搜档网
当前位置:搜档网 › 基于神经网络的感应电动机命令滤波反步控制

基于神经网络的感应电动机命令滤波反步控制

基于神经网络的感应电动机命令滤波反步控制
基于神经网络的感应电动机命令滤波反步控制

神经网络在PLC控制系统中的应用

神经网络在PLC控制系统中的应用 2010-11-11 18:30:00 来源:中国自动化网浏览:47 网友评论条点击查看 摘要:神经网络具有自学习、自调整、自适应能力。本文介绍了由PLC控制实现的神经网络PID自适应控制器。实验表明,该技术对于提高控制精度是行之有效的。具有在调速系统中推广应用的价值。 关键词:PLC;PID控制器;神经网络;直流调速系统 一、引言 虽然目前的交、直流传动系统都有较成熟的控制方案,采用线性PI或PID 调节器可以取得基本满意的控制效果。但是,常参数的PID调节器只对线形系统有效,它们的控制性能因为系统的非线性而降低。在电力传动系统中,虽可以建立电机模型,但是电机本身和负载的一些参数(如交流电机的转子电阻、拖动负载的转动惯量)是无法确定的、时变的。电气设备的机械饱和特性,开关的失控时间、控制延时都是不能精确建模的非线性因素。然而将模糊与神经网络技术引入电力传动系统设计智能控制器却可以很好地克服电力传动对象变参数、非线性等问题,大大提高系统的鲁棒性。引入模糊与神经网络技术的主要优点是不需要过程的复杂模型,而且适应性强,容易实现。 本文是将PID控制规律融进神经网络[3]之中,实现神经网络与PID控制规律的本质结合,共同完成PID自适应调节,并用PLC实现神经网络PID自适应控制,确保电力传动系统的控制精度和可靠性。 二、PID自适应控制器 常规PID控制算法为: (1) 用求和代替积分,微分用有限差分代替,即上式为: (2) 式中T为采样周期,KP是比例系数,KI=KP/TI是积分比例系数,KD=KPTD是微分比例系数。 根据上式,组成由两层线性神经网络构造的控制器,如图1所示。它是由比例、积分、微分三个单元组成的一种动态前向网络,各层神经元个数、连接方式、连接权值是按PID 控制规律的基本原则和已有的经验确定,能够保证系统的稳定和快速收敛。

自动化工程案例分析

《自动化工程案例分析》课程总结报告 时光如白驹过隙,转眼间,大学已经步入了第四年的光景。短暂的回眸,激荡起那一片片的涟漪,却才开始发现,案例分析,在我心中挥之不去,留下了难以磨灭的记忆。四位老师的倾情传授,为我们的大学生涯留下的不止是斑驳的光影,还有那一缕盘旋不去的温情。 四位老师给我们深入浅出地讲解了很多详细的实例,这些例子和我们所学的知识相互印证,加深了我们对专业知识的了解。也让我们对毕业后的工作方向有了一个更直观的认识,让我们更加有勇气,更加自信的面对即将到来的工作或者是研究生的学习生涯。 叶老师给我们演示的是“中石化某油库计量系统”。首先叶老师讲了背景:中国石化担负着保障国家能源安全的重要责任,一年的原油加工量约为亿吨,其中原油依赖进口,因此,如何降低原油的采购运输成本成为了影响企业生产经营效益的重要问题。原油运输大型化或者原油运输管道化已成为中国石化降低原油输送成本的主要手段。国外的油库管理中已经引入了先进的工业控制技术、网络技术、数据库技术等,对油库日常的收发油品作业、储油管理、油库监控系统等进行全方位的综合管理。而我国的油库自动化技术与国际先进水平相比还是有一定的差距。各种计量仪表的精度较低,稳定性较差,控制系统的控制精度比较低,信息化管理水平不够健全。我国的油库自动化控制和管理系统曾经历了一个较长的发展时期,各种系统操作方式各异,水平也参差不齐,其中还存在着许多人工开票、开阀、手动控泵的原始发油手段。这些系统一方面是可靠性不高,影响油库的经济效益另一方

