搜档网
当前位置:搜档网 › 天然气管道泄漏爆炸后果的定量分析

天然气管道泄漏爆炸后果的定量分析

天然气管道泄漏爆炸后果的定量分析
天然气管道泄漏爆炸后果的定量分析

天然气管道泄漏爆炸后果的定量分析

张冀东

(包头市经纬安全技术咨询有限责任公司,内蒙古包头 014010)

摘 要:天然气管道泄露可能引发多种事故,其中爆炸可能引起人员伤亡,设备财产损失,后果严重。以蒸气云爆炸模型,对某段天然气管道泄漏发生爆炸的后果进行模拟,为天然气管道定性定量评价提供参考依据。

关键词:天然气管道;泄漏;蒸气云爆炸模型

中图分类号:T E973.9+

9 文献标识码:A 文章编号:1006—7981(2012)14—0066—02 随着天然气的广泛应用,管道工业的发展如火如荼,近几年“西气东输”等重大工程,更是凸显了天然气管道的重要性。与此同时,由于管龄增长、管道本质缺陷、管线腐蚀、管线附近违章施工等原因导致天然气管道破裂、泄漏事故时有发生,不仅造成资源浪费、环境污染,还可能造成引发火灾、爆炸等重大事故。本文以某段天然气管道为例以蒸气云爆炸事故模拟分析天然气管道泄漏后事故后果。

某段天然气管道管道长500km,直径为450mm,设计压力6.4MPa,工作压力4MPa,日输送量约为360万立方米。1 泄漏量计算

当管道发生泄漏的开口事规则的,而且裂口尺寸及泄漏物质的有关热力学、物理化学性质及参数已知时,可根据流体力学中油罐方程式计算泄漏量。当裂口不规则时,可采取等效尺寸代替。当遇到泄漏过程中压力变化等情况时,往往采用经营公式计算。根据管道泄漏模型,由于气体从裂口泄漏速度与其流动状态有关,因此计算泄漏量时首先要判断泄漏时气体流动属于音速还是亚音速,前者称为临界流,后者称为次临界流。

p o p [2k+1]k k-1

(1)

p o p >[2k+1]

k k-1(2)

p ——管道内介质设计压力,Pa ;p =4MPa p 0——环境压力,Pa;p 0=0.101MPa

——气体的绝热指数,即比定压热容与比定容热容之比;=。

当式(1)成立时,气体流动属音速流动;式(2)成立时,气体流动属亚音速流动。

P 0

P

=0.1014=0.02525<[2

k+1

] 1.41.4-1=[

21.4+1

] 1.

4

1.4-1=0.528

因此管道中天然气泄漏时的气体流动属于音速

流动,气体泄漏速度为:

Q 0

=C d Ap

Mk RT [2k+1

]k+

1k-1

(3)

Q 0——泄漏速度,kg /s 。Cd ——气体泄漏系数,当裂口形状圆形时取1.00,三角形时取0.95,长方形时取0.90。

M ——天然气平均分子量;M=16.769——气体密度,kg/m 3

;标=0.717g/L =0.717kg /m 3(标准状况下)

R ——气体常数,J/(mol K);R=8.315

T ——气体温度,K;气体温度按常温度计算,取

T =25℃=298K;

A ——裂口面积,m 2

;

泄漏事故规模通常划分为小型、中型、大型及特大型几个等级。本项目只考虑小型、中型和大型泄漏事故作为评价对象。

(1)小型泄漏事故:管路系统出现孔径为30mm

的泄漏孔,连续泄漏;

(2)中型泄漏事故:管路系统出现孔径为90mm 的泄漏孔,连续泄漏;

(3)大型泄露事故管路系统出现孔径为5的泄漏孔,连续泄漏;

66

内蒙古石油化工 2012年第14期 

收稿日期k cp cv k 1.4:10mm :2012-04-22

液化天然气LNG储运罐车泄漏应急处置技术与方法

液化天然气(LNG)储运罐车泄漏应急处置技术与方法 2015-06-18天然气汽车产业资讯天然气汽车产业资讯1、LNG储运罐车的结构 特征以及事故特点 LNG是液化天然气的简称,LNG的主要成分是甲烷,它是天然气经过净化(脱水、脱烃、脱酸性气体)后,采用节流、膨胀和外加冷源制冷的工艺使甲烷变成液体 而形成的。由于LNG的体积约为其气态体积的1/600,LNG的重量又仅为同体积水的45%左右,所以LNG一旦发生大量泄漏就能迅速与空气混合达到爆炸极限。LNG储运罐车液罐目前均为真空粉末绝热卧式夹套容器,双层结构,由内胆和外壳套合而成。内外罐连接采用玻璃钢支座螺栓紧固连接,后支座为固定连接,前支座为滑动连接,以补偿温度变化引起罐体伸缩。夹套内填装膨胀珍珠岩并抽真空,加排管、排气管等由内容器引出,经真空夹套引至外壳后底与管路操作系统相连接,液罐通过U形副梁固定在汽车底盘上。 LNG运输罐车常见事故类型可分为翻车、碰撞,剐擦、追尾等4类。其中,翻车、碰撞和追尾事故在所有类型道路的储运罐车事故中均占较高比例,通常对罐体及其尾部阀门会直接造成严重破坏,致使泄漏概率最高。由于储运罐车的结构与制作材料特殊,特别是其外层保护壳体与环梁大多由具有很高抗压强度的碳钢材料构成,一般情况下,外壳体的破损、断裂情况事故很少。目前,各种信息显示国内外还没有此类情况发生,绝大部分事故均为罐体外壳的各种气相管与装置管道、安全装置与连接处的断裂与泄漏。 2、LNG储运罐车泄漏后果分析 2. 1气化超压爆炸 当外来的热量传入储运罐车时会导致LNG温度上升气化,使罐内压力升高,瞬 间产生大量气体,当罐内压力上升速度超过泄压装置的排泄速度后,罐体将可能产生物理性爆炸。 2. 2 LNG冷爆炸 在LNG泄漏遇到水的情况下,LN G会从水中迅速吸收热量,因为水与LNG之间有非常高的热传递速率,导致气体瞬间膨胀,LNG将激烈地沸腾并伴随大的响声、喷出水雾,导致LNG冷爆炸。 火灾2. 3 LNG. LNG与空气或氧气混合后,能形成爆炸性混合气体,与火源发生预混(动力)燃烧。 2. 4对人的低温冻伤 由于LNG的温度为-162℃,是深冷液体,皮肤直接与低温物体表面接触,皮肤

