搜档网
当前位置:搜档网 › 抛物线(学生版)

抛物线(学生版)

抛物线(学生版)
抛物线(学生版)

抛物线

基础梳理

1. 抛物线的定义

平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.其数学表达式:|MF |=d (其中d 为点M 到准线的距离). 2.p 的几何意义:焦点的距离

2

2

2

2

一个结论

焦半径:抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ??

?

??0,2p 的距离|PF |=x 0+p 2. 两种方法

(1)定义法:根据条件确定动点满足的几何特征,从而确定p 的值,得到抛物线的标准方程. (2)待定系数法:根据条件设出标准方程,再确定参数p 的值,这里要注意抛物线标准方程有四种形式.从

简单化角度出发,焦点在x 轴的,设为y 2

=ax (a ≠0),焦点在y 轴的,设为x 2=by (b ≠0).

双基自测

1.抛物线y 2

=8x 的焦点到准线的距离是( ).

A .1

B .2

C .4

D .8 2.已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ). A .x 2=-12y B .x 2=12y C .y 2=-12x D .y 2=12x

3.设抛物线的顶点在原点,准线方程x =-2,则抛物线的方程是( ). A .y 2=-8x B .y 2=-4x C .y 2=8x D .y 2=4x

4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ). A .4 B .6 C .8 D .12 5.抛物线y 2=8x 的焦点坐标是________.

考向一 抛物线的定义及其应用

【例1】?已知F 是抛物线y 2

=x 的焦点,A 、B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ).

A.34 B .1 C.54 D.74

【训练1】已知点P 是抛物线y 2

=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( ).

A.172 B .3 C. 5 D.92

考向二 抛物线的标准方程及性质

【例2】?(1)以原点为顶点,坐标轴为对称轴,并且经过P (-2,-4)的抛物线方程为________. (2)设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该 抛物线准线的距离为________. 【训练2】 已知F 为抛物线x 2=2py (p >0)的焦点,M 为其上一点,且|MF |=2p ,则直线MF 的斜率为( ).

A .-33

B .±3

3

C .- 3

D .±3

考向三 抛物线的综合应用

【例3】?已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)

两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →

,求λ的值.

【训练3】 设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线L 与C 相交于A 、B 两点.

(1)设L 的斜率为1,求|AB |的大小;(2)求证:OA →·OB →

是一个定值.

阅卷报告——忽视“判别式”致误

【问题诊断】由于“判别式”是判断直线与圆锥曲线是否有公共点的重要方法,在解决直线与圆锥曲线相交的问题时,有时不需要考虑判断式,致使有的考生思维定势的原因,任何情况下都没有考虑判别式,导致解题错误.

【防范措施】解题后任何情况下都来检验判别式Δ.

【示例】?已知抛物线C :y 2=2px (p >0)过点A (1,-2).

(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛

物线C 有公共点,且直线OA 与l 的距离等于5

5

?若存在,求出直线l 的方程;若不存在,说明理由.

【试一试】在直角坐标系xOy 中,椭圆C 1:x 2a 2+y

2

b

2=1(a >b >0)的左、右焦点分别为F 1、F 2,F 2也是抛物

线C 2:y 2=4x 的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=5

3

.

(1)求C 1的方程;(2)平面上的点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与C 1交于A 、B 两点,若OA →·OB →

=0,求直线l 的方程.

抛物线课堂练习

一、选择题

1.已知抛物线x 2=ay 的焦点恰好为双曲线y 2-x 2=2的上焦点,则a 等于( ) A .1 B .4C .8 D .16

2.抛物线y =-4x 2

上的一点M 到焦点的距离为1,则点M 的纵坐标是( )

A .-1716

B .-1516C.716 D.1516

3.已知F 是拋物线y 2

=x 的焦点,A 、B 是该拋物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( ) A.34 B .1C.54 D.74

4.已知抛物线y 2

=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( ) A .相离 B .相交C .相切 D .不确定

5.已知F 为抛物线y 2=8x 的焦点,过F 且斜率为1的直线交抛物线于A 、B 两点,则||F A |-|FB ||的值等于( ) A .4 2 B .8C .8 2 D .16

6.在y =2x 2

上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( ) A .(-2,1) B .(1,2)C .(2,1) D .(-1,2)

二、填空题

7.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.