面没有运用现代化信息技术使有关人员能够方便及时的了解现场的实时运行情况以及历史生产信息,不能为生产调度决策提供可靠的数据依据,同时也不利于提高整个企业的科学化管理水平。 自动化项目浏览: 油库监控自动化系统 原油调合自动化系统 选矿自动化系统 嵌入式项目浏览: 智能防溜系统 海关油气液体化工品物流监控系统 综合项目要求,从整个系统分析,我们需要: 自动化/嵌入式项目浏览 投标与方案 监控系统设计 监控系统调试 监控系统验收 项目管理 油库是储存和供应石油产品的专业性仓库,是协调原油生产和加工、成品油运输及供应的纽带。长期以来,我国油库数据采集工作中的许多操作都是采用人工作业的方式。一方面,不仅工作效率低,而且容易出现人为因素造成的失误另一方面,也不便于有关人员及时了解现场的实时运行情况,不利于提高企业的规范化管理水平。随着自动化

bp神经网络及matlab实现讲解学习

b p神经网络及m a t l a b实现

图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为: 图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ]

则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function ) 以上3个激活函数都属于线性函数,下面介绍两个常用的非线性激活函数。 (4) S形函数 ( Sigmoid Function ) 该函数的导函数:

模糊神经网络的预测算法在嘉陵江水质评测中的应用2

模糊神经网络的预测算法 ——嘉陵江水质评价 一、案例背景 1、模糊数学简介 模糊数学是用来描述、研究和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。 模糊数学中最基本的概念是隶属度和模糊隶属度函数。其中,隶属度是指元素μ属于模糊子集f的隶属程度,用μf(u)表示,他是一个在[0,1]之间的数。μf(u)越接近于0,表示μ属于模糊子集f的程度越小;越接近于1,表示μ属于f的程度越大。 模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。 2、T-S模糊模型 T-S模糊系统是一种自适应能力很强的模糊系统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如下的“if-then”规则形式来定义,在规则为R i 的情况下,模糊推理如下: R i:If x i isA1i,x2isA2i,…x k isA k i then y i =p0i+p1i x+…+p k i x k 其中,A i j为模糊系统的模糊集;P i j(j=1,2,…,k)为模糊参数;y i为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。 假设对于输入量x=[x1,x2,…,x k],首先根据模糊规则计算各输入变量Xj的隶属度。 μA i j=exp(-(x j-c i j)/b i j)j=1,2,…,k;i=1,2,…,n式中,C i j,b i j分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。 将各隶属度进行模糊计算,采用模糊算子为连乘算子。 ωi=μA1j(x1)*μA2j(x2)*…*μA k j i=1,2,…,n 根据模糊计算结果计算模糊型的输出值y i。 Y I=∑n i=1ωi(P i0+P i1x1+…+P i k xk)/ ∑n i=1ωi 3、T-S模糊神经网络模型 T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向量X I连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模

Workbench高级工程实例分析培训

Workbench高级工程实例分析培训 第1例:齿轮动态接触分析 该实例系统讲解模型的导入,接触设置,齿轮实现转动的方法和原理解释,并给学员演示空载荷负载作用下的齿轮结构的应力计算比较。 图1 斜齿轮接触的有限元模型 图2 动态接触过程中某一时刻的等效应力云图(空载)

图3 动态接触过程中某一时刻的等效应力云图(负载200N.m) 第2例:过盈装配结构分析 该实例会系统讲解过盈装配结构的应力分析方法。不同设置过盈量的计算结果比较和讨论设置过盈量的合理方法,摩擦系数,旋转速度对过盈装配应力的影响。 图4 过盈量为0.00005m时的等效应力(转速=0)图5 过盈量为0.00005m时的接触应力(转速=0)

图6 过盈量为0.00005m 时的等效应力(转速=4000) 图7 过盈量为0.00005m 时的接触应力(转速=4000) 第3例:液压阀结构的分析 该实例会讲解施加随空间变化的压力载荷和系统分析接触设置对求解的影响,并给出如何合理选取接触参数来实现较为准确的求解。 图8 变化压力载荷分布云图 图9 接触压力云图(摩擦系数=0.1,增强拉格朗日算法) 第4例:发动机活塞机构的多体动力学分析 该实例会讲解如何为多体设置驱动力和约束多体之间的运动关系的方法,并讲解柔性体的多体动力学分析和刚-柔耦合的多体动力学分析。

图10 0.12s时刻的等效应力云图(柔性体)图11 1.17s时刻的等效应力云图(柔性体) 图12 0.12s时刻的等效应力云图(刚-柔耦合)图13 1.17s时刻的等效应力云图(刚-柔耦合)第5例:薄壁结构的非线性屈曲分析 该实例会讲解如何在Workbench环境下完成薄壁结构的非线性屈曲分析并获得非线性屈曲载荷的方法,研究不同初始缺陷,弹塑性对非线性屈曲载荷的影响。