燃气事故案例分析

事故案例分析 一、事故原因: 根据事故现场爆炸威力和人员伤亡的数量判断:南京市栖霞区已停产的原南京第四塑料厂曾经使用过燃气,发生燃气泄漏爆炸,并引发大火。初步判断有以下几个方面的原因: 原南京第四塑料厂停产后,燃气公司没有将过去使用的燃气管道拆除,也没有将管道内的燃气进行置换,更没有对管道进行维修和维护,也没有关闭上游管道上的阀门,管道年久腐蚀造成大量的泄漏,巡检人员也没有及时发现燃气泄漏,泄漏的大量燃气遇明火或者静电产生爆炸,威力强大的冲击波将厂房炸毁,将附近人员炸死炸伤。二、应急处理: 在边救援的同时,成立现场救援指挥部,按照南京市和燃气公司各自制定的《事故应急救援预案》进行抢险,事发地点应拉起警戒线,防止无关人员进入,消防部门负责灭火,安全监督管理部门、公安、燃气公司等部门成立事故调查组,负责事故原因的调查,工作人员服从指挥部的命令,及时采取措施,关闭上游燃气阀门、临时断电、及时疏散事发地附近周边居民等措施,防止事态进一步扩大;并防止次生灾害的发生。 三、事故影响: 从事故造成的人员伤亡、厂房破坏、以及经济损失来看,对燃气公司的安全管理工作提出质疑,对南京市栖霞区的公供安全值得怀

疑,对事发地点及周边居民的正常生活秩序、居住环境造成了不同程度的影响,甚至在一定程度上影响了人们对燃气安全的否定。 四、事故预防措施: (一)、利用多种媒体形式立即开展一次安全用气知识宣传,加强自我保护意识,发现有燃气泄漏及时报告燃气公司。 (二)、加强输气干线的管理,加大巡检力度和隐患排查,发现有泄漏的地方及时修复,防止出现管网设施损坏漏气事故。 (三)、在管道上游安装安全切断阀,确保安全。 (四)、遇到停产停业的燃气用户,将上游的阀门关闭,对不用的燃气管道进行置换,或者拆除,确保安全。

1事故类型和危害程度分析

1事故类型和危害程度分析 在进行机组检修、设备改造、消缺维护等工作时,由于安全生产管理出现漏洞,安全技术措施不完备,危险点分析和控制措施执行不到位,员工安全意识不强,自我保护不够,违章作业,劳动保护设施不完善,设备存在装置性违章等原因,均可能导致人身伤害事故的发生,一般有以下类型: (1)被火焰、化学品等干热烧伤; 被沸水、沸汤、蒸汽烫伤; (2)因缺氧导致窒息; (3)高空作业时坠落; (4)运输机械翻车、撞击等交通事故; (5)落水淹溺; (6)建筑物坍塌砸伤或掩埋窒息; (7)高空落物、机械起吊重物砸伤。 2应急处置基本原则 救治原则是及时报告、现场抢救、专业救治、严防感染。 3应急组织机构及其职责 3.1应急组织机构的组成

3.1.1最初应急救援小组 组长:当值值长2500 副组长:当班班长 成员:当班值班人员 3.1.2职责: 3.1.2.1在发生人身伤害事件后,值长或班长根据伤害程度、原因及时切断事故源,了解受伤程度后汇报运行处领导,同时采取现场急救措施,由运行处领导安排成立现场应急指挥部,批准现场救援方案,组织现场抢救。 3.1.2.2立即按本预案规定程序,组织力量对现场进行事故处理,根据现场人员受伤程度确定预案级别。 3.1.2.3负责向公司报告事故及处理的进展情况。 3.1.2.4应急状态消除,宣告应急行动结束。 3.2 指挥机构及职责 见《山西鲁能河曲发电公司突发事件总体应急预案》。 4人身伤害事故的预防和预警 4.1预防

4.1.1 严格执行《电业安全工作规程》、《消防规程》、《运行 规程》、《检修规程》 ; 认真执行“两措”计划, 落实资金、责任部门和完成日期。 4.2 预警 4.2.1 应急预案的启动 (1) 事故发生后由当值值长立即向运行处长汇报,由运行处长根 据情 况, 发布命令启动执行本应急预案。 运行处长向主管的二级单位 运行应急组首先下达应急预案启动令, 运行应急组应立即在运行范围 内,紧急启动本预案,各就各位,组织事故的应急处理。 (2) 运行处长汇报公司领导,通知并组织所辖部门紧急启动本预 案,各 单位人员接到命令后,迅速安排本部门人员各就各位。 (3) 车辆值班调度接到报警电话后,综合处应立即安排驾驶员紧 急出 车,驾驶员接到调度命令后,必须立即将救护车开至事发现场。 4.2.2 应对 4.2.2.1 烧伤及烫伤的应对 4.1.2 认真执行工作票制度及危险点分析和预控措施 4.1.3 认真落实作业安全技术措施 ; 4.1.4 作业人员应穿合适的工作服和使用合格的劳保防护用品 4.1.5 认真开展安全大检查,及时消除安全隐患 4.1.6

LNG场站事故案例

一、事故案例 11月24日晚上8时许,杨凌一天然气公司设备闪爆起火,据目击者拍摄的视频显示,事发现场浓烟滚滚,并伴有火光。 据朱先生讲,他住在距离事发现场几公里外的地方,都能看到火光。 昨晚10时许,华商报记者从杨凌示范区公安消防支队了解到,事发的是陕西液化天然气发展投资有限公司,LNG加注站厂区内一处设备发生闪爆,引起管道保温层着火,消防官兵及十多辆消防车赶到现场扑救。 昨晚11时,华商报记者赶到事发现场,距离事发地点2公里的地方拉起了警戒线。记者进入现场看到,数辆消防车仍停在厂区门外,厂区内消防官兵正在对着一处管道喷水。 随后,华商报记者从杨凌示范区管委会官方网站获悉,11月24日晚8时50分许,陕西液化天然气LNG加注站发生管道轻微液体泄露,并起火引燃管道外保温材料。事故发生后,该加注站已关闭液化天然气管道。事故造成两人轻伤,现场明火已经扑灭,该加注站所在的杨凌示范区已启动紧急预案,杨凌示范区党工委管委会有关负责

