 教学方法是要在主要采用讲授法为主配合教改,使用讨论法、练习法等,仔细推敲概念间的相互联系和差异。 (三)课程的主要内容学时分配 《复变函数》安排授课共54学时。 第一章复数及复变函数8学时 第二章复变函数12学时 第三章复变函数的积分10学时 第四章解析函数的幕级数表示8学时 第五章解析函数的罗朗展式与孤立奇点8学时 第六章留数理论及其应用8学时 二、正文部分 第一章复数与复变函数 (一)教学的目的和要求 1.掌握并熟悉复平面的基础知识和复函数的概念;

点集拓扑学教学大纲

《点集拓扑学》教学大纲 一、课程的教学目的和任务 本课程为数学系师范成人专升本选修课程,课程内容为点集拓扑学的一些基本概念、基本理论和基本方法。通过本课程的学习要求学生在掌握基本内容和基本方法的前提下,能以一般的观点总结和提高在一、二年级所学过的课程中有关的概念、理论和方法,进一步培养和提高学生的抽象思维和逻辑推理能力,同时,为进一步学习拓扑学、几何学、泛函和微分方程等课程提供所需用的最基础的知识。本课程总课时为72学时,习题课及机动课时约占总课时的四分之一。由于点集拓扑学是一门理论性强且较为抽象的课程,同时作为几何学的一个分支它的许多概念又有直观的几何背景,因此在教学中特别要注意概念的引入、具体例子和反例的选配,以便更好地阐明各个基本概念的含义从而使学生能准确把握各个基本概念,同时搞清这些例子和反例也是加深理解抽象概念的重要途径之一。带*号的内容可根据学生实际情况自由舍取。 二、课程内容及学时分配建议 第一章集合论的基本知识*12学时这部分内容是研究后续内容的一个知识平台,应该熟练掌握。如果学生对集合论内容熟悉且知识够用可采用复习方式,否则应采用讲授方式。 1.集合的基本概念及运算(包括集族的概念和运算) 2.关系、等价关系和映射 3.可数集与不可数集、基数 4.选择公理* 第二章拓扑空间和连续映射20学时这一部分重点在于建立拓扑结构,理解拓扑空间的概念,掌握拓扑空间的基本性质,为进一步学习拓扑性质打好基础。在教学中应多给一些具体的例子从具体到抽象并通过度量空间的模形来突破抽象空间建立的难点。 1. 度量空间 (1)度量空间的定义和例子 (2)连续函数的ε-δ定义与开集的刻划

点集拓扑学练习题

练习(第二章)参考答案: 一.判断题(每小题2分) 1.集合X 的一个拓扑有不只一个基,一个基也可以生成若干个拓扑( × ) 2.拓扑空间中任两点的距离是无意义的.( √ ) 3.实数集合中的开集,只能是开区间,或若干个开区间的并.( × ) 、T 2是X 的两个拓扑,则T 1UT 2是一个拓扑.( × ) 5.平庸空间中任一个序列均收敛,且收敛于任一个点。( √ ) 6.从(X ,T 1)到(X ,T 2)的恒同映射必是连续的。( × ) 7.从离散空间到拓扑空间的任何映射都是连续映射( √ ) 8.设12, T T 是集合X 的两个拓扑,则12 T T ?不一定是集合X 的拓扑( × ) 9.从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( √ ) 10.设A 为离散拓扑空间X 的任意子集,则()d A φ= ( √ ) 11.设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( × ) 12.设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( √ ) 二.填空题:(每空格3分) 1、X=Z +,T={Z 1,Z 2,…Z n …},其中 Z n ={n,n+1,n+2,…}, 则包含3的所有开集为 321,,Z Z Z 包含3的所有闭集为 ,...,,,/ 6/5/41Z Z Z Z 包含3的所有邻域为 3321}1{,,,Z Z Z Z ? 设A={1,2,3,4,5} 则A 的导集为{1,2,3,4} ,A 的闭包为{1,2,3,4,5}

2、设X 为度量空间,x ∈X,则d ({x})=? 3、在实数空间R 中,有理数集Q 的导集是____ R ____. 4、)(A d x ∈当且仅当对于x 的每一邻域U 有 ; 答案: ({})U A x φ?-≠ 5、设A 是有限补空间X 中的一个无限子集,则()d A = ; A = ; 答案:X ;X 6、设A 是可数补空间X 中的一个不可数子集,则()d A = ; A = ; 答案:X ;X 7、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的内部为 ; 答案:{2} 三、单项选择题(每题2分) 1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑. ① {,,{},{,},{,,}}X a a b a c e φ=T ② {,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T ③ {,,{},{,}}X a a b φ=T ④ {,,{},{},{},{},{}}X a b c d e φ=T 答案:③ 2、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( ) ①φ ② X ③ {}b ④ {,,}b c d 答案:④ 3、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( ) ①φ ② X ③ {,}a b ④ {,,}b c d 答案:②