8.已知抛物线的顶点在原点,对称轴为y 轴,抛物线上一点Q (-3,m )到焦点的距离是5,则抛物线的方程为________.

9.已知抛物线y 2=4x 与直线2x +y -4=0相交于A 、B 两点,抛物线的焦点为F ,那么||+||=____. 三、解答题

10.根据下列条件求抛物线的标准方程:

(1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)过点P (2,-4). 11.已知点A (-1,0),B (1,-1),抛物线C :y 2=4x ,O 为坐标原点,过点A 的动直线l 交抛物线C 于M ,

P 两点,直线MB 交抛物线C 于另一点Q ,若向量与的夹角为π

4

,求△POM 的面积.

12.在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB ∥OA ,MA ·AB

=·

,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.

抛物线课后作业

一、选择题

1.若抛物线y 2=2px (p >0)的焦点在圆x 2+y 2+2x -3=0上,则p =( ) A.1

2

B .1

C .2

D .3 2.抛物线的顶点在坐标原点,焦点与双曲线y 25-x 2

4

=1的一个焦点重合,则该抛物线的标准方程可能是( )

A .x 2=4y

B .x 2=-4y

C .y 2=-12x

D .x 2=-12y

3.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )

A .(14,±24)

B .(18,±24)

C .(14,24)

D .(18,24

)

4.已知点P 是抛物线y 2

=4x 上一点,设点P 到此抛物线准线的距离是d 1,到直线x +2y -12=0的距离为d 2,则d 1+d 2的最小值是( )

A .5

B .4C.1155 D.11

5

5.如图,F 为抛物线y 2=4x 的焦点,A 、B 、C 在抛物线上,若0=++ =( ) A .6

B .4

C .3

D .2

二、填空题

6.已知抛物线y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且满足|NF |=3

2

|MN |,则∠NMF =________.

7.已知抛物线y 2=4x 与直线2x +y -4=0相交于A 、B 两点,抛物线的焦点为F ,+=______. 三、解答题

8.在平面直角坐标系xOy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上. (1)求抛物线C 的标准方程;(2)设直线l 是抛物线的准线,求证:以AB 为直径的圆与准线l 相切.

9.如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .

(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.

10.抛物线y 2=4x 的焦点为F ,A (x 1,y 1)、B (x 2,y 2)(x 1>x 2,y 1>0,y 2<0)在抛物线上,且存在实数λ,使

0=+λ=25

4.(1)求直线AB 的方程;(2)求△AOB 的外接圆的方程.

高三数学-抛物线专题复习

抛物线 平面内与一个定点F 和一条定直线l(F ?l)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质 标准方程 y 2=2px (p>0) y 2=-2px(p>0) x 2=2py(p>0) x 2=-2py(p>0) p 的几何意义:焦点F 到准线l 的距离 & 图形 顶点 O(0,0) 对称轴 y =0 x =0 $ 焦点 F ????p 2,0 F ??? ?-p 2,0 F ? ???0,p 2 F ??? ?0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 。 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 - 向上 向下 题型一 抛物线的定义及应用 例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时点P 的坐标. 》

变式练习 1.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线准线的距离之和的最小值为() 题型二抛物线的标准方程和几何性质 例2抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程. * 变式练习 2.设斜率为2的直线l过抛物线y2=ax(a≠0)的焦点F,且和y轴交于点A.若△OAF(O为坐标原点)的面积为4,则抛物线方程为() =±4x =±8x =4x =8x 变式练习 3.已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|∶|MN|等于() ∶ 5 ∶2 ∶ 5 ∶3 题型三抛物线焦点弦的性质 … 例3设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴.证明:直线AC经过原点O. :

初中抛物线常见结论汇总(教师版)