浅谈神经网络分析解析

浅谈神经网络 先从回归(Regression)问题说起。我在本吧已经看到不少人提到如果想实现强AI,就必须让机器学会观察并总结规律的言论。具体地说,要让机器观察什么是圆的,什么是方的,区分各种颜色和形状,然后根据这些特征对某种事物进行分类或预测。其实这就是回归问题。 如何解决回归问题?我们用眼睛看到某样东西,可以一下子看出它的一些基本特征。可是计算机呢?它看到的只是一堆数字而已,因此要让机器从事物的特征中找到规律,其实是一个如何在数字中找规律的问题。 例:假如有一串数字,已知前六个是1、3、5、7,9,11,请问第七个是几? 你一眼能看出来,是13。对,这串数字之间有明显的数学规律,都是奇数,而且是按顺序排列的。 那么这个呢?前六个是0.14、0.57、1.29、2.29、3.57、5.14,请问第七个是几? 这个就不那么容易看出来了吧!我们把这几个数字在坐标轴上标识一下,可以看到如下图形: 用曲线连接这几个点,延着曲线的走势,可以推算出第七个数字——7。 由此可见,回归问题其实是个曲线拟合(Curve Fitting)问题。那么究竟该如何拟合?机器不

可能像你一样,凭感觉随手画一下就拟合了,它必须要通过某种算法才行。 假设有一堆按一定规律分布的样本点,下面我以拟合直线为例,说说这种算法的原理。 其实很简单,先随意画一条直线,然后不断旋转它。每转一下,就分别计算一下每个样本点和直线上对应点的距离(误差),求出所有点的误差之和。这样不断旋转,当误差之和达到最小时,停止旋转。说得再复杂点,在旋转的过程中,还要不断平移这条直线,这样不断调整,直到误差最小时为止。这种方法就是著名的梯度下降法(Gradient Descent)。为什么是梯度下降呢?在旋转的过程中,当误差越来越小时,旋转或移动的量也跟着逐渐变小,当误差小于某个很小的数,例如0.0001时,我们就可以收工(收敛, Converge)了。啰嗦一句,如果随便转,转过头了再往回转,那就不是梯度下降法。 我们知道,直线的公式是y=kx+b,k代表斜率,b代表偏移值(y轴上的截距)。也就是说,k 可以控制直线的旋转角度,b可以控制直线的移动。强调一下,梯度下降法的实质是不断的修改k、b这两个参数值,使最终的误差达到最小。 求误差时使用累加(直线点-样本点)^2,这样比直接求差距累加(直线点-样本点) 的效果要好。这种利用最小化误差的平方和来解决回归问题的方法叫最小二乘法(Least Square Method)。 问题到此使似乎就已经解决了,可是我们需要一种适应于各种曲线拟合的方法,所以还需要继续深入研究。 我们根据拟合直线不断旋转的角度(斜率)和拟合的误差画一条函数曲线,如图:

(完整word版)深度学习-卷积神经网络算法简介

深度学习 卷积神经网络算法简介 李宗贤 北京信息科技大学智能科学与技术系 卷积神经网络是近年来广泛应用在模式识别、图像处理领域的一种高效识别算法,具有简单结构、训练参数少和适应性强的特点。它的权值共享网络结构使之更类似与生物神经网络,降低了网络的复杂度,减少了权值的数量。以二维图像直接作为网络的输入,避免了传统是被算法中复杂的特征提取和数据重建过程。卷积神经网络是为识别二维形状特殊设计的一个多层感知器,这种网络结构对于平移、比例缩放、倾斜和其他形式的变形有着高度的不变形。 ?卷积神经网络的结构 卷积神经网络是一种多层的感知器,每层由二维平面组成,而每个平面由多个独立的神经元组成,网络中包含一些简单元和复杂元,分别记为C元和S元。C元聚合在一起构成卷积层,S元聚合在一起构成下采样层。输入图像通过和滤波器和可加偏置进行卷积,在C层产生N个特征图(N值可人为设定),然后特征映射图经过求和、加权值和偏置,再通过一个激活函数(通常选用Sigmoid函数)得到S层的特征映射图。根据人为设定C层和S层的数量,以上工作依次循环进行。最终,对最尾部的下采样和输出层进行全连接,得到最后的输出。