人、示范区消防、公安、安监,杨陵区相关职能部门负责人已在现场开展处置工作。 目前,事故原因和财产损失仍在进一步调查之中。华商记者杨皓刘军伟 (新闻来源于:华商网) 二、事故原因分析 因事故突发,目前事故具体的原因还在进一步调查当中。从本次案例的新闻报道可知,这次LNG加注站发生设备闪爆起火的主要原因为:液化天然气LNG加注站管道泄漏,闪爆起火,引燃管道外保温材料。而结合以往的天然气加气站发生的同类事故分析,引起管道泄漏的原因主要有:长期运行的管道出现的腐蚀穿孔泄漏;管道法兰密封失效导致的泄漏;冬季管道冻裂引起的泄漏及生产作业时工况的波动引起管道振动导致管道泄漏等等。而从易燃易爆气体发生火灾爆炸的三条件分析,LNG加注站存在LNG泄漏;与空气混合聚集达到气体爆炸极限;处在引火源,其中在冬季,引火源无处不在,静电、作业流速,明火等等,从而满足着火爆炸三条件,引起了这次燃气闪爆火灾事故。同时,生产安全管理体系不完善,缺失;操作人员的安全意识和操作技能薄弱,应急处置能力等也是极易引起安全事故的原

论文-天津港爆炸事故后果分析

化学品爆炸后果分 析 —以天津港爆炸为例

前言 本报告通过对天津港爆炸事故现场数据以及现场爆炸情况、范围的收集,应用事故调查分析的方法,通过模拟计算来分析天津港爆炸事故的后果。本报告说明了了事故经过、原因、人员伤亡和直接经济损失,认定了事故性质,提出了对有关责任人员和责任单位的处理建议,分析了事故暴露出的突出问题和教训,提出了加强和改进工作的意见建议。

2015年8月12日,位于天津市滨海新区天津港的瑞海国际物流有限公司(以下简称瑞海公司)危险品仓库发生特别重大火灾爆炸事故。通过反复的现场勘验、检测鉴定、调查取证、模拟实验、专家论证,查明了事故经过、原因、人员伤亡和直接经济损失,认定了事故性质和责任,提出了对有关责任人员和责任单位的处理建议,分析了事故暴露出的突出问题和教训,提出了加强和改进工作的意见建议。 调查认定,天津港“8·12”瑞海公司危险品仓库火灾爆炸事故是一起特别重大生产安全责任事故。 一、事故基本情况 (一)事故发生的时间和地点。 2015年8月12日22时51分46秒,位于天津市滨海新区吉运二道95号的瑞海公司危险品仓库(北纬39°02′22.98″,东经117 °44′11.64″。地理方位示意图见图1)运抵区(“待申报装船出口货物运抵区”的简称,属于海关监管场所,用金属栅栏与外界隔离。由经营企业申请设立,海关批准,主要用于出口集装箱货物的运抵和报关监管)最先起火,23时34分06秒发生第一次爆炸,23时34分37秒发生第二次更剧烈的爆炸。事故现场形成6处大火点及数十个小火点,8 月14日16时40分,现场明火被扑灭。 (二)事故现场情况。 事故现场按受损程度,分为事故中心区(航拍图见图2)、爆炸冲击波波及区。事故中心区为此次事故中受损最严重区域,该区域东至跃进路、西至海滨高速、南至顺安仓储有限公司、北至吉运三道,面积约为54万平方米。两次爆炸分别形成一个直径15米、深1.1米的月牙形小爆坑和一个直径97米、深2.7米的圆形大爆坑。以大爆坑为爆炸中心,150米范围内的建筑被摧毁。

燃气行业安全事故案例分析201510

2015年10月份燃气行业 安 全 事 故 案 例 分 析

河南天伦燃气集团有限公司 二零一五年十月三十日 冬季燃气安全宣传 本月以居民用气导致的燃气泄漏事故较多,其中由于燃气泄漏导致泄漏、爆炸事件有6起。即将进入冬季,燃气安全事故的多发季节。所以要求我们做好燃气安全宣传工作,同时做好入户安检工作,入户安检中要按照安检单中的检查项,逐项细致检查。加强燃气企业安全管理的同时,提醒广大居民积极学习了解燃气法规,掌握安全用气知识,提高安全意识,养成安全用气的良好习惯,确保燃气使用安全。 使用天然气要注意什么? 用气厨房要保持通风状态,由于冬季室外气温较低,市民的开窗通风和室外活动明显减少,容易形成封闭用气空间,一旦发生泄露,燃气不易散发,当气体聚集达到一定浓度之后,遇火星易产生爆燃事故;使用天然气的时候,厨房最好不要离人,防止因为用小火时被风吹灭造成天然气泄露或者油溅出造成火灾;用气完毕之后一定要关紧灶前阀及燃具阀门或者开关,并且夜间休息要将厨房门关闭,防止燃气泄漏扩散到客厅和房间,对于长期不在家的客户,要将表前入户总阀(也称球阀)关闭。 如何给自家燃气设备做“体检”? 第一,可使用肥皂水涂抹燃气管道各接口位置,如果有鼓泡则说明有漏气,切不可用明火检测;第二,如果闻到家中有燃气臭味或确定家中有明显的燃气泄漏时,请立即熄灭火源,关闭燃气阀门,并打开窗户,切记不要启用家中任何电器开关;第三,注意燃气设施的使用年限及标准,燃具的正常使用寿命是8年,橡胶软管容易老化,使用两年需要更换,对于有老鼠或者蚁虫的房子,要特别注意检查胶管是否有被老鼠咬过的痕迹,专家建议选用具有抗鼠(害虫)咬、耐高温、抗腐蚀、安全性能更高的金属软管代替橡胶软管。 天然气泄漏如何应急处理? 当室内天然气泄露时,首先应关闭进户阀门切断气源,在室外安全处拨打燃气公司服务热线,采用安全措施开启门窗,降低空气中天然气的浓度,禁止开关任何电器和使用电话、门铃等电器设备,防止电火花产生。若发现邻居家天然气泄露,

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT 当量。 蒸气云爆炸的TNT 当量W TNT 计算式如下: W TNT =×α×W f ×Q f /Q TNT 式中,W TNT —蒸气云的TNT 当量(kg) α—蒸气云的TNT 当量系数,正己烷取α=; W f —蒸气云爆炸中烧掉的总质量(kg) Q f —物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg ,参与爆炸的正己烷按最大使用量792kg 计算,则爆炸能量为×109J 将爆炸能量换算成TNT 当量q ,一般取平均爆破能量为×106J/kg ,因此 W TNT = ×α×W f ×Q f /q TNT + =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 1,外径记为R 2,代表该处 0.37 0.37 1420.4313.613.610001000TNT W R ?? ??== ? ??? ??