初中抛物线常见结论汇总(教师版) 1. (唯一交点或最值) (1)已知抛物线y=x 2-2x -3,过点D (0,-4)求与抛物线有且只有一个公共点的直线的解析式。 (判别式) (2)已知抛物线y=x 2-2x -3,在第四象限的抛物线上求点P ,使四边形ACPB 的面积最大。 2. (焦点—准线:顶点上下14a 个单位)已知抛物线y =12 x 2-x +1,直线过点P (1,1)与抛物线交于A 、B 。过A 、B 分别作x 轴的垂线,垂足分别为M 、N 。 (1)连PM 、PN ,求证:△PMN 为直角三角形; (2)①求证:AB =AM+BN ;②求1AP +1BP 的值。 (3)已知点D (1,0),求证:DP 经过△AB D 的内心。 3. 如图,抛物线y =12x 2﹣x -32 顶点为D ,对称轴上有一点E (1,4),在抛物线上求点P ,使∠EPD=90°。 4. (定直角特殊点——特殊)已知抛物线y=12 x 2,过对称轴上P 点的任意一条直线与抛物线的两交点A 、B 和O 点构成以O 点为直角顶点的直角三角形,求P 点坐标。(定点:顶点向上平移1/a 个单位长度)

5. (定直角特殊点——半特殊)如图:抛物线y=ax 2+bx+c 与x 轴交于A 、B ,与y 轴交于C ,交点C 向上平移t 个单位长度到D ,过D 作EF ∥AB ,交抛物线于E 、F ,∠ECF=90°。求t 与a 的关系。 6. (定直角特殊点——一般)如图:抛物线y=ax 2+bx+c 与x 轴交于A 、B ,与y 轴交于C ,点P (m,n )为抛物线 上任意一点,过D (0,n+t )作EF ∥AB ,交抛物线于E 、F ,∠EPF=90°。求t 与a 的关系。 7. (纵向平分对称点——特殊)已知抛物线y=12 x 2,过对称轴上P 点的任意一条直线与抛物线的两交点为A 、B ,在对称轴负半轴上有点Q (0,-2),且∠AQB 被对称轴平分,求P 点坐标。 8. (纵向平分对称点——一般)如图,抛物线y =x 2-x -2与x 轴交于A 、B ,与y 轴交于C ,点D 和点C 关于对 称轴对称,MN ∥AD ,交抛物线于M 、N ,直线MD 、ND 分别交y 轴于E 、F 。求证:CF =CE 。

高中数学专题:抛物线

抛物线专题复习 通径:过焦点且垂直于对称轴的相交弦 通径:d 2= AB 为抛物线px y 22 =的焦点弦,则=B A x x 4 2p ,=B A y y 2 p -,||AB =p x x B A ++ 考点1 抛物线的定义 [例1 ]已知点P 在抛物线x y 42 =上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程 [例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质 [例3 ]设B A ,为抛物线px y 22 =上的点,且O AOB (2 π = ∠为原点),则直线AB 必过的定点坐标为_______ [例4 ]设F 是抛物线2 :4G x y =的焦点.(I )过点(04)P -, 作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=?→ → FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值. 二.基本题型 1.过抛物线x y 42 =的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果621=+x x ,那么||AB =( )

(A )10 (B )8 (C )6 (D )4 2.已知抛物线22(0)y px p =>的焦点为F ,点111222()() P x y P x y ,,,,33 3()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( ) A .321x x x =+ B . 3 21y y y =+ C .2312x x x =+ D. 2312y y y =+ 3.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( ) (A )3 (B )4 (C )5 (D )6 4.过抛物线()02>=a ax y 的焦点F 作直线交抛物线于P 、Q 两点,则=+| |1 ||1QF PF ( ) (A )a 2 (B ) a 21 (C )a 4 (D )a 4 5.已知抛物线C :24y x =的焦点为,F 准线为,l 过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△ AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为( ) A .(2,22) B .(2,-22) C .(2,±2) D .(2,±22) 6.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A. 45 B. 60 C. 90 D. 120 7.两个正数a 、b 的等差中项是 9 2 ,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( ) A .1 (0,)4- B .1(0,)4 C .1(,0)2- D .1(,0)4 - 8.抛物线,42 F x y 的焦点为=准线为l l ,与x 轴相交于点,E 过F 且倾斜角等于3 π 的直线与抛物线在x 轴上方的部分相交于点,,l AB A ⊥垂足为,B 则四边形ABEF 的面积等于( ) A .33 B .34 C .36 D .38 9.已知抛物线C :2 1 2 x y = ,过点(0,4)A -和点(,0)B t 的直线与抛物线C 没有公共点,则实数t 的取值范围是( ) A .(,1)(1,)-∞-+∞ B. (,()22 -∞+∞ C .(,)-∞-+∞ D .(,)-∞-+∞ 10.如果1P ,2P ,…,8P 是抛物线2 4y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21* ∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ). A .5 B .6 C . 7 D .9 11.设O 是坐标原点,F 是抛物线2 4y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60 ,则OA 为 . 12.若直线10ax y -+=经过抛物线2 4y x =的焦点,则实数a =