卷积的过程:用一个可训练的滤波器fx去卷积一个输入的图像(在C1层是输入图像,之后的卷积层输入则是前一层的卷积特征图),通过一个激活函数(一般使用的是Sigmoid函数),然后加一个偏置bx,得到卷积层Cx。具体运算如下式,式中Mj是输入特征图的值: X j l=f?(∑X i l?1?k ij l+b j l i∈Mj) 子采样的过程包括:每邻域的m个像素(m是人为设定)求和变为一个像素,然后通过标量Wx+1加权,再增加偏置bx+1,然后通过激活函数Sigmoid产生特征映射图。从一个平面到下一个平面的映射可以看作是作卷积运算,S层可看作是模糊滤波器,起到了二次特征提取的作用。隐层与隐层之间的空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。对于子采样层来说,有N 个输入特征图,就有N个输出特征图,只是每个特征图的的尺寸得到了相应的改变,具体运算如下式,式中down()表示下采样函数。 X j l=f?(βj l down (X j l?1) +b j l)X j l) ?卷积神经网络的训练过程 卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入和输出之间的映射关系,而不需要任何输入和输出之间的精确数学表达式。用已知的模式对卷积网络加以训练,网络就具有了输

BP网络用于催化剂配方建模--MATLAB实例

BP 网络用于催化剂配方建模--MATLAB 实例 本例是《人工神经网络理论、设计及应用》(第二版)中BP 网络应用与设计的例子,现用MATLABF 仿真。 介绍:理论上已经证明,三层前馈神经网络可以任意精度逼近任意连续函数。本例采用BP 神经网络对脂肪醇催化剂配方的实验数据进行学习,以训练后的网络作为数学模型映射配方与优化指标之间的复杂非线形关系,获得了较高的精度。网络设计方法与建模效果如下: (1)网络结构设计与训练首先利用正交表安排实验,得到一批准确的实验数据作为神经网络的学习样本。根据配方的因素个数和优化指标的个数设计神经网络的结构,然后用实验数据对神经网络进行训练。完成训练之后的多层前馈神经网络,其输入与输出之间形成了一种能够映射配方与优化指标内在联系的连接关系,可作为仿真实验的数学模型。图3.28给出针对五因素、三指标配方的实验数据建立的三层前馈神经网络。五维输入向量与配方组成因素相对应,三维输出向量与三个待优化指标[脂肪酸甲脂转化率TR(%)、脂肪醇产率Y (%)和脂肪醇选择性S (%)]相对应。通过试验确定隐层结点数为4。正交表安排了18OH OH 组实验,从而得到18对训练样本。训练时采用了改进BP 算法: ) 1()(??+=?t W X t W αηδ(2)BP 网络模型与回归方程仿真结果的对比表3.3给出BP 网络配方模型与回归方程建立的配方模型的仿真结果对比。其中回归方程为经二次多元逐步回归分析,在一定置信水平下经过F 检验而确定的最优回归方程。从表中可以看出,采用BP 算法训练的多层前馈神经网络具有较高的仿真精度。

表3.3注:下标1表示实测结果,下标2表示神经网络输出结果,下标3表示回归方程 以下是具体操作: 编号A/Cu Z n/C u B/Cu C/Cu Mn/Cu T R1/% 1 T R2/% T R3/% Y OH 1/%Y OH 2/% Y OH 3/% S OH 1/% S OH 2/% S OH 3/% 10.050.130.080.140.0494.594.62 83.8396.3 96.56 95.9897.8 97.24 102.8320.0650.070.120.160.0288.05 88.0592.4375.575.97 76.5 86.586.68 79.6530.08 0.190.080.060.060.25 60.4382.0340.2141.4344.8796.2595.3681.9240.0950.110.060.160.0493.05 93.1194.3197.3196.29105.4399.3 99.39 103.0850.11 0.050.020.060.0294.65 94.7285.7988.5588.0677.8995.297.49 87.1260.1250.170.00.140.096.05 95.9697.0895.5 96.69 105.4399.599.52 104.7170.14 0.090.160.040.0461.00 61.1365.3959.7258.954.76 67.3569.1 73.52 80.1550.030.120.140.0270.40 70.3980.4437.5 41.83 46.3652.2551.3871.4590.17 0.150.10.040.083.383.32 70.2282.8580.4659.5 99.2 96.53 74.3 100.050.070.060.120.0584.585.27 70.2290.9 90.46 91.5195.997.87 92.75110.0650.190.040.020.0369.569.45 80.7761.865.03 55.2288.292.41 98.44120.08 0.130.00.120.0194.55 95.694.75 97.695.74 92.4499.697.93 101.65130.0950.050.160.020.0570.95 69.5192.8862.5460.452.5 60.162.63 68.12140.11 0.170.140.10.0387.287.16 78.6491.0 89.19 76.9299.899.36 92.22150.1250.110.10.00.0164.264.08 69.5958.359.12 54.0258.960.22 72.5 160.14 0.030.080.10.0586.15 86.1582.4 75.65 61.4329.9386.578.07 79.28170.1550.150.040.00.0377.15 77.1775.2371.971.72 83.9491.891.74 94.2318 0.17 0.090.020.080.0196.05 96 87.05 94.60 94.62 94.61 98.00 99.12 90.35