《点集拓扑学》第5章 §5.2 可分空间

§5.2可分空间 本节重点: 掌握可分空间的定义及可分空间与第二可数性公理空间的关系,与度量空间的关系; 掌握稠密子集的定义及性质. 定义5.2.l 设X是一个拓扑空间,D X.如果D的闭包等于整个拓扑空间X,即=X,则称D是X的一个稠密子集. 以下定理从一个侧面说明了讨论拓扑空间中的稠密子集的意义. 定理5.2.1 设X是一个拓扑空间,D是X中的一个稠密子集.又设f,g:X→Y都是连续映射.如果,则f=g(本定理说明两个映射只须在稠密子集上相等,就一定在整个空间相等) 证明设.如果f≠g,则存在x∈X使得 f(x)≠g(x).令:ε=|f(x)-g(x)|, 则ε>0.令 =(f(x)-ε/2,f(x)+ε/2) =(g(x)-ε/2,g(x)+ε/2) 则根据映射f和g的连续性可知都是x的邻域,从而U =也是x的一个邻域.由于子集D是稠密的,所以U∩D≠.对于任意一个y∈U∩D,我们有, f(y)=g(y)∈,矛盾. 我们也希望讨论有着较少“点数”稠密子集的拓扑空间,例如具有有限稠密点集的拓扑空间.但这类拓扑空间比较简单,大部分我们感兴趣的拓扑空间都不是这种情形,讨论起来意思不大.例如一个度量空间如果有一个有限的稠密子集的话,那么这个空间一定就是一个离散空间.相反,后继的讨论表明,许多重要的拓扑空间都有可数稠密子集.

定义5.2.2 设X是一个拓扑空间.如果X中有一个可数稠密子集,则称X是一个可分空间. 定理5.2.2 每一个满足第二可数性公理的空间都是可分空间. 证明设X是一个满足第二可数性公理的空间,B是它的一个可数基.在B中的每一个 非空元素B中任意取定一个点∈B.令 D={|B∈B,B≠} 这是一个可数集.由于X中的每一个非空开集都能够表示为B中若干个元素(其中当然至少会有一个不是空集)之并,因此这个非空开集一定与D有非空的交,所以可数集D是X的一个稠密子集. 包含着不可数多个点的离散空间一定不是可分的.这是因为在这样一个拓扑空间中,任何一个可数子集的闭包都等于它的自身而不可能等于整个空间. 可分性不是一个可遗传的性质,也就是说一个可分空间可能有子空间不是可分的.例子见后面的例5.2.1.然而由于满足第二可数性公理是一个可遗传的性质,因此根据定理5.2.2我们立即得到: 推论5.2.3 满足第二可数性公理的空间的每一个子空间都是可分空间. 特别,n维欧氏空间中的每一个子空间(包括它自己)都是可分空间. 例5.2.1 设(X,T)是一个拓扑空间,∞是任何一个不属于X的元素(例如我们可以取∞=X).令X*=X∪{∞}和T*={A∪{∞}|A∈T}∪{}.容易验证(请读者自己证明)(X*,T*)是一个拓扑空间. 我们依次给出以下三个论断: (1)(X*,T*)是可分空间.这是因为∞属于(X*,T*)中的每一个非空开集,所以单点集{∞}是(X*,T*)中的一个稠密子集. (2)(X*,T *)满足第二可数性公理当且仅当(X,T)满足第二可数性公理. 事实上,B是(X,T)的基当且仅当B*={B∪{∞}|B∈B}是(X*,T*)的一个基,而B 与B*有相同的基数则是显然的. (3)(X,T)是(X*,T*)的一个子空间.因为T*T.

《数学史》教学大纲

《数学史》教学大纲 课程编号:学分:总学时:54 适用专业:数学与应用数学开课学期: 先修专业:无后续课程:无 一、课程的性质、目的和要求 (一)课程的性质:选修课程。 (二)课程教学目的:能够以数学的、历史的眼光分析数学发展的内在原因,运用辩证唯物主义的哲学方法剖析数学发展史。 (三)课程基本要求:全面了解数学历史的发展过程,了解各个时期主要数学家的生平事迹和对数学发展的贡献,掌握重要的数学事件,理解主要的数学理论的形成过程以及历史文化背景。 二、本课程主要教学内容及时间安排 第一章:综述(8学时) 1、教学基本要求:分三阶段综合叙述数学历史发展过程,掌握各阶段的框架和脉络,理解中外各主要数学中心发展、转移、变化的过程。 2、教学重点:在教学上要求把握一个整体、三个阶段的特点(古典数学、近代数学和现代数学)。 3、教学难点: 4、本章知识点:⒈数学历史发展过程(5学时),作业量:1。 ⒉主要数学中心发展、转移、变化的过程(3学时),作业量:1。 第二章:东、西方初等数学的代表作(4学时) 1、教学基本要求:通过全面了解东、西方初等数学的代表作,即中国的《九章算术》和古希腊的《几何原本》的内容、背景和特点,把握两者的深刻的思想内涵和学术文化特征。 2、教学重点:把握《九章算术》和《几何原本》深刻的思想内涵和学术文化特征。 3、教学难点: 4、本章知识点:⒈数学历史发展过程(2学时),作业量:1。 ⒉主要数学中心发展、转移、变化的过程(2学时),作业量:1。 第三章:作图工具与计算工具(2学时) 1、教学基本要求:通过中、西方古代作图工具、计算工具的形成、发展过程的介绍,重点把握古希腊作图手段——尺规作图法,以及中国古代著名的计算工具——算筹的具体情况和历史背景。 2、教学重点:把握古希腊作图手段——尺规作图法,以及中国古代著名的计算工具——算筹的具体情况和历史背景。 3、教学难点:尺规作图法。 4、本章知识点:⒈尺规作图法及算筹的具体情况和历史背景。(2学时),作业量:1。 第四章:初等几何(2学时) 1、教学基本要求:沿着数的起源、发展的历史轨迹,重点了解记数的方法、数的运算以及数系扩充的历史发展过程,突出中国十进位制的历史地位和功绩,理解在数的扩充过程中,人类所表现出的困惑、好奇和对未知世界执着探索的精神状态。 2、教学重点:数系扩充的历史发展过程。 3、教学难点: 4、本章知识点:⒈数系扩充的历史发展过程。(2学时),作业量:1。 第五章:算术(2学时) 1、教学基本要求:了解自然数是基数与序数的统一,把握正负数的定义及分数的运算法则,