人员因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa 。冲击波超压P ?按下式计算: P ?=++式中: P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R 2,外径R 3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值 超压为17000Pa 。冲击波超压P ?按下式计算: P ?=++P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R 3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m 。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K ——取值为5. 6 6 /121/3TNT 431751??? ???? ?? ?????+= TNT W KW R 0440********.434 101325P P ?===2 1 3 0R Z E P =?? ? ?? 01700017000 0.168101325P P ?===313 0R Z E P =?? ???

液化天然气安全事故案例

事故1 2000.2.19天然气燃爆事故案例 2000年2月19日零时06分,三力工业集团分公司发生地下废弃天然气管线爆炸事故,造成15人死亡,56人受伤,其中重伤13人,直接经济损失342.6万元。 一、企业概况 三力工业集团分公司是由三力工业集团1998年8月,在文留镇第二化工厂原厂址上独资建设的高硼硅玻璃企业,有三个车间,设有安全科、生产科等9个科室,其中发生爆炸的三车间共有职工128人,分三班运转。 该公司第三车间位于生产区的东部。三车间共有5#、6#两座玻璃炉窑,4座退火炉设计规模为年产8000吨玻璃拉管。每座炉窑建有四条玻璃拉管生产线,有蓄热室、工作池、料道、风机、燃烧系统、电熔化等部门组成;其炉窑所需热能来源于燃烧系统和电熔化两部分产生的热量。燃烧系统由供风系统和低压天然气(0.05Mpa)系统组成,车间用电为常规用电和电熔化用电。车间在5#、6#炉南侧有一条东西走向,长27.6米、深1.53米、宽1.23米的主电缆沟。在5#、6#炉中间有一条南北走向,长15.8米、深1.52米、宽0.96米的电缆沟。东西与南北电缆沟相连接,连接处有一个1.2米*0.73米的人孔。整个电缆沟上覆盖30厘米厚的水泥现浇层地面,共有北、中、西3个人孔。 在第三车间建设前,公司发现地下有一条中原油田废弃的529毫米天然气管线,距地面0.77米。在做5#炉基础时,该公司将废弃的529毫米管线进行了处理,割除20余米,其西北端口在车间外,东南端口距5#炉蓄热室东南角1.25米处,两端口均由三力公司焊工焊接盲板封堵。 二、事故经过 2000年2月18日晚10时37分,三车间电缆沟可燃气体爆燃,将车间电缆沟中间人孔和西侧人孔盖板冲开,车间主任尤鹤发现后,一边派人通知领导,一边赶往配电室通知停电。电工申英强与尤鹤先后到三车间救火。公司领导接到通知后也相继赶到现场,组织人员继续扑救电缆沟的火。由于火源在电缆沟,难于扑救,公司打通知文留镇政府,请求支援。文留镇政府立即与中原油田采油一厂消防队联系,晚10时50分,油田采油一厂消防队赶到现场投入救火。控制住火势后一名消防队员从中间人孔下到电缆沟用水枪扑救电缆沟的火,随着火势的减弱,看见电缆沟北墙缝隙处有火苗窜出。晚11时58分火被扑灭。由于车间停电,供风系统无法运转,炉窑燃烧系统不能正常工作。公司员工为防止炉窑高温玻璃液降温过快引起生产事故,按操作规程利用供气备用系统加热护炉。2月19日0时06分,三车间5#炉东侧发生爆炸,当场死亡12人,受伤59人,在送往医院途中又有一人死亡,抢救过程中,因伤势严重,经抢救无效死亡2人。

CNG储气瓶泄漏事故后果模拟分析评价

CNG储气瓶泄漏事故后果模拟分析评价 摘要:CNG储气瓶由于高压和介质可燃爆两大事故因素,无论发生何种事故,都可能引发泄漏,火灾,化学爆炸和物理爆炸。本文即对CNG储气瓶泄漏后导致爆炸事故进行事故后果模拟分析,计算其爆炸冲击波的伤害范围。 关键词:CNG储气瓶泄漏事故后果 一、引言 随着天然气在汽车能源中所占比重的增大,越来越多的加气站被建立,压缩天然气(CompressedNaturalGas,简称CNG)加气站是常见的一类,在各种CNG 加气站里,通过压缩机加压压缩,强行将天然气储存在特制容器内,专供汽车加气的备用装置或系统,称为储气装置或储气技术[1]。CNG储气瓶是加气站常用的储气装置,该装置一般具有25~30MPa的高压,其储存的压缩天然气的主要成分是甲烷,属一级可燃气体,甲类火灾危险性,爆炸极限为5%~15%,最小点火能量仅为0.28mJ,燃烧速度快,燃烧热值高,对空气的比重为0.55,扩散系数为0.196,极易燃烧,爆炸,并且扩散能力强,火势蔓延迅速,一旦发生事故,难以控制[2]。 CNG储气瓶由于高压和介质可燃爆两大事故因素,无论发生何种事故,都可能引发泄漏,火灾,化学爆炸和物理爆炸,如果事故得不到有效控制,还可相互作用,相互影响,促使事故扩大蔓延及至产生巨大的冲击波危害,因此,对其危害后果做出合理评价具有重大意义[1]。 二、泄漏事故后果模拟分析 假设某一加气子站内有3支4m3大容积储气瓶,其中一支储气瓶的瓶口处发生天然气泄漏,模拟分析如下: 1.泄漏量计算 1.1 泄漏类型判断 P-储气瓶组内介质压力,取25MPa P0 -环境压力,取0.1 MPa,则P0 / P = 0.004 k-介质的绝热指数,取1.316 ,则介质流动属音速流动。 1.2泄漏孔面积和喷射孔等价直径