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

数控专业毕业论文选题

数控专业毕业论文选题 1、普通车床的数控化改造技术分析 2、对数控机床故障诊断的分析及研究 3、典型零件的数控加工工艺分析 4、车床工作台进给系统的结构分析 5、电脑外壳塑料模具设计 6、自车飞轮模具设计 7、简易立车自动回转刀架的设计 8、管内爬行机器人驱动机构设计 9、液压电梯闭式回路电液控制系统设计 10、带式运输机传动装置系统设计 11、气压传动机械手设计 12、零件的数控编程加工工艺流程 13、铣削组合机床及其主轴组件设计 14、数控机床的故障原因分析与处理 15、数控车床液压系统的设计分析 16、数控车床系统的故障诊断与维修 17、数控机床液压系统常见故障分析及诊断方法 18、数控机床控制及故障诊断系统分析与实现 19、数控机床机械加工效率的改进方法研究 20、数控机床维修的具体措施分析 21、数控机床维修改造中的问题与对策 22、试论数控机床的安装调试及维护 23、浅谈数控维修维修人才的培养 24、基于工艺特征的数控编程方法研究 25、数控机床变频器故障维修及解决方案 26、数控机床零件的加工工艺流程研究 27、数控机床中高速切削加工运用分析

28、浅析数控加工生产效率的运用 29、数控机床电气控制系统的PLC设计 30、数控机床排屑机构的改造与设计 31、PLC在数控机床电气控制方面的应用 32、数控机床改造中的弊端及应对措施 33、数控机床机床维修及保养 34、数控机床常见故障的基本处理及研究 35、基于PLC的数控机床电气控制系统分析 36、PLC应用技术在数控机床电气控制中的具体运用 37、基于PLC的数控机床电气控制 38、加工中心数控系统改造及维护应用 39、FANUC数控故障维修与保养 40、数控机床主轴系统实用案例分析 41、基于机器人数控技术的机械制造行业研究 42、机械模具数控加工制造技术分析 43、现代自动化机械制造中的数控技术应用 44、数控技术在机械加工技术中的探讨 45、数控机床中的电气控制系统故障及维护方法 46、数控技术在智能制造中的应用 47、数控刀具对数控加工工艺的影响分析 48、机械零件数控加工精度的方法 49、数控机械加工效率优化措施分析 50、UG软件对工程制图课及数控加工教学中的帮助运用 52、浅析数控加工生产效率的改进 53、一种数控加工自动上下料机械手的设计 54、人工智能在数控加工中的具体应用 55、机械数控加工技术水平的提高策略 56、基于UG带槽组合体的数控铣削加工研究 57、数控加工技术在机械模具制造中的具体应用

神经网络算法详解

神经网络算法详解 第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在https://www.sodocs.net/doc/8013146919.html,/wiki/Iris_flower_data_set 找到。这里简要介绍一下Iris数据集: 有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。 一种解决方法是用已有的数据训练一个神经网络用作分类器。 如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。 第一节、神经网络基本原理 1. 人工神经元( Artificial Neuron )模型 人工神经元是神经网络的基本元素,其原理可以用下图表示: 图1. 人工神经元模型 图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值( threshold ),或称为偏置( bias )。则神经元i的输出与输入的关系表示为:

图中yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数( Transfer Function ) ,net称为净激活(net activation)。若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为: 若用X表示输入向量,用W表示权重向量,即: X = [ x0 , x1 , x2 , ....... , xn ] 则神经元的输出可以表示为向量相乘的形式: 若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net 为负,则称神经元处于抑制状态。 图1中的这种“阈值加权和”的神经元模型称为M-P模型 ( McCulloch-Pitts Model ),也称为神经网络的一个处理单元( PE, Processing Element )。 2. 常用激活函数 激活函数的选择是构建神经网络过程中的重要环节,下面简要介绍常用的激活函数。 (1) 线性函数 ( Liner Function ) (2) 斜面函数 ( Ramp Function ) (3) 阈值函数 ( Threshold Function )