点集拓扑学练习题及答案

点集拓扑学练习题 一、单项选择题(每题1分) 1、已知X {a,b,c,d,e},下列集族中,( )是X上的拓扑? ① T {X, ,{a},{ a,b},{ a,c,e}} ② T {X, ,{ a,b, c},{ a,b,d},{ a,b, c,e}} ③ T {X, ,{a},{a,b}} ④ T {X, ,{a},{ b},{ c},{ d},{ e}} 答案:③ 2、设X {a,b,c},下列集族中,( )是X上的拓扑? ①T {X, ,{a},{ a,b},{ c}} ②T {X, ,{a},{ a,b},{ a,c}} ③T {X, ,{a},{ b},{ a,c}} ④T {X, ,{a},{ b},{ c}} 答案:② 3 、 已知X {a,b,c,d},下列集族中,' ( )是X上的拓扑? ①T {X, ,{a},{ a, b},{ a,c,d}} ②T {X, ,{a,b,c},{ a,b, d}} ③T {X, ,{a},{ b},{ a,c,d}} ④T {X, ,{a},{b}} 答案:① 4、设X {a, b, c},下列集族中,()是X上的拓扑. ①T {X, ,{b},{ c},{ a,b}} ②T {X, ,{a},{ b},{ a,b},{ a,c}} ③T {X, ,{a},{ b},{ a,c}} ④T {X, ,{a},{ b},{ c}} 答案:② 5、已 知 汨X {a,b,c,d},下列集 :族中, (( )是X上的拓扑? ①T {X, ,{a,b},{ a,c,d}} ②T {X, ,{a,b},{ a,c, d}} ③T {X, ,{a},{ b},{ a,c,d}} ④T {X, ,{a},{ c},{ a,c}} 答案:④ 6、设X {a, b, c},下列集族 中 ,( )是X上的拓扑? ①T {X, ,{a},{ b},{ b,c}} ②T {X, ,{a,b},{ b, c}} ③T {X, ,{a},{a,c}} ④T {X, ,{a},{b},{c}} 答案:③ 7、已知X {a,b,c,d},拓扑T {X, ,{a}},贝U{b}=() ①?②X ③{b} ④{b, c, d} 答案:④

《泛函分析》课程教学大纲-黎永锦

《泛函分析》教学大纲 Functional Analysis 课程编号: 适用专业:数学与应用数学 总学时数:学分: 一、本课程简介 《泛函分析》是现代数学中的的主要数学分支之一,它综合地运用分析、代数和拓扑的观点、方法,来研究数学中的许多问题,它在抽象空间上研究类似于实数上的分析问题,形成了综合运用代数和拓扑来分析处理问题的方法.通过这一课程,能使学生了解泛函分析的基本思想、原理及在各门学科中的应用,掌握泛函分析中主要的基本概念和重要的基本理论,学会用代数、分析和拓扑综合处理问题的新方法,弄清有限维空间与无穷维空间的差别,学会无穷维空间中处理线性问题的分析方法,该课程是学习其他数学分支与科研工作的重要基础. 二、本课程与其他课程的关系 《泛函分析》、《抽象代数》、《拓扑学》是现代数学的重要课程,它综合了分析、代数和拓扑的研究方法,因此学生最好有数学分析、线性代数、空间解析几何及点集拓扑学的基础. 三、教学内容、学时安排和基本要求 本课程主要是线性泛函分析的基本理论,重点介绍距离空间和赋范空间的基础,Banach空间最重要的定理,如Hahn-Banach保范延拓定理、逆算子定理、一致有界原理和Riesz表示定理等.

本课程学时为54学时. (一)度量空间(12学时) 1、具体内容 度量空间的基本概念,度量空间中开集、闭集、完备性与可分性、连续映照的概念、距离空间中列紧集、紧集上连续映照的性质、不动点定理. 2、基本要求 (1)正确理解度量空间基本概念、度量空间点列收敛等概念. (2)理解并掌握度量空间中的内点,极限点,开集闭集,闭包等. (3)理解并掌握列紧集及紧集的概念,紧集、列紧集上的连续映射的性质. (5)熟练掌握压缩映照原理及其应用. 3、重点、难点 重点:度量空间的紧性、不动点定理. 难点:具体度量空间上紧性的判别、压缩映射的构造及不动点定理的具体应用. (二)赋范线性空间(10学时) 1、具体内容 赋范空间的定义,范数的等价性,有限维赋范空间, Schauder基等. 2、基本要求 (1)理解线性空间和范数的概念以及相关的例子. (2)掌握范数的等价性及判别方法. (3)掌握具有基的Banach空间、有限维赋范线性空间的性质. (4)线性连续泛函与Hahn-Banach保范延扩定理. 3、重点、难点 重点:有限维赋范空间的性质和Hahn-Banach保范延扩定理. 难点:Hahn-Banach保范延扩定理及其推论的应用. (三) 有界线性算子(10学时) 1、具体内容