液化天然气安全事故案例

事故1 2000、2、19天然气燃爆事故案例 2000年2月19日零时06分,山东三力工业集团有限公司濮阳分公司发生地下废弃天然气管线爆炸事故,造成15人死亡,56人受伤,其中重伤13人,直接经济损失342、6万元。 一、企业概况?山东三力工业集团有限公司濮阳分公司就是由山东三力工业集团有限公司1998年8月,在文留镇第二化工厂原厂址上独资建设得高硼硅玻璃企业,有三个车间,设有安全科、生产科等9个科室,其中发生爆炸得三车间共有职工128人,分三班运转。?该公司第三车间位于生产区得东部。三车间共有5#、6#两座玻璃炉窑,4座退火炉设计规模为年产8000吨玻璃拉管。每座炉窑建有四条玻璃拉管生产线,有蓄热室、工作池、料道、风机、燃烧系统、电熔化等部门组成;其炉窑所需热能来源于燃烧系统与电熔化两部分产生得热量。燃烧系统由供风系统与低压天然气(0、05Mpa)系统组成,车间用电为常规用电与电熔化用电。车间内在5#、6#炉南侧有一条东西走向,长27、6米、深1、53米、宽1、23米得主电缆沟。在5#、6#炉中间有一条南北走向,长15、8米、深1、52米、宽0、96米得电缆沟。东西与南北电缆沟相连接,连接处有一个1、2米*0、73米得人孔。整个电缆沟上覆盖30厘米厚得水泥现浇层地面,共有北、中、西3个人孔。?在第三车间建设前,公司发现地下有一条中原油田废弃得529毫米天然气管线,距地面0、77米。在做5#炉基础时,该公司将废弃得529毫米管线进行了处理,割除20余米,其西北端口在车间外,东南端口距5#炉蓄热室东南角1、25米处,两端口均由三力公司焊工焊接盲板封堵。 二、事故经过?2000年2月18日晚10时37分,三车间电缆沟内可燃气体爆燃,将车间内电缆沟中间人孔与西侧人孔盖板冲开,车间主任张尤鹤发现后,一边派人通知领导,一边赶往配电室通知停电。电工申英强与张尤鹤先后到三车间救火.公司领导接到通知后也相继赶到现场,组织人员继续扑救电缆沟内得火。由于火源在电缆沟内,难于扑救,公司打电话通知文留镇政府,请求支援。文留镇政府立即与中原油田采油一厂消防队联系,晚10时50分,油田采油一厂消防队赶到现场投入救火。控制住火势后一名消防队员从中间人孔下到电缆沟内用水枪扑救电缆沟内得火,随着火势得减弱,瞧见电缆沟北墙缝隙处有火苗窜出.晚11 时58分火被扑灭。由于车间停电,供风系统无法运转,炉窑燃烧系统不能正常工作.公司员工为防止炉窑内高温玻璃液降温过快引起生产事故,按操作规程利用供气备用系统加热护炉。2月19日0时06分,三车间5#炉东侧发生爆炸,当场死亡12人,受伤59人,在送往医院途中又有一人死亡,抢救过程中,因伤势严重,经抢救无效死亡2人. 三、事故原因分析?根据现场勘查及物证技术鉴定结果可以确定,529毫米管线在废弃时管道内存有残留天然气,在该公司三车间施工处理管线时又进入了部分空

天然气爆炸事故案例分析

天然气爆炸事故案例分析 1. 事故经过简述 1999年12月18日15时54分,某油田天然气调压站与天然气管线接口处突然爆裂。由于爆炸产生的巨大能量和冲击波,将爆管西侧约4m长的管线扭断,东侧16m长的管线撕裂扭断,北侧管线连同调压站阀门一起扭断并向北飞出70多米远,爆炸的碎片向南飞出70多米远,并将调压站院墙外的杂草引燃起火,外泄的天然气发生着火。事故造成了巨大的经济损失,引起油田各级领导的高度重视。 2. 事故原因分析 通过事故发生后进行的宏观检查、厚度测定、腐蚀产物检测及扫描电镜分析的结果可知,爆管的主要原因为: (1)天然气中含有部分H2S,CO,CO2气体及部分水份等杂质,导致了管线的严重腐蚀。通过测厚检查发现,爆破的三通底部减薄最严重。根据三通部位的几何特殊性,可知该处天然气流速最慢,从而使天然气中的H2S,CO,CO2气体及部分水份等杂质有更为充足的时间与金属管壁发生各种反应,导致了该处腐蚀最为严重。 (2)三通管线的选材没有按设计要求取材,管线不符合20#钢的要求和标准,焊接质量差,加速了材质的腐蚀和减薄。 (3)塑性变形使金属内部产生大量的位错和空位,位错沿滑移面移动,在交叉处形成位错塞积,造成很大的应力集中,当材料达到屈服极限后,应力不能得到松弛,形成初裂纹,随着时间的延迟,裂纹不断扩展。 (4)该管线从未进行过专业的技术检测,使用状况不明,也是造成事故的原因之一。长期使用13年的天然气管线遭受严重腐蚀之后,造成强度大大降低,实际壁厚小于计算厚度,远远不能满足使用条件,在微裂纹的诱导下,不能满足强度要求,发生了爆炸事故。这次事故的教训是非常深刻的,本次建设的天然气调压箱是易发生重大安全事故的部位,从设计、施工到监督检验,必须进行强有力的专业检查、验收,杜绝使用不合格的管线,确保施工质量。使用单位在加强自检的同时,必须定期的由专业检测单位进行定期检查,以便及早发现事故隐患,找出薄弱环节,防患于未然。 无视天然气泄漏强行动火发生爆炸事故案例分析 一、事故经过 1986年5月,某DN400 输气干线放空后在阀室内更换干线放空阀,干线两端放空阀开启,用氧气割法兰时天然气泄出燃烧。又强行割下法兰后将大火熄灭,在地上修焊口30 min 后(法兰割口离地面高1. 2 m) ,将法兰拿回割口电焊时,发生了爆炸并继续燃烧3. 5 h ,3 个施工人员当场被严重烧伤,阀室及室内集输设施严重烧坏,造成了重大的经济损失。 二、事故原因 1、天然气继续泄漏的室内自房顶向下积聚,形成爆炸混合物遇焊接火源而发生爆炸。 2、动火安全措施不落实,在有天然气泄漏的情况下强行动火作业。 3、员工安全意识差, 管内抽进空气自燃产生火种天然气直接置换空气混合气体发生爆炸事故案例分析 一、事故经过 1998年7月,某大型输气站绝缘法兰漏气整改,施工36 h 后,该段Φ508 ×9 的管道在6. 6 km管线两端放空阀均开启发生了抽空。恢复生产时,采取开天然气直接置换空气,20 min 约进天然气9 000 m3后,关闭放空阀开始升压,升压过程中发现管线发热。分析判