高二数学教案:抛物线教案人教版

人教版抛物线教案 一.教学目的: 1.掌握抛物线的概念. 2.掌握抛物线的标准方程及其应用. 3.理解并应用抛物线的几何性质. 二.重点难点: 1.重点:抛物线的标准方程及其应用.抛物线的几何性质. 2.难点:抛物线的几何性质. 三.教学过程: 引入新课:与一定点的距离和一条定直线的距离比是常数e的点的轨迹,当e<1时,是椭圆,当e>1时,是双曲线。当e=1时,是什么曲线呢?(让同学们看课件抛物线的定义部分,然后让学生回答,给出抛物线的定义。) 如图平面内与一个定点F 和一条定直线L 的距离 相等的点的轨迹叫做抛物线. 结合课件,让学生推导抛物线的标准方程. 取过焦点F且垂直与准线L的直线为x轴,x轴与L相交于点K,以线段KF 的垂直平分线为y轴,如右图.设KF =p,则焦点F的坐标为F(2 p ,0),准线L 的方程为:x=- 2 p . 设抛物线上的点M(x,y)到L的距离为d.抛物线也就是集合P={MMF =d}. ∵MF =2 2y p x +??? ?? - , d=2 p x +, ∴2 2y p x +??? ?? - =2 p x + 将上式整理可得抛物线的标准方程:y2 =2px(p>0) 让学生自己总结,写出抛物线标准方程的其他几种形式.教师总结如下表:

最后让学生看课件抛物线的标准方程部分,加深印象. 接着让学生看e与图线形状之间的关系.让学生对抛物线、椭圆、双曲线有一个整体认识,为后面综合应用打好基础. 例题1:求下列抛物线的焦点坐标和准线方程: ⑴x2=2y: ⑵y2-6x=0: 例题2:拱形桥洞是一段抛物线,宽7m,高为0.7m,求这条抛物线的方程.

高中数学抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

焦 点弦 长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) o x ()22,B x y F y ()11,A x y

2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+=

中考压轴大题--抛物线+三角形 教师版

001如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D . (1)求二次函数的表达式; (2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标; 解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c , 解得:b=﹣4,c=3, ∴二次函数的表达式为:y=x 2﹣4x+3; (2)令y=0,则x 2﹣4x+3=0, 解得:x=1或x=3, ∴B (3,0), ∴BC=3 , 点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1, ①当CP=CB 时,PC=3,∴OP=OC+PC=3+3 或OP=PC ﹣ OC=3 ﹣3 ∴P 1(0,3+3 ),P 2(0,3﹣3 ); ②当BP=BC 时,OP=OB=3, ∴P 3(0,﹣3); ③当PB=PC 时, ∵OC=OB=3 ∴此时P 与O 重合, ∴P 4(0,0);

综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0); 002如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为 (6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D. (1)求抛物线的函数解析式; (2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S. ①求S关于m的函数表达式; ②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ 为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由. 解:(1)将A、C两点坐标代入抛物线,得 , 解得:, ∴抛物线的解析式为y=﹣x2+x+8; (2)①∵OA=8,OC=6, ∴AC==10, 过点Q作QE⊥BC与E点,则sin∠ACB===,