点集拓扑学拓扑知识点

(点集拓扑学拓扑)知识点

————————————————————————————————作者:————————————————————————————————日期:

第4章 连通性重要知识点 本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉 及某些简单的应用.这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间. §4.1 连通空间 本节重点: 掌握连通与不连通的定义. 掌握如何证明一个集合的连通与否? 掌握连通性的拓扑不变性、有限可积性、可商性。 我们先通过直观的方式考察一个例子.在实数空间R 中的两个区间(0,l )和[1,2), 尽管它们互不相交,但它们的并(0,1)U [l ,2)=(0,2)却是一个“整体”;而另外两 个区间(0,1)和(1,2),它们的并(0,1)U (1,2)是明显的两个“部分”.产生上述 不同情形的原因在于,对于前一种情形,区间(0,l )有一个凝聚点1在[1,2)中;而对 于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中.我们通过以下的定义,用 术语来区别这两种情形. 定义4.1.1设A 和B 是拓扑空间X 中的两个子集.如果 ?=???)()(A B B A 则称子集A 和B 是隔离的. 明显地,定义中的条件等价于?=?B A 和 ?=?A B 同时成立,也就是说,A 与B 无交并且其中的任何一个不包含另一个的任何凝聚点. 应用这一术语我们就可以说,在实数空间R 中,子集(0,1)和(1,2)是隔离的, 而子集(0,l )和[1,2) 不是隔离的. 又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个 无交的子集都是隔离的. 定义4.1.2 设X 是一个拓扑空间.如果X 中有两个非空的隔离子集A 和B 使得X=A ∪B ,则称X 是一个不连通空间;否则,则称X 是一个连通空间. 显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间. 定理4.1.1设X 是一个拓扑空间.则下列条件等价: (l )X 是一个不连通空间; (2)X 中存在着两个非空的闭子集A 和B 使得A ∩B=? 和 A ∪B = X 成立; (3) X 中存在着两个非空的开子集A 和B 使得A ∩B=? 和 A ∪B = X 成立; (4)X 中存在着一个既开又闭的非空真子集. 证明(l )蕴涵(2): 设(1)成立.令A 和B 是X 中的两个非空的隔离子集使得 A ∪ B =X ,显然 A ∩B=?,并且这时我们有 B B B A B B A B X B B =???=??=?=)()()( 因此B 是X 中的一个闭子集;同理A 也是一个X 中的一个闭子集.这证明了集合A 和B 满足条件(2)中的要求. (2)蕴涵(3).如果X 的子集A 和B 满足条件(2)中的要求,所以A 、B 为闭集, 则由于这时有A =B /和B=A ',因此A 、B 也是开集,所以A 和B 也满足条件(3)中的要

《微分几何》教学大纲

《微分几何》课程教学大纲 课程名称:《微分几何》 课程编码:074112303 适用专业及层次:数学与应用数学(本科) 课程总学时:72学时 课程总学分:4 一、课程的性质、目的与任务等。 1、微分几何简介及性质 微分几何是高等院校数学和数学教育各专业主要专业课程之一,是运用微积分的理论研究空间的几何性质的数学分支学科。古典微分几何研究三维空间中的曲线和曲面,而现代微分几何开始研究更一般的空间----流形。微分几何与拓扑学等其他数学分支有紧密的联系,对物理学的发展也有重要影响,爱因斯坦的广义相对论就以微分几何中的黎曼几何作为其重要的数学基础。本课程的前导课程为解析几何、高等代数、数学分析和常微分方程。 2、教学目的: 通过本课程的教学,使学生掌握三维欧氏空间中的曲线和曲面的局部微分理论和方法,分析和解决初等微分几何问题,并为进一步学习微分几何的近代内容打下良好的基础。 3、教学内容与任务: 本课程主要应用向量分析的方法,研究一般曲线和曲面的局部理论,同时还采用了张量的符号讨论曲面论的基本定理和曲面的内蕴几何内容,并且讨论了属于整体微分几何的高斯崩尼(Gauss-Bonnet)公式。重点让学生把握理解本教材的前二章。 二、教学内容、讲授大纲与各章的基本要求 第一章曲线论 教学要点: 本章主要研究内容为向量分析,曲线的切线,法平面,曲线的弧长参数表示,空间曲线的基本三棱形,曲率和挠率的概念和计算,曲线论的基本公式和基本定理,从而对

空间曲线在一点邻近的形状进行研究,同时对特殊曲线特别是一般螺线和贝特朗曲线进行研究。通过本章的教学,使学生理解和熟记有关概念,掌握理论体系和思想方法,能够证明和计算有关问题 教学时数:22学时。 教学内容: 第一节向量函数 1.1 向量函数的极限 1.2 向量函数的连续性 1.3 向量函数的微商 1.4 向量函数的泰勒(TayLor)公式 1.5 向量函数的积分 第二节曲线的概念 2.1 曲线的概念 2.2 光滑曲线、曲线的正常点 2.3 曲线的切线和法面 2.4 曲线的弧长、自然参数 第三节空间曲线 3.1 空间曲线的密切平面 3.2 空间曲线的基本三棱形 3.3 空间曲线的曲率、挠率和伏雷内(Frenet)公式 3.4 空间曲线在一点邻近的结构 3.5 空间曲线论的基本定理 3.6 一般螺线 考核要求: 1、理解向量函数的极限、连续性、微商、泰勒(TayLor)公式和积分等概念,能