(生产管理知识)生产装置重大泄漏事故原因分析及灾害后果模拟计算

生产装置重大泄漏事故原因分析及灾害后果模拟计算 1、泄漏事故原因统计分析 根据建国以来化工系统所发生的59起重大及典型泄漏事故的实际情况,从五方面对事故原因进行了分类,见表1。 表1 重大及典型泄漏事故原因分类 (1)工艺技术 工艺路线设计不合理,操作中关键参数控制要求不严格。 (2)设备、材料本身原因 设备本身缺陷,材料及安装质量未达到标准要求;生产、制造过程中不按照有关规定进行;材料选择不符合标准。 (3)人为因素 违章操作、误操作、缺少必要的安全生产和岗位技能知识;工作责任心不强。 (4)外来因素 外来物体的打击、碰撞。 (5)其他因素 不属于以上四种原因之一。 从以上统计可以看出,泄漏事故的发生主要是因为设备等产品的质量不过关,职工不按操作规程进行操作和安全生产意识不强等主要原因造成的。针对这些原因,企业应加强产品质量的检查和验收,积极开展安全生产及岗位操作技能教育,真正做到岗前培训,持证上岗。 2、典型事故案例分析

本节通过列举案例,分析类似事故,找出可能造成系统故障、物质损失和人员伤害的危险因素,防患于未然。 【案例一】1000m3气柜爆炸 发生日期:1979年7月9日 发生单元:河北省大城化肥厂 经济损失:14万元 (1)事故经过: 7月9日中午12时许,全厂断电,造气停车。当时造气工段1号炉正作吹风,2号炉作下吹,气柜存半水煤气400m3。停车前作最后一次半水煤气分析成分合格。此时发现1号煤气炉有倒气现象,为防止发生炉口爆炸,于下午2时左右,将气柜出口水封放空阀打开,将气柜内半水煤气放掉,下午4时气柜钟罩已落底。这时操作工又将1号洗气塔放空阀打开,作进一步系统卸压,各工段均处于停车状态,各工段只留下1~2名工人值班,到下午6时55分气柜突然发生爆炸。气柜周边撕裂,顶盖升至高空约40m,落至距气柜中心14m远处,将围墙砸塌10m多长。气柜爆炸的同时,造气工段2号洗气塔顶盖亦被炸坏,打出33m。没有造成人身伤亡。 (2)原因分析:①可燃性气体存在:虽然气柜已放空,气柜钟罩已落底,但钟罩球形顶部尚残存60多M3水煤气,洗气塔及煤气管道中也残存40多M3的 可燃性气体;②空气的混半水煤气,在这100M3半水煤气中含有大量的CO与H 2 入:由于气柜出口水封放空阀与洗气塔放空阀均已打开,使系统与空气连通,当系统内有压力时,半水煤气自系统排向大气,但自9日中午起就连续下大雨,气温下降很快,容器管道内残存的半水煤气温度也明显下降,致使气柜形成负压,由放空阀将空气吸入气柜,酿成爆炸条件。③火源引入:因1号洗气塔排污闸阀密封不严,较长时间的停车使水泄漏较多,水封失去作用,使造气炉与洗气塔、管道、气柜成为连通体,炉体火源引入气柜,引起爆炸。 (3)教训:①停车时必须由造气工段长负责检查设备(包括各种阀门)、工艺情况;②放空阀卸压后要及时关闭,避免空气混入;③防止停车后气柜煤气倒回、炉口爆炸,可使气柜进口水封加水和洗气塔、洗气箱水保持溢流。

事故后果分析安评教材

4 事故后果分析 对一种可能发生的事故只有知道其后果时,对其危险性分析才算是完整的。后果分析是危险源危险性分析的一个主要组成部分,其目的在于定量地描述一个可能发生的重大事故对工厂、对厂内职工、对厂外居民甚至对环境造成危害的严重程度。后果分析为企业或企业主管部门提供关于重大事故后果的信息,为企业决策者和设计者提供采取何种防护措施的信息。由于事故的发生是一个概率事件,完全杜绝生产过程中的事故是不可能的,因此对事故后果的控制就成为安全工作者必须关注的一个重要课题。 泄漏事故、火灾事故、爆炸事故、中毒事故是可能造成重大恶果的生产事故,也是我们进行后果分析的重点。 4.1 泄漏事故后果分析 火灾和因有毒气体引起的中毒事故都与物质的泄漏有着直接的联系。确定重大事故,尤其是泄漏和火灾事故时的危险区域是在确定有毒物质泄漏后的扩散范围的基础上进行的。因此,要首先从有毒、有害物质泄漏分析开始。 4.1.1 泄漏的主要设备 根据泄漏情况,可以把化工生产中容易发生泄漏的设备归纳为10类,即管道、挠性连接器、过滤器、阀门、压力容器或反应罐、泵、压缩机、储罐、加压或冷冻气体容器和火炬燃烧器或放散管。 (1)管道 包括直管、弯管、法兰管、接头几部分,其典型泄漏情况和裂口尺寸为: ?管道泄漏,裂口尺寸取管径的20-100%; ?法兰泄漏,裂口尺寸取管径的20%; ?接头泄漏,裂口尺寸取管径的20-100%; (2)挠性连接器 包括软管、波纹管、铰接臂等生产挠性变形的连接部件,其典型泄漏情况和裂口尺寸为:?连接器本体破裂泄漏,裂口尺寸取管径的20-100%; ?接头泄漏,裂口尺寸取管径的20%; ?连接装置损坏而泄漏,裂口尺寸取管径的100%; (3)过滤器 由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸为: ?过滤器本体泄漏,裂口尺寸取管径的20-100%; ?管道泄漏,与过滤器连接的管道发生的泄漏,裂口尺寸取管径20%; (4)阀 包括化工生产中应用的各种阀门,其典型泄漏情况和裂口尺寸为: ?阀壳体泄漏裂口尺寸取与阀连接管道管径的20-100%; ?阀盖泄漏,裂口尺寸取管径的20%; ?阀杆损坏而泄漏,裂口尺寸取管径的20%; (5)压力容器 包括化工生产中常用的分离、气体洗涤器、反应釜、热交换器、各种罐和容器等,其常见泄漏情况和裂口尺寸为:

液化天然气站泄漏事故现场处理方案

液化天然气站泄漏事故现场处理方案 危险源及事故类型 本场站设有液化天然气储罐1个。天然气是一种易燃易爆气体,具有易燃、可燃气体的双重性,比空气轻。如发生泄漏能迅速四处扩散,引起人身中毒、燃烧和爆炸。 可能发生的天然气泄漏事故受季节影响不大,但高温天气可能会导致泄漏的天然气蒸发的速度更快,更易使人员暴露于危险环境中,造成人员窒息或冻伤事故。 事故类型为可能导致火灾爆炸、冻伤事故。 处置措施 1)在处理天然气泄漏时,应根据其泄漏和燃烧特点,迅速有效地排除险情,避免发生爆炸燃烧事故。在处理天然气泄漏,排除险情的过程中,必须贯彻“先防爆,后排险”的指导思想,坚持“先控制火源,后制止泄漏”的处理原则,灵活运用关阀断气,堵塞漏点。 2)天然气一旦发生泄漏,排险人员到达现场后,主要任务是关掉阀门,切掉气源,如果是阀门损坏,可用麻袋片缠住漏气处,或用大卡箍堵漏,更换阀门。若是管道破裂,可用木楔子堵漏。 3)积极抢救人员,让窒息人员立即脱离现场,到户外新鲜空气流通处休息。有条件时应吸氧或接受高压氧舱治疗,出现呼吸停止者应进行人工呼吸,呼吸恢复后,立即转运至附近医院救治。 4)及时防止燃烧爆炸,迅速排除险情。现场人员应把主要力量放在各种火源的控制方面,为迅速堵漏创造条件。对天然气已经扩散的地方,电器要保持原来的状态,不要随意开或关;对接近扩散区的地方,要切断电源。 5)用开花水枪对泄漏处进行稀释、降温。对进入天然气泄漏区的排险人员,严禁穿带钉鞋和化纤衣服,严禁使用金属工具,以免碰撞发生火花或火星。 6)事故得到控制后,应保护好现场,公司应急救援组应协助上级有关部门对事故的原因、应急处置、人员的伤亡、财产的损失、环境污染进行分析、调查和取证,直至解除警戒。 (一)LNG泄漏的处置措施 立刻查清事故原因,进入事故处理程序;尽快堵漏,防止泄漏扩大引起更大事故;实施防冻伤、防火灾、防爆炸、防人员伤亡、防停气的应急措施。 LNG泄漏事故处理措施及步骤见下表。

爆炸后果分析(DOC)

重大事故后果分析方法:爆炸 爆炸是物质的一种非常急剧的物理、化学变化,也是大量能量在短时间内迅速释放或急剧转化成机械功的现象。它通常借助于气体的膨胀来实现。 从物质运动的表现形式来看,爆炸就是物质剧烈运动的一种表现。物质运动急剧增速,由一种状态迅速地转变成另一种状态,并在瞬间内释放出大量的能。 一般说来,爆炸现象具有以下特征: (1)爆炸过程进行得很快; (2)爆炸点附近压力急剧升高,产生冲击波; (3)发出或大或小的响声; (4)周围介质发生震动或邻近物质遭受破坏。 一般将爆炸过程分为两个阶段:第一阶段是物质的能量以一定的形式(定容、绝热)转变为强压缩能;第二阶段强压缩能急剧绝热膨胀对外做功,引起作用介质变形、移动和破坏。

按爆炸性质可分为物理爆炸和化学爆炸。物理爆炸就是物质状态参数(温度、压力、体积)迅速发生变化,在瞬间放出大量能量并对外做功的现象。物理爆炸的特点是:在爆炸现象发生过程中,造成爆炸发生的介质的化学性质不发生变化,发生变化的仅是介质的状态参数。例如锅炉、压力容器和各种气体或液化气体钢瓶的超压爆炸。化学爆炸就是物质由一种化学结构迅速转变为另一种化学结构,在瞬间放出大量能量并对外做功的现象。例如可燃气体、蒸气或粉尘与空气混合形成爆炸性混合物的爆炸。化学爆炸的特点是:爆炸发生过程中介质的化学性质发生了变化,形成爆炸的能源来自物质迅速发生化学变化时所释放的能量。化学爆炸有3个要素:反应的放热性、反应的快速性和生成气体产物。 从工厂爆炸事故来看,有以下几种化学爆炸类型: (1)蒸气云团的可燃混合气体遇火源突然燃烧,是在无限空间中的气体爆炸; (2)受限空间内可燃混合气体的爆炸; (3)化学反应失控或工艺异常造成压力容器爆炸; (4)不稳定的固体或液体爆炸。 总之,发生化学爆炸时会释放出大量的化学能,爆炸影响范围较大,而物理爆炸仅释放出机械能,其影

氯气泄漏重大事故后果模拟分汇总

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

Q=WC(t-t0) 设这些热量全部用于液氯蒸发,如汽化热为q(kj/kg),则其蒸发量W为: W=Q/q=WC(t-t0)/q 氯的相对分子质量为M r,则在沸点下蒸发的液氯体积V g(m3)为: V g =22.4W/M r273+t0/273 V g =22.4WC(t-t0)/ M r q273+t0 /273 氯的有关理化数据和有毒气体的危险浓度如下: 相对分子质量:71 沸点: -34℃ 液体平均此热:0.98kj/kg.℃ 汽化热: 2.89×102kj/kg 吸入5-10mim致死浓度:0.09% 吸入0.5-1h致死浓度: 0.0035-0.005% 吸入0.5-1h致重病浓度:0.0014-0.0021% 已知氯的危险浓度,则可求出其危险浓度下的有毒空气体积: 氯在空气中的浓度达到0.09%时,人吸入5~10min即致死。则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V1 = V g×100/0.09 = 1111V g(m3) 氯在空气中的浓度达到0.00425(0.0035~0.005)%时,人吸入0.5~1h,则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V2=V g×100/0.00425=23529V g(m3) 氯在空气中的浓度达到0.00175(0.0014~0.0021)%时,人吸入0.5~1 h,则