人工神经网络BP算法简介及应用概要

科技信息 2011年第 3期 SCIENCE &TECHNOLOGY INFORMATION 人工神经网络是模仿生理神经网络的结构和功能而设计的一种信息处理系统。大量的人工神经元以一定的规则连接成神经网络 , 神经元之间的连接及各连接权值的分布用来表示特定的信息。神经网络分布式存储信息 , 具有很高的容错性。每个神经元都可以独立的运算和处理接收到的信息并输出结果 , 网络具有并行运算能力 , 实时性非常强。神经网络对信息的处理具有自组织、自学习的特点 , 便于联想、综合和推广。神经网络以其优越的性能应用在人工智能、计算机科学、模式识别、控制工程、信号处理、联想记忆等极其广泛的领域。 1986年 D.Rumelhart 和 J.McCelland [1]等发展了多层网络的 BP 算法 , 使BP 网络成为目前应用最广的神经网络。 1BP 网络原理及学习方法 BP(BackPropagation 网络是一种按照误差反向传播算法训练的多层前馈神经网络。基于 BP 算法的二层网络结构如图 1所示 , 包括输入层、一个隐层和输出层 , 三者都是由神经元组成的。输入层各神经元负责接收并传递外部信息 ; 中间层负责信息处理和变换 ; 输出层向 外界输出信息处理结果。神经网络工作时 , 信息从输入层经隐层流向输出层 (信息正向传播 , 若现行输出与期望相同 , 则训练结束 ; 否则 , 误差反向进入网络 (误差反向传播。将输出与期望的误差信号按照原连接通路反向计算 , 修改各层权值和阈值 , 逐次向输入层传播。信息正向传播与误差反向传播反复交替 , 网络得到了记忆训练 , 当网络的全局误差小于给定的误差值后学习终止 , 即可得到收敛的网络和相应稳定的权值。网络学习过程实际就是建立输入模式到输出模式的一个映射 , 也就是建立一个输入与输出关系的数学模型 :

数据分析师面试常见的77个问题

数据分析师面试常见的77个问题 2013-09-28数据挖掘与数据分析 随着大数据概念的火热,数据科学家这一职位应时而出,那么成为数据科学家要满足什么条件?或许我们可以从国外的数据科学家面试问题中得到一些参考,下面是77个关于数据分析或者数据科学家招聘的时候会常会的几个问题,供各位同行参考。 1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。 2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的? 3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则? 4、什么是:协同过滤、n-grams, map reduce、余弦距离? 5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库? 6、如何设计一个解决抄袭的方案? 7、如何检验一个个人支付账户都多个人使用? 8、点击流数据应该是实时处理?为什么?哪部分应该实时处理? 9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在

所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好? 10、什么是概率合并(AKA模糊融合)?使用SQL处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言? 11、你是如何处理缺少数据的?你推荐使用什么样的处理技术? 12、你最喜欢的编程语言是什么?为什么? 13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。 14、SAS, R, Python, Perl语言的区别是? 15、什么是大数据的诅咒? 16、你参与过数据库与数据模型的设计吗? 17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法? 18、你喜欢TD数据库的什么特征? 19、如何你打算发100万的营销活动邮件。你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗? 20、如果有几个客户查询ORACLE数据库的效率很低。为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出? 21、如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文本文件是否比存成关系数据库更好? 22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少? 23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡? 24、请举例说明mapreduce是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些? 25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价? 26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法? 27、你处理过白名单吗?主要的规则?(在欺诈或者爬行检验的情况下) 28、什么是星型模型?什么是查询表?

神经网络详解

一前言 让我们来看一个经典的神经网络。这是一个包含三个层次的神经网络。红色的是输入层,绿色的是输出层,紫色的是中间层(也叫隐藏层)。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。后文中,我们统一使用这种颜色来表达神经网络的结构。 图1神经网络结构图 设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定; 神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别; 结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。 除了从左到右的形式表达的结构图,还有一种常见的表达形式是从下到上来

表示一个神经网络。这时候,输入层在图的最下方。输出层则在图的最上方,如下图: 图2从下到上的神经网络结构图 二神经元 2.结构 神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。 下图是一个典型的神经元模型:包含有3个输入,1个输出,以及2个计算功能。 注意中间的箭头线。这些线称为“连接”。每个上有一个“权值”。