《点集拓扑学》第7章§7.1紧致空间

第7章 紧致性 §7.1 紧致空间 本节重点: 掌握紧致子集的定义及判断一个子集是紧致子集的方法.(这些方法哪些是充要条件); 掌握紧致性是否是连续映射可保留的,是否是可遗传的、有限可积的. 在§5.3中,我们用关于开覆盖和子覆盖的术语刻画了一类拓扑空间,即Lindeloff空间.现在来仿照这种做法,即将Lindeloff空间定义中的“可数子覆盖”换成“有限子覆盖”,以定义紧致空间.读者在数学分析中早已见过的Heine-Borel定理断言:实数空间R的任何一个子集为有界闭集的充分必要条件是它的每一个开覆盖都有一个有限子覆盖.(在§7.3中我们将要推广这个定理.)因此我们现在作的事也应当在意料之中. 定义7.1.1 设X是一个拓扑空间.如果X的每一个开覆盖有一个有限子覆盖,则称拓扑空间X是一个紧致空间. 明显地,每一个紧致空间都是Lindeloff空间.但反之不然,例如包含着无限但可数个点的离散空间是一个Lindeloff空间,但它不是一个紧致空间. 例7.1.1 实数空间R不是一个紧致空间.这是因为如果我们设 A={(-n,n)R|b∈Z+},则A的任何一个有限子族 { },由于它的并为 (-max{},max{}) 所以不是R的一个子覆盖.因此R的开覆盖A没有任何一个有限子覆盖. 定义7.1.2 设X是一个拓扑空间,Y是X中的一个子集,如果Y作为X的子空间是一个紧致空间,则称Y是拓扑空间X的一个紧致子集. 根据定义,拓扑空间X中的一个子集Y是X的紧致子集意味着每一个由子空间Y中的开集构成的Y的开覆盖有一个有限子覆盖,这并不明显地意味着由X中的开集构成的每一个Y的覆盖都有有限子覆盖.所以陈述以下定理是必要的. 定理7.1.1 设X是一个拓扑空间,Y是X中的一个子集.则Y是X的一个紧致子集当且仅当每一个由X中的开集构成的Y的覆盖都有有限子覆盖.(此定理表明开覆盖中的开子集可以是X的,也可以是Y的)

数学一级学科硕士研究生培养方案

数学一级学科硕士研究生培养方案 (0701) 适用专业:070101基础数学、070102计算数学、070103概率论与数理统计、070104应用数学、070105运筹学与控制论、070120数学教育 一、培养目标 培养适应国家和地方经济与社会发展需要的学术型、应用型高层次数学专门人才。 具体要求是: 1.树立爱国主义和集体主义思想,具有公民意识和社会责任感,具有良好的道德品质和强烈的事业心,能立志为祖国的建设和发展服务。 2.掌握系统而坚实的数学基础理论和专门知识;具有从事数学科学研究的创新意识和独立从事实际工作的专门技术水平;具有使用第一外国语进行国际交流的能力,能够熟练地阅读本学科的外文文献,并具有初步撰写外文科研论文的能力。 3.主要为攻读博士做前期的专业知识和科研能力准备;培养高校和中学需要的从事教学、科研等工作的高层次人才,培养企事业单位需要的从事技术开发、咨询预测等工作的高层次人才。 4.具有健康的体魄和较强的心理素质。 二、研究方向 1.基础数学专业 奇点理论,李代数及其应用,同调代数,低维拓扑,非交换几何,算子理论及算子代数。 2.计算数学专业 微分方程数值解,数值代数,数值逼近,分形几何。 3.概率论与数理统计专业 应用概率,生物统计,生物信息,教育与心理测量,金融与经济统计,机器学习。 4.应用数学专业 常微分方程理论及应用,泛函微分方程理论及应用,随机微分方程理论及应用,偏微分方程理论及应用,生物数学。 5.运筹学与控制论专业 分布参数系统控制理论及应用,集中参数系统控制理论及应用。 6.数学教育专业

数学教育心理,数学课程,数学教学,数学教师专业发展。 三、修业年限 实行弹性学制,基本学制为3年,其中生源为跨专业、同等学力的研究生原则上学制要延长一年。凡修满最低学分、学习成绩优秀者,经本人申请、指导教师同意与学院教授委员会讨论通过,并顺利通过学位论文答辩,可以提前毕业(最低修业年限不得少于2年)。 四、毕业学分和授予的学位 毕业时总学分不少于33学分,其中课程总学分要求不少于27学分,必修环节总学分6学分(学术活动1学分,教学实践1学分,文献阅读1学分,学位论文3学分)。硕士研究生在规定修业年限内修满规定学分,通过思想品德考核,学位论文答辩,符合《中华人民共和国学位条例》有关规定,达到我校学位授予标准,授予理学硕士学位。 五、培养方式 1.硕士研究生培养以课程学习和应用技能培养为主,以科学研究为辅。坚持“宽口径,厚基础,重应用”的培养原则。 2.硕士研究生培养采取导师负责与集体培养相结合的方式,导师是硕士研究生培养的第一责任人,每个硕士研究生导师组要由3~5人组成,配合导师,充分发挥其集体培养优势。 3.研究生导师应在同研究生本人商量的基础上根据研究生的实际情况和就业意愿为其“量体裁衣”制定个性化的个人学习和研究计划。个人学习和研究计划在入学后5个月内完成并交学院备案。 4. 研究生选课必须在导师指导下进行,每学期开学填写选课单,由导师签字同意后选课才有效。 5.硕士研究生教学形式应灵活多样,提倡采用研讨班、专题式、启发式等多种教学方法,把课堂讲授、交流研讨、案例分析等有机结合,促进学生的自主性学习和研究性学习,加大对研究生创新能力的培养。 6.有计划地聘请国内外专家来我院授课,或派出硕士研究生到其他名牌高校或科研院所修读部分课程。提倡与国内外著名高校和科研院所互相承认学分,联合培养研究生。 7.论文工作环节需对硕士进行系统、全面的研究训练,培养综合运用知识发现问题、分析问题和解决问题的能力。 8.硕士研究生培养实行学分制。 六、课程学习 (一)课程设置与学分要求 1.必修课(不少于16学分) (1)公共基础课(7学分) 马克思主义理论课60学时3学分Ⅱ学期