事故后果模拟分析

2.2 事故后果模拟分析法火灾、爆炸、中毒是常见的重大事故,经常造成严重的人员伤亡和巨大的财产损失,影响社会安定。这里重点介绍有关火灾、爆炸和中毒事故(热辐射、爆炸波、中毒)后果分析,在分析过程中运用了数学模型。通常一个复杂的问题或现象用数学模型来描述,往往是在一个系列的假设的前提下按理想的情况建立的,有递增模型经过小型试验的验证,有的则可能与实际情况有较大出入,但对辨识危险性来说是可参考的。2.2.1 泄漏由于设备损坏或操作失误引起泄漏,大量易燃、易爆、有毒有害物质的释放,将会导致火灾、爆炸、中毒等重大事故发生,因此,后果分析由泄漏分析开始。 2.2.1.1 泄漏情况分析 2.1.1.1.1 泄漏的主要设备根据各种设备泄漏情况分析,可将工厂(特别是化工厂) 中易发生泄漏的设备 归纳为以下10 类:管道、挠性连接器、过滤器、阀门、压力容器或反应器、泵、压缩机、储罐、加压或冷冻气体容器,火炬燃烧装置或放散管等。 ⑴管道。它包括管道、法兰和接头,其典型情况和裂口尺寸分别取管径 的20%- 100% 20 痢20%- 100% ⑵挠性连接器。它包括软管、波纹管和铰接器,其典型泄漏情况和裂口尺寸为: ①连接器本体破裂泄漏,裂口尺寸取管径的20%- 100% ②接头处的泄漏,裂口尺寸取管径的20% ③连接装置损坏泄漏,裂口尺寸取管径的100% ⑶过滤器。它由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸分别取管径的20%- 100%和20%。 ⑷阀。其典型泄漏情况和裂口尺寸为: ①阀壳体泄漏,裂口尺寸取管径的20%- 100% ②阀盖泄漏,裂口尺寸取管径的20%

③阀杆损坏泄漏,裂口尺寸取管径的20% ⑸压力容器或反应器。包括化工生产中常用的分离器、气体洗涤器、反应釜、热交换器、各种罐和容器等。其常见的此类泄漏情况和裂口尺寸为: ①容器破裂而泄漏,裂口尺寸取容器本身尺寸; ②容器本体泄漏,裂口尺寸取与其连接的粗管道管径的100% ③孔盖泄漏,裂口尺寸取管径的20% ④喷嘴断裂而泄漏,裂口尺寸取管径的100% ⑤仪表管路破裂泄漏,裂口尺寸取管径的20%- 100% ⑥容器内部爆炸,全部破裂。 ⑹泵。其典型泄漏情况和裂口尺寸为: ①泵体损坏泄漏,裂口尺寸取与其连接管径的20%-100% ②密封压盖处泄漏,裂口尺寸取管径的20% ⑺压缩机。包括离心式、轴流式和往复式压缩机,其典型泄漏情况和裂口尺寸为: ①压缩机机壳损坏而泄漏,裂口尺寸取与其连接管道管径的20%-100% ②压缩机密封套泄漏,裂口尺寸取管径的20% ⑻储罐。露天储存危险物质的容器或压力容器,也包括与其连接的管道和辅助设备,其典型泄漏情况和裂口尺寸为: ①罐体损坏而泄漏,裂口尺寸为本体尺寸; ②接头泄漏,裂口尺寸为与其连接管道管径的20%-100% ③辅助设备泄漏,酌情确定裂口尺寸。 ⑼加压或冷冻气体容器。包括露天或埋地放置的储存器、压力容器或运输槽车等,其典型泄漏情况和裂口尺寸为:

液化天然气安全事故案例

事故1 2000年2月19日零时06分,山东三力工2000、2、19天然气燃爆事故案例? 业集团有限公司濮阳分公司发生地下废弃天然气管线爆炸事故,造成15人死亡,56人受伤,其中重伤13人,直接经济损失342、6万元。 一、企业概况?山东三力工业集团有限公司濮阳分公司就是由山东三力工业集团有限公司1998年8月,在文留镇第二化工厂原厂址上独资建设的高硼硅玻璃企业,有三个车间,设有安全科、生产科等9个科室,其中发生爆炸的三车间共有职工128人,分三班运转。 该公司第三车间位于生产区的东部。三车间共有5#、6#两座玻璃炉窑,4座退火炉设计规模为年产8000吨玻璃拉管。每座炉窑建有四条玻璃拉管生产线,有蓄热室、工作池、料道、风机、燃烧系统、电熔化等部门组成;其炉窑所需热能来源于燃烧系统与电熔化两部分产生的热量。燃烧系统由供风系统与低压天然气(0、05Mpa)系统组成,车间用电为常规用电与电熔化用电。车间内在5#、6#炉南侧有一条东西走向,长27、6米、深1、53米、宽1、23米的主电缆沟。在5#、6#炉中间有一条南北走向,长15、8米、深1、52米、宽0、96米的电缆沟。东西与南北电缆沟相连接,连接处有一个1、2米*0.73米的人孔。整个电缆沟上覆盖30厘米厚的水泥现浇层地面,共有北、中、西3个人孔。?在第三车间建设前,公司发现地下有一条中原油田废弃的529毫米天然气管线,距地面0、77米。在做5#炉基础时,该公司将废弃的529毫米管线进行了处理,割除20余米,其西北端口在车间外,东南端口距5#炉蓄热室东南角1、25米处,两端口均由三力公司焊工焊接盲板封堵。 2000年2月18日晚10时37分,三车间电缆沟内可燃气体爆燃,二、事故经过? 将车间内电缆沟中间人孔与西侧人孔盖板冲开,车间主任张尤鹤发现后,一边派人通知领导,一边赶往配电室通知停电。电工申英强与张尤鹤先后到三车间救火。公司领导接到通知后也相继赶到现场,组织人员继续扑救电缆沟内的火。由于火源在电缆沟内,难于扑救,公司打电话通知文留镇政府,请求支援。文留镇政府立即与中原油田采油一厂消防队联系,晚10时50分,油田采油一厂消防队赶到现场投入救火。控制住火势后一名消防队员从中间人孔下到电缆沟内用水枪扑救电缆沟内的火,随着火势的减弱,瞧见电缆沟北墙缝隙处有火苗窜出。晚11时58 分火被扑灭。由于车间停电,供风系统无法运转,炉窑燃烧系统不能正常工作。公司员工为防止炉窑内高温玻璃液降温过快引起生产事故,按操作规程利用供气备用系统加热护炉。2月19日0时06分,三车间5#炉东侧发生爆炸,当场死亡12人,受伤59人,在送往医院途中又有一人死亡,抢救过程中,因伤势严重,经抢救无效死亡2人。 三、事故原因分析 根据现场勘查及物证技术鉴定结果可以确定,529毫米管线在废弃时管道内存有

相关主题