图3神经元模型 连接是神经元中最重要的东西。每一个连接上都有一个权重。 一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。 我们使用a来表示输入,用w来表示权值。一个表示连接的有向箭头可以这样理解: 在初端,传递的信号大小仍然是a,端中间有加权参数w,经过这个加权后的信号会变成a*w,因此在连接的末端,信号的大小就变成了a*w。 在其他绘图模型里,有向箭头可能表示的是值的不变传递。而在神经元模型里,每个有向箭头表示的是值的加权传递。 图4连接(connection) 如果我们将神经元图中的所有变量用符号表示,并且写出输出的计算公式的话,就是下图。

介绍遗传算法神经网络

课程设计作业——翻译 课题:介绍遗传算法神经网络 穆姣姣 0808490233 物流08-班

介绍遗传算法神经网络 理查德·坎普 1. 介绍 一旦一个神经网络模型被创造出来,它常常是可取的。利用这个模型的时候,识别套输入变量导致一个期望输出值。大量的变量和非线性性质的许多材料模型可以使找到一个最优组输入变量变得困难。 在这里,我们可以用遗传算法并试图解决这个问题。 遗传算法是什么?遗传算法是基于搜索algo-rithms力学的自然选择和遗传观察到生物的世界。他们使用两个方向(\适者生存”),在这种条件下,探索一个强劲的功能。重要的是,采用遗传算法,这不是必需要知道功能的形式,就其输出给定的输入(图1)。 健壮性我们这么说是什么意思呢?健壮性是效率和效能之间的平衡所使用的技术在许多不同的环境中。帮助解释这个问题,我们可以比其他搜索和优化技术,如calculus-based,列举,与随机的求索。 方法Calculus-based假设一个光滑,无约束函数和要么找到点在衍生为零(知易行难)或者接受一个方向梯度与当地日当地一所高中点(爬山)。研究了这些技术已经被重点研究、扩展、修改,但展现自己缺乏的鲁棒性是很简单的。 考虑如图2所示的功能。利用Calculus-based在这里发现极值是很容易的(假定派生的函数可以发现…!)。然而,一个更复杂的功能(图3)显示该方法是当地——如果搜索算法,在该地区的一个开始,它就会错过低高峰目标,最高的山峰。 图1 使用网络神经算法没必要知道它的每一项具体功能。 一旦一个局部极大时,进一步改进需要一个随机的重启或类似的东西。同时,假设一个函数光滑,可导,并明确知道很少尊重现实。许多真实世界充满了间断模型和设置在嘈杂的多通道搜索空间(图4)。 虽然calculus-based方法在某些环境中至非常有效的,但内在的假

神经网络控制修订稿

神经网络控制 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量

神经网络与遗传算法

5.4 神经网络与遗传算法简介 在本节中,我们将着重讲述一些在网络设计、优化、性能分析、通信路由优化、选择、神经网络控制优化中有重要应用的常用的算法,包括神经网络算法、遗传算法、模拟退火算法等方法。用这些算法可以较容易地解决一些很复杂的,常规算法很难解决的问题。这些算法都有着很深的理论背景,本节不准备详细地讨论这些算法的理论,只对算法的原理和方法作简要的讨论。 5.4.1 神经网络 1. 神经网络的简单原理 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。所以说, 人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作出状态相应而进行信息处理。它是根据人的认识过程而开发出的一种算法。假如我们现在只有一些输入和相应的输出,而对如何由输入得到输出的机理并不清楚,那么我们可以把输入与输出之间的未知过程看成是一个“网络”,通过不断地给这个网络输入和相应的输出来“训练”这个网络,网络根据输入和输出不断地调节自己的各节点之间的权值来满足输入和输出。这样,当训练结束后,我们给定一个输入,网络便会根据自己已调节好的权值计算出一个输出。这就是神经网络的简单原理。 2. 神经元和神经网络的结构 如上所述,神经网络的基本结构如图5.35所示: 隐层隐层2 1 图5.35 神经网络一般都有多层,分为输入层,输出层和隐含层,层数越多,计算结果越精确,但所需的时间也就越长,所以实际应用中要根据要求设计网络层数。神经网络中每一个节点叫做一个人工神经元,他对应于人脑中的神经元。人脑神经元由细胞体、树突和轴突三部分组成,是一种根须状蔓延物。神经元的中心有一闭点,称为细胞体,它能对接受到的信息进行处理,细胞体周围的纤维有两类,轴突是较长的神经纤维,是发出信息的。树突的神经纤维较短,而分支众多,是接收信息的。一个神经元的轴突末端与另一神经元的树突之间密