计算机网络课程设计

南京工程学院 课程设计报告 课程名称计算机网络 实验项目名称 IP地址规划与路由连通性设计实验学生班级软件工程ZB132 实验学生姓名 实验学生学号 实验指导教师戴慧、刘爱华 实验时间—— 实验地点机房

1 课程设计目的和意义 计算机网络是计算机技术和通信技术相结合的产物,是当今计算机世界中发展速度最快的领域之一,作为工科院校的学生,不仅要认清时代的潮流和当代技术前沿,更要努力发展自己,不断学习理论知识,提升自己的水平,更要在理论知识的基础上,结合实际中的问题,培养自己发现问题,思考问题,解决问题的能力,提高自己的实践水平。 这次的课程设计的就是要让我们能够在全面深入地学习《计算机网络》这门课程的基础上,进一步理解计算机网络的基本理论,并且要将理论知识和实践结合起来,在老师给予的要求和提示下,掌握小型网路的初步配置,熟悉各项步骤,完成小型网络的设计与实现,提高网络应用水平。 课程设计是我们平时学习中最重要的一项实践环节,它可以帮助我们理解课堂教学中的内容,对提高实践认识和实际动手能力都有很重要的实际意义。按照课程设计的要求,结合所学的理论知识,查找相关资料,完成课程设计任务,同时提高网络应用能力,为后续课程打好基础。 2 课程设计题目和要求 图课程设计拓扑图 题目:IP地址规划与路由连通性设计 要求: 任务1:按图1在模拟环境中建立相应的拓扑图 连线方法: PC机与交换机之间、路由器与交换机之间的连线用直连线,路由器之间的连接用串口线,交换机之间的连线、主机与路由器之间的连线用交叉线。 任务2:应用基础设置 1)将每个设备的名称改成拓扑图上显示的名称。8分 2)在S3、R2、R3和ISP上:关闭域名解析,通过console登录时关闭会话超时。16分 任务3:设置密码 设置S3、R2、R3、ISP的特权密码为ccnp。8分 任务4:在S3、R2 、R3和 ISP上配置接口。42分 地址表:

(点集拓扑学拓扑)知识点

第4章连通性重要知识点 本章讨论拓扑空间的几种拓扑不变性质,包括连通性,局部连通性和弧连通性,并且涉及某些简单的应用?这些拓扑不变性质的研究也使我们能够区别一些互不同胚的空间. § 4. 1连通空间 本节重点:掌握连通与不连通的定义. 掌握如何证明一个集合的连通与否? 掌握连通性的拓扑不变性、有限可积性、可商性。 我们先通过直观的方式考察一个例子?在实数空间R中的两个区间(0, I)和]1, 2), 尽管它们互不相交,但它们的并(0, 1)U :1, 2) = (0, 2)却是一个“整体”;而另外两个区间(0, 1)和(1, 2),它们的并(0, 1)U (1, 2)是明显的两个“部分”.产生上述不同情形的原因在于,对于前一种情形,区间(0, I)有一个凝聚点1在]1, 2)中;而对于后一种情形,两个区间中的任何一个都没有凝聚点在另一个中. 我们通过以下的定义,用 术语来区别这两种情形. 定义4. 1. 1设A和B是拓扑空间X中的两个子集.如果 (A - B)(B - A)二?一 则称子集A和B是隔离的. 明显地,定义中的条件等价于 A r B =、和B r A二.一同时成立,也就是说,A 与B无交并且其中的任何一个不包含另一个的任何凝聚点. 应用这一术语我们就可以说,在实数空间R中,子集(0, 1)和(1, 2)是隔离的, 而子集(0, I )和[1 , 2)不是隔离的. 又例如,易见,平庸空间中任何两个非空子集都不是隔离的,而在离散空间中任何两个 无交的子集都是隔离的. 定义4. 1. 2设X是一个拓扑空间.如果X中有两个非空的隔离子集A和B使得X=A U B,则称X 是一个不连通空间;否则,则称X是一个连通空间. 显然,包含着多于两个点的离散空间是不连通空间,而任何平庸空间都是连通空间. 定理4. 1. 1设X是一个拓扑空间.则下列条件等价: (1)X是一个不连通空间; (2)X中存在着两个非空的闭子集A和B使得A A B= ?一和A U B = X成立; (3)X中存在着两个非空的开子集A和B使得A A B= ?一和A U B = X成立; (4)X中存在着一个既开又闭的非空真子集. 证明(I)蕴涵(2):设(1)成立.令A和B是X中的两个非空的隔离子集使得 A U B = X,显然A A B= ?_ ,并且这时我们有 B = B 一X = B「(A 一B)=(B 一A)一(B 一B)= B 因此B是X中的一个闭子集;同理A也是一个X中的一个闭子集.这证明了集合A和B 满足条件(2)中的要求. (2)蕴涵(3).如果X的子集A和B满足条件(2)中的要求,所以A、B为闭集,则由于