高中数学抛物线解题方法总结归纳

圆锥曲线抛物线 知识点归纳 1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线 的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK ==。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 特点:焦点在一次项的轴上,开口与“±2p ”方向同向 4抛物线px y 22=的图像和性质: ①焦点坐标是:?? ? ??02, p ,②准线方程是:2p x -=。 ③焦半径公式: (称为焦半径)是:02 p PF x =+, ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 5一般情况归纳:题型讲解 (1)过点(-3,2)的抛物线方程为 ;y 2=-3 4x 或x 2=2 9y , (2)焦点在直线x -2y -4=0 y 2=16x 或x 2=-8y ,

(3)抛物线 的焦点坐标为 ; (4)已知抛物线顶点在原点,焦点在坐标轴上,抛物线上的点 到焦点F 的距离为5,则抛物线方程为 ; 或 或 . (5)已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当 MF MA +最小时,M 点坐标是 )4,2( 例2.斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A B 、两点,求线段AB 的长. 解:法一 通法 法二 设直线方程为1y x =-, 1122(,)(,)A x y B x y 、, 则由抛物线定义得1212||||||||||22p p AB AF FB AC BD x x x x p =+=+=+++=++, 又1122(,)(,)A x y B x y 、是抛物线与直线的交点,由24, 1, y x y x ?=?=-?得2610x x -+=, 则126x x +=,所以||8AB =. 例3.求证:以通过抛物线焦点的弦为直径的圆必与抛物线的准线相切. 证明:(法一)设抛物线方程为22y px =,则焦点(,0)2p F ,准线2 p x =-.设以过焦点F 的弦AB 为直径的圆的圆心M ,A 、B 、M 在准线l 上的射影分别是1A 、1B 、1M , 则11||||||||||AA BB AF BF AB +=+=, 又111||||2||AA BB MM +=, ∴11 ||||2 MM AB =,即1||MM 为以AB 为直径的圆 的半径,且准线1l MM ⊥, ∴命题成立. (法二)设抛物线方程为22y px =,则焦点(,0)2 p F , 准线2 p x =-.过点F 的抛物线的弦的两个端点11(,)A x y ,22(,)B x y ,线段AB 的 中点00(,)M x y ,则1212||22 p p AB x x x x p =+++=++, ∴以通过抛物线焦点的弦为直径的圆的半径1211 ||()22 r AB x x p ==++. M 1M

考点52 抛物线(教师版) 备战2020年高考理科数学必刷题集

考点52 抛物线 1.(山东省烟台市2019届高三5月适应性练习二)已知过抛物线2 :4C y x =焦点的直线交抛物线C 于P ,Q 两点,交圆2 2 20x y x +-=于M ,N 两点,其中P , M 位于第一象限,则14 |||| PM QN +的值不可能为( ) A .3 B .4 C .5 D .6 【答案】A 【解析】 作图如下:可以作出下图, 由图可得,可设PF m =,QF n =,则1PM m =-,1QN n =-, 24y x =,2p ∴=,根据抛物线的常用结论,有 112 1m n p +==, 1m n mn +∴ =,则m n mn +=, 14||||PM QN ∴ +14 11m n =+ --4545()1m n m n mn m n +-==+--++ 又 11(4)1(4)( )m n m n m n +?=+?+441m n n m =+++452m n n m ≥+? 得49m n +≥,454m n ∴+-≥ 则 14 |||| PM QN +的值不可能为3,

答案选A 2.(江西省新八校2019届高三第二次联考理)如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点,A B ,交其准线于点C ,若4BC BF =,且6AF =,则p 为( ) A . 9 4 B . 92 C .9 D .18 【答案】B 【解析】 设准线与x 轴交于点P ,作BH 垂直于准线,垂足为H 由4BC BF =,得: 4 5 BH BC PF CF == 由抛物线定义可知:BF BH =,设直线l 倾斜角为θ 由抛物线焦半径公式可得:41cos 5 p BF BF PF p p θ+===,解得:1cos 4 θ= 4 6131cos 3 144 p p p AF p θ∴= ====--,解得:9 2 p = 本题正确选项:B 3.(陕西省2019届高三年级第三次联考理)已知双曲线,若抛物线(为 双曲线半焦距)的准线被双曲线截得的弦长为(为双曲线的离心率),则双曲线的渐近线方程为( ) A . B .