实验1分类预测模型_神经网络

实验1分类预测模型——神经网络 一、实验目的 1.了解和掌握神经网络的基本原理。 2.熟悉一些基本的建模仿真软件(比如SPSS、Matlab等)的操作和使用。 3.通过仿真实验,进一步理解和掌握神经网络的运行机制,以及其运用的场景,特别是在 分类和预测中的应用。 二、实验环境 PC机一台,SPSS、Matlab等软件平台。 三、理论分析 神经网络起源于生物神经元的研究,其研究的主要对象是人脑。人脑是一个高度复杂的、非线性的、并行处理系统,其中大约有1011个称为神经元的微处理单元。这些神经元之间互相连接,连接数目高达1015.人脑具有联想、推理、判决、和决策的能力,对人脑活动机理的研究一直是一种挑战。通常认为,人脑智能的核心在于其连接机制,即有大量简单处理单元(神经元)的巧妙连接,使得人脑称为一个高度复杂的大规模非线性自适应系统。人工神经网络(Artificial Neural Network, ANN)是一种人脑的抽象计算模型,是一种人脑思维的计算机建模方式。 神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则跟据网络的连接方式、权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 神经网络需要很长的训练时间,对于足够长的训练时间的应用更合适。同时,还需要大量的参数,通常主要靠经验确定,如网络拓扑或结构。神经网络常常因其可解释性差而受到批评。例如,人们很难解释网络中学习的权重和“隐藏单元”的符号含义。 然而,神经网络的优点包括其对噪声数据的高承受能力,以及对未经训练的数据的模式分类能力。因此,在缺乏属性与分类之间联系的知识时,仍然可以使用神经网络。而且,神经网络非常适合连续值的输入和输出,这是大多数决策树算法所不能比拟的。神经网络的算法是固有并行的,我们可以使用并行技术加快计算过程。 人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。人工神经网络具有四个基本特征:

数学建模bp神经网络讲解学习

数学建模B P神经网 络论文

BP 神经网络 算法原理: 输入信号i x 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号k y ,网络训练的每个样本包括输入向量x 和期望输出量d ,网络输出值y 与期望输出值d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值ij w 和隐层节点与输出节点之间的联接强度jk T 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 变量定义: 设输入层有n 个神经元,隐含层有p 个神经元,输出层有q 个神经元 输入向量:()12,, ,n x x x x = 隐含层输入向量:()12,,,p hi hi hi hi = 隐含层输出向量:()12,,,p ho ho ho ho = 输出层输入向量:()12,,,q yi yi yi yi = 输出层输出向量:()12,,,q yo yo yo yo = 期望输出向量: ()12,, ,q do d d d = 输入层与中间层的连接权值: ih w 隐含层与输出层的连接权值: ho w 隐含层各神经元的阈值:h b 输出层各神经元的阈值: o b 样本数据个数: 1,2, k m =

激活函数: ()f ? 误差函数:21 1(()())2q o o o e d k yo k ==-∑ 算法步骤: Step1.网络初始化 。给各连接权值分别赋一个区间(-1,1)内的随机数,设定误差函数e ,给定计算精度值ε和最大学习次数M 。 Step2.随机选取第k 个输入样本()12()(),(), ,()n x k x k x k x k =及对应期望输出 ()12()(),(),,()q d k d k d k d k =o Step3.计算隐含层各神经元的输入()1 ()()1,2, ,n h ih i h i hi k w x k b h p ==-=∑和输出 ()()(())1,2, ,h h ho k f hi k h p ==及输出层各神经元的输入 ()1 ()()1,2, p o ho h o h yi k w ho k b o q ==-=∑和输出()()(())1,2, ,o o yo k f yi k o p == Step4.利用网络期望输出和实际输出,计算误差函数对输出层的各神经元的偏导数()o k δ。 o ho o ho yi e e w yi w ???=??? (()) () ()p ho h o o h h ho ho w ho k b yi k ho k w w ?-?==??∑ 2 1 1((()()))2(()())()(()())f (()) () q o o o o o o o o o o o o d k yo k e d k yo k yo k yi yi d k yo k yi k k δ=?-?'==--??'=---∑ Step5.利用隐含层到输出层的连接权值、输出层的()o k δ和隐含层的输出计算误差函数对隐含层各神经元的偏导数()h k δ。

相关主题