《点集拓扑学》教学大纲

《点集拓扑学》教学大纲 一、课程名称: 《点集拓扑学》 二、课程性质: 数学与应用数学专业限选课 先修课程:数学分析、高等代数、实变函数等课程 三、课程的地位及教学目的 “点集拓扑学”是数学与应用数学专业的一门重要的专业提高课程,是数学学科《新三基》之一,“点集拓扑学”不仅本身在不断发展而且其理论和方法渗透到数学学科的其他分支中,对数学学科的发展起着基础性的作用。通过本门课的教学,使学生初步掌握“点集拓扑学”的基本内容、思想和方法,为进一步学习其他课程及将来从事教学、科研工作打下良好的基础。 四、课程教学原则与教学方法 本课程以精讲、自学和基本了解作为教学原则。精讲是指对“点集拓扑学”的基本理论、基本方法教师必须作深入而充分的讲授和辅导,学生必须完成足够的练习并达到明晰的理解与巩固地掌握;自学是指对“点集拓扑学”的易于理解的内容学生在教师的指导下自学,达到使学生掌握相应的内容的同时培养学生的自学能力的目的;基本了解是指对“点集拓扑学”的一些内容经过教师的明晰的介绍学生应当较好的了解,并明了其应用,但不要求熟练掌握其逻辑论证。 采取教师讲授、师生互动讨论式和问题式的教学方法,充分调动学生的学习积极性,达到教学目的。 五、总学时 68课时(含复习考试) 六、课程教学内容要点及建议学时分配 第一篇集合论初步(6课时)

一、教学目的 在本篇使学生掌握“关系”的概念及其基本性质,尤其掌握几个特殊“关系”。其次掌握“映射”与“关系”之间的联系。另了解“选择公理”有关的初步知识。要点如下: 1.集合的基本概念(自学) 2.集合的基本运算(自学) 3*.关系(2学时) 4*.等价关系(2学时) 5*.映射(2学时) 6*.集族及其运算(自学) 7.选择公理(时选学2课) 作业要求:完成4~6道基础性练习题,1~2提高性练习题。 第二篇拓扑空间与连续映射(精讲、22课时) 一、教学目的 本篇是点集拓扑学的基础理论部分,也是点集拓扑学的核心部分。使学生熟练掌握本章的基本理论、方法,对本章的数学思想要有深刻理解。要点如下:1*.度量空间与连续映射(2学时) 2*.拓扑空间与连续映射(4学时) 3*.邻域与邻域系(2学时) 4*.导集、闭集、闭包(4学时) 5*.内部、边界(2学时) 6*.基与子基(4学时)

《点集拓扑学》期末复习

期末复习 学了一个学期的点集拓扑,大家对它应当有了更多的了解,更深刻的认识.大家掩卷回忆一下,点集拓扑学的主要内容有哪些?沿着什么思路研究?研究手法是什么? 下面把这几个方面的内容理一下,仅供参考. 一、点集拓扑学的主要内容: 1.一般拓扑空间: (1)任何点集只要定义了拓扑,就成了拓扑空间.任何拓扑空间中均有开集、基、闭集、闭包.任何点集均可能有凝聚点,任何点均有邻域.指定了顺序的元素就成了序列.(这些名词的定义是什么?相互关系是什么?如何判定?) (2)常见的拓扑空间有:度量空间、平庸空间、离散空间、有限补空间、可数补空间等.任何集合均可通过指定开集而构成上述空间.因此一个集合与不同的拓扑(开集族)配对,可以构成不同的拓扑空间.(实数集合可能成为上述空间吗?)(注意:实数集合与实数空间不同.) (3)一般拓扑空间均可以有子空间,任意有限个拓扑空间均可以构成乘积空间.任一拓扑空间中的一个等价关系均可以造出商空间.(这些空间的拓扑是怎样的?或基是怎样的?) 2.有个性的拓扑空间:与连通性有关的空间、各可数性公理空间、各分离性公理空间、与紧致性有关的空间、完备度量空间. (1)并不是任何空间都可以成为上述空间的.只有符合上述空间定义的空间才可以成为上述空间.(各类空间之间没有必然的联系) (2)R及是上述空间吗? (3)若有两个空间,之间通过连续映射联系起来,则原象空间的哪些性质可以传递到象空间? (4)上述空间的哪些性质可以遗传给子空间?(或闭遗传?) (5)上述空间的哪些性质可以是有限可积的? 3.连通性: (1)§4.1的所有定义,定理均要掌握.以应对判断一个空间的连通性. (2)两种分支的性质.