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

高中数学抛物线的常见结论

抛物线的常见结论 一、知识点总结 1. 抛物线的弦长公式 2122122124)(11x x x x k x x k l -+?+=-+=, 其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。 2122122124)(11y y y y m y y m l -+?+=-+=,其中弦长所在直线 方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。 2. 抛物线的焦点弦 对于抛物线,022 >=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C,D ,那么有: ①2212 21,4 p y y p x x -== A B F C D O α

由?????+==222p my x px y 得0222=--p pmy y (*) ,因此?? ???==-=44)(2222121221p p y y x x p y y ②焦点弦长 p x x AB ++=21,焦点弦长α 2 sin 2P AB = α αsin 4)(sin 212212 1y y y y y y AB -+= -=,结合(*)式与αtan 1 =m 得: α ααααααααα sin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 442 22222 222 22+= +=+= += p p p p p m p AB α αα22sin 2sin sin 1 2p p == ③ P BF AF 211=+ 简单证明如下:p p p y y p y y P BF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积α sin 22 P S = 简单证明如下:以 AB 为底,以O 到AB 的距离为高,该三角形面积课表示为: α αααsin 2sin 2sin 221sin 2122p p p OF AB S AOB =??== ⑤焦点弦相关的几何关系: a. 以AF/BF 为直径的圆与y 轴相切 b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB. c. 以CD 为直径的圆与AB 相切 d. A,B 在准线上的投影对F 的张角为90°,?=∠90CFD

人教版高中数学选修2-1第二章圆锥曲线与方程2.4抛物线(教师版)【个性化辅导含答案】

抛物线 __________________________________________________________________________________ __________________________________________________________________________________ 1. 了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用; 2. 掌握抛物线的定义、几何图形、标准方程及简单几何性质. 1.抛物线的定义 (1)平面内与一个定点F 和一条定直线l (F ?l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. (2)其数学表达式:|MF |=d (其中d 为点M 到准线的距离). 2.抛物线的标准方程与几何性质 图形 标准方程 y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0) p 的几何意义:焦点F 到准线l 的距离 性 质 顶点 O (0,0) 对称轴 y =0 x =0 焦点 F ? ????p 2,0 F ? ????-p 2,0 F ? ?? ??0,p 2 F ? ?? ??0,-p 2 离心率 e =1 准线方程 x =-p 2 x =p 2 y =-p 2 y =p 2 范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 向上 向下 例1:过点(0,-2)的直线与抛物线y 2 =8x 交于A 、B 两点,若线段AB 中点的横坐标为2,则|AB|等于( ) A .217 B .17 C .215 D .15 【解析】设直线方程为y =kx -2,A(x 1,y 1)、B(x 2,y 2). 由????? y =kx -2,y 2 =8x , 得k 2x 2 -4(k +2)x +4=0. ∵直线与抛物线交于A 、B 两点,

抛物线的参数方程(教师版)

14?抛物线的参数方程 主备5 审核J 学习目标:L r 解椭圆的参数方程的推导过程及参数的意义: 2.掌握椭圆的参数方程,并能解决一些简单的问题. 学习臺点:椭圆参数方程的应用, 学习难点:椭圆参数方程中参数的意义. 学习过程: 一、课前准备: 阅读教材P33-P34的内容,理解抛物线的参数方程的推导过程,井复习以下问题: 1?将下列参数方程化为普通方程: X = 2-1 x = f-- (1) y = 2x-,其中A = f-y (f 为参数人答「 (2) 3y-=4x ,其中x = t (f>0为参数人 答:? 二. 新课导学, (-)新知: 抛物线的参数方程的推导过程: 如图:设M (儿刃为抛物线上除顶点外的任意一点,以 射线OM 为终边的角记为a ,当住在内变化时, 2 2 点M 在抛物线上运动,并且对于住的毎一个值,在抛物 线上都 有唯一的M 点与对应?因此,可以取为参数探求 抛物线的参数 方程. 根据三角函数的定义得,tana =上,KP y = xtan