南京师范大学《高等几何》课程教学大纲

南京师范大学《高等几何》课程教学大纲 课程名称:高等几何(Higher Geometry) 课程编号:06100020 学分:3 学时:90 先修课程:解析几何, 高等代数(I), 数学分析(I) 替代课程:无 一、课程教学目的 本课程是大学数学类专业的主干基础课程之一。本课程在学生具备初等几何、解析几何、高等代数、数学分析知识的基础上,系统地学习射影几何的基本知识,使学生能用变换群的观点来看待几何学,加深对几何学的理解,拓展几何空间概念。通过本课程利用商空间思想研究亏格为零不可定向的闭曲面上的几何学的训练,一方面使得学生拓宽眼界,扩大知识领域,提高抽象思维、理性思维能力,为进一步的数学学习打下基础;另一方面使得学生加深对中学几何特别是解析几何的理论与方法的理解,从而获得用高观点来处理中学几何问题的能力,为未来的中学几何教学打下基础;第三,本课程包括了许多著名的定理,奇妙的图形,匪夷所思的处理技巧,通过本课程的学习,可以有效地提高数学审美意识。 概括来说,学习本课程后,要使得学生有如下收获:(1)空间不只是平直的,除欧氏空间外,还有很多其他的空间。即让学生在空间观念上有一个提升;(2)进一步让学生了解处理几何问题不只是可以用综合法,还可以用解析法;(3)深刻理解对偶原理,认识到射影几何是与欧氏几何完全不同的几何学;(4)深刻理解射影变换及其性质,认识到射影几何是研究射影图形在射影变换下的不变性和不变量的一门科学;(5)深刻理解Klein的变换群观点,即研究某空间中的图形在它的某变换群作用下不变的性质和数量的科学就称为一门几何学;(6)深刻了解一些平面射影图形的射影性质。如:点列,线束,完全n点(线)形,二次曲线的射影性质。(7)学会构造射影图形。因为我们的纸张是欧氏平面,所以在其上构造射影图形还是有很多技巧,学生要深刻领会这些技巧。 二、教学任务 通过课堂教学、课外辅导等多个教学环节,教师主要完成下列教学任务: 1、完成上述教学目的。 2、培养学生树立科学世界观、人生观和价值观,具有良好的思想道德素养和团结协作的精神,具有一定的社会责任感、宽广的胸怀和创新意识。 3、使学生了解近代几何学的发展概貌及其在社会发展中的作用,了解数学科学的若干最新发展状况。 4、培养学生的各种数学能力,不仅要教会学生用研究的眼光(即经常想一想当初数学家是如

点集拓扑学的基本概念

点集拓扑学 点集拓扑学(Point Set Topology),有时也被称为一般拓扑学(General Topology),是数学的拓扑学的一个分支。它研究拓扑空间以及定义在其上的数学结构的基本性质。这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。它的表述形式大概在1940年左右就已经成文化了。通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。 具体地说,在点集拓扑学的定义和定理的证明中使用了一些基本术语,诸如: ?开集和闭集 ?开核和闭包 ?邻域和邻近性 ?紧致空间 ?连续函数 ?数列的极限,网络,以及滤子 ?分离公理 度量空间 在数学中,度量空间是一个集合,在其中可以定义在这个集合的元素之间的距离(叫做度量)的概念。 度量空间中最符合我们对于现实直观理解的是三维欧几里得空间。事实上,“度量”的概念就是对从欧几里得距离的四个周知的性质引发的欧几里得度量的推广。欧几里得度量定义了在两个点之间的距离为连接它们的直线的长度。 空间的几何性质依赖于所选择的度量,通过使用不同的度量我们可以构造有趣的非欧几里得几何,比如在广义相对论中用到的几何。 度量空间还引发拓扑性质如开集和闭集,这导致了对更抽象的拓扑空间的研究。 【性质】 度量空间是元组(M,d),这里的M 是集合而 d 是在M 上的度量(metric),就是函数 使得 ?d(x, y) ≥ 0 (非负性) ?d(x, y) = 0 当且仅当 x = y (不可区分者的同一性) ?d(x, y) = d(y, x) (对称性)

?d(x, z) ≤ d(x, y) + d(y, z) (三角不等式)。 函数d 也叫做“距离函数”或简单的叫做“距离”。经常对度量空间省略d 而只写M,如果在上下文中可明确使用了什么度量。不要求第二、第三或第四个条件分别导致伪度量空间、准度量空间或半度量空间的概念。 第一个条件实际上可以从其他三个得出: 2d(x, y) = d(x, y) + d(y, x) ≥ d(x,x) = 0. 它做为度量空间的性质更恰当一些,但是很多课本都把它包括在定义中。某些作者要求集合M 非空。 —作为拓扑空间的度量空间 把度量空间处理为拓扑空间相容得几乎都成为定义的一部分了。 对于任何度量空间M 中的点x,我们定义半径r (>0) 的关于x 的开球为集合 。 这些开球生成在M 上的拓扑,使它成为拓扑空间。明显的,M 的子集被称为开集,如果它是(有限或无限多)开球的并集。开集的补集被称为闭集。以这种方式从度量空间引发的拓扑空间叫做可度量化空间 因为度量空间是拓扑空间,在度量空间之间有连续函数的概念。这个定义等价于平常的连续性的ε-δ定义(它不提及拓扑),并可以使用序列的极限直接定义。 开集 在拓扑学和相关的数学领域中,集合U被称为开集,如果在直觉上说,从U中任何一点x开始你可以在任何方向上稍微移动一下而仍处在集合U中。换句话说,在U中任何点x与U的边界之间的距离总是大于零。 例如,实数线上的由不等式规定的集合称为开区间,是开集。这时候的边界为实数轴上的点2和5,如由不等式,或者规定的区间由于包含其边界,因此不能称之为开集。 开集是指不包含自己边界点的集合。或者说,开集把它所包含的任何一点的充分小的邻域也包含在其自身之中。开集的概念一般与拓扑概念是紧密联系着的,通常先公理化开集,然后通过其定义边界的概念。

相关主题