高中数学专题讲解之抛物线

高中数学专题讲解之 抛物线 考点1 抛物线的定义: 平面上与一个定点F 和一条直线l (F 不在l 上)的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。 抛物线的定义中条件“F 不在l 上”不可遗漏,否则,如果F 在l 上,则轨迹为过F 且与l 垂直的直线。 题型: 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换 例1、(1)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为 (2)抛物线y=4上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A. B. C. D. 0 例2、求平面内到原点与直线20x y --=距离相等的点的轨迹方程,并指出轨迹所表示的曲线。 例3、求到点A ()2,0-的距离比到直线:3l x =的距离小1的点的轨迹方程。 巩固练习: 1.已知抛物线的焦点为,点,在抛物线上,且、、成等差数列, 则有 ( ) A . B . C . D. 2.已知点F 是抛物线的焦点,M 是抛物线上的动点,当最小时, M 点坐标是 ( ) 2 x 16 17161587 2 2(0)y px p =>F 111222()()P x y P x y ,,,333()P x y ,||1F P ||2F P ||3F P 321x x x =+321y y y =+2312x x x =+2312y y y =+),4,3(A x y 82 =MF MA +

A. B. C. D. 3.已知方程()2 20x py p =->的抛物线上有一点M (),3m -,点M 到焦点F 的距离为5, 求m 的值。 4、在正方体1111D C B A ABCD -的侧面11A ABB 内有一动点P 到直线11B A 与直线BC 的距 离相等,则动点P 所在的曲线的形状为…………( ) 考点2 抛物线的标准方程 题型:求抛物线的标准方程 例4、求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线上 巩固练习: 1、若抛物线的焦点与双曲线的右焦点重合,则的值 2、对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上; ③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号) )0,0()62,3()4,2()62,3(-240x y --=2 2y px =2 213 x y -= p A B 1 B A (A) A B 1 B (B) A B 1 B (C) A B 1 B A (D)

椭圆、双曲线、抛物线相关知识点的总结-教师版

椭圆、双曲线、抛物线相关知识点总结 一、 椭圆的标准方程及其几何性质 椭圆的定义:我们把平面内与两个定点12F F ,的距离的和等于常数()12F F 大于的点的轨 迹叫做椭圆。符号语言:()12222MF MF a a c +=> 将定义中的常数记为a 2,则:①.当122a F F >时,点的轨迹是 椭圆 ②.当122a F F =时,点的轨迹是 线段 ③.当122a F F <时,点的轨迹 不存在 标准方程 122 22=+b y a x )0(>>b a 122 22=+b x a y )0(>>b a 图 形 性质 焦点坐标 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦 距 c F F 221= c F F 221= 范 围 a x ≤,b y ≤ b x ≤,a y ≤ 对 称 性 关于x 轴、y 轴和原点对称 顶点坐标 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴 长 长轴长=a 2,短轴长=b 2;长半轴长=a ,短半轴长=b a b c 、、关系 222a b c =+ 离 心 率 )10(<<= e a c e 通 径 22b a 焦点位置不确定的椭圆方程可设为:()2 2 10,0,mx ny m n m n +=>>≠ 与椭圆12222=+b y a x 共焦点的椭圆系方程可设为:()22 22 21x y k b a k b k +=>-++

二、 双曲线的标准方程及其几何性质 双曲线的定义:我们把平面内与两个定点12F F ,的距离的差的绝对值等于常数()12F F 小于 的点的轨迹叫做双曲线。符号语言:()12 -222MF MF a a c =< 将定义中的常数记为a 2,则:①.当122a F F <时,点的轨迹是 双曲线 ②.当122a F F =时,点的轨迹是 两条射线 ③.当122a F F >时,点的轨迹 不存在 标准方程 22 22 1x y a b -= (0,0)a b >> 22 22 1y x a b -= (0,0)a b >> 图 形 性质 焦点坐标 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦 距 c F F 221= c F F 221= 范 围 x a ≥,y R ∈ y a ≥,x R ∈ 对 称 性 关于x 轴、y 轴和原点对称 顶点坐标 )0,(a ± ),0(a ±, 实轴、虚轴 实轴长=a 2,虚轴长=b 2;实半轴长=a ,虚半轴长=b a b c 、、关系 222c a b =+ 离 心 率 (e 1)c e a => 渐近线方程 b y x a =± a y x b =± 通 径 22b a 焦点位置不确定的双曲线方程可设为:()2 2 10mx ny mn -=> 与双曲线22 221x y a b -=共焦点的双曲线系方程可设为:() 22 222 21x y b k a a k b k -=-<<-+ y o a b x x y o a b x y a o

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

3.3.1-3.3.2抛物线的方程与性质 教师版

抛物线的方程与性质 【要点梳理】 要点一、抛物线的定义 定义:平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 要点二、抛物线的标准方程 标准方程的推导 如图,以过F 且垂直于 l 的直线为x 轴,垂足为K.以F,K 的中点O 为坐标原点建立直角坐标系xoy. 设|KF|=p(p >0),那么焦点F 的坐标为( ,0)2p ,准线l 的方程为2 p x =-. 设点M (x,y )是抛物线上任意一点,点M 到l 的距离为d.由抛物线的定义,抛物线就是集合 }|||{d MF M P ==. .|2 |)2(|,2 |,)2(||2222p x y p x p x d y p x MF +=+- ∴+=+-= 将上式两边平方并化简,得2 2(0)y px p => ① 方程①叫抛物线的标准方程, 它表示的抛物线的焦点在x 轴的正半轴上,坐标是( ,0)2p 它的准线方程是2 p x =-. 抛物线标准方程的四种形式: 根据抛物线焦点所在半轴的不同可得抛物线方程的的四种形式 22y px =,22y px =-,22x py =,22x py =-(0)p > 要点三、抛物线的简单几何性质:

抛物线标准方程2 2(0)y px p =>的几何性质 范围:{0}x x ≥,{}y y R ∈, 抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x≥0;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. 对称性:关于x 轴对称 抛物线y 2=2px (p >0)关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴 顶点:坐标原点 抛物线y 2=2px (p >0)和它的轴的交点叫做抛物线的顶点。抛物线的顶点坐标是(0,0) 离心率:1e =. 抛物线y 2=2px (p >0)上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率。 用e 表示,e=1。 抛物线的通径 通过抛物线的焦点且垂直于对称轴的直线被抛物线所截得的线段叫做抛物线的通径。 因为通过抛物线y 2=2px (p >0)的焦点而垂直于x 轴的直线与抛物线两交点的坐标分别为,2p p ?? ??? ,,2p p ??- ??? ,所以抛物线的通径长为2p ;这就是抛物线标准方程中2p 的一种几何意义。 另一方面,由通径的定义我们还可以看出,P 刻画了抛物线开口的大小,P 值越大,开口越宽;P 值越小,开口越窄. 抛物线标准方程几何性质的对比

高中数学抛物线-高考经典例题

1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK == 。 ⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。所有这样的圆过定点F 、准线是公切线。 ⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。 ⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。所有这样的圆的公切线是准线。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 4抛物线px y 22 =的图像和性质: ①焦点坐标是:?? ? ??02,p , ②准线方程是:2 p x - =。 ③焦半径公式:若点),(00y x P 是抛物线px y 22 =上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02 p PF x =+ , ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2(2,2)P pt pt 或P px y y x 2),(2 =其中 5一般情况归纳: 方程 图象 焦点 准线 定义特征 y 2=kx k>0时开口向右 (k/4,0) x= ─k/4 到焦点(k/4,0)的距离等于到准线x= ─k/4的距离 k<0时开口向左 x 2=ky k>0时开口向上 (0,k/4) y= ─k/4 到焦点(0,k/4)的距离等于到准线y= ─k/4的距离 k<0时开口向下 抛物线的定义: 例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方程. C N M 1 Q M 2 K F P o M 1 Q M 2 K F P o y x

相关主题