搜档网
当前位置:搜档网 › 12第12讲 分式方程

12第12讲 分式方程

第12讲分式方程

本讲重点:分式方程的概念、解法及其应用.

【考点链接】

1.分式方程:分母中含有的方程叫分式方程.

2.解分式方程的一般步骤:

(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;

(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.

3.分式方程的应用:

分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:

(1)检验所求的解是否是所列;(2)检验所求的解是否 .

【典例探究】

考点1 分式方程的解法

『例1』(1)(2012梅州)解方程:;

(2)(2012苏州)解分式方程:;

(3)(2012山西)解方程:.

『解析』(1)方程两边都乘以(x+1)(x﹣1),得

4﹣(x+1)(x+2)=﹣(x2﹣1),整理,,3x=1,解得x=.

经检验,x=是原方程的解.故原方程的解是x=.

(2)去分母得:3x+x+2=4,解得:x=,

经检验,x=是原方程的解.

(3)方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,

化简,﹣6x=﹣3,解得x=.检验:x=时,2(3x﹣1)=2×(3×﹣1)≠0

所以,x=是原方程的解.

『备考兵法』解分式方程分三大步骤:

(1)方程两边都乘以最简公分母,约去分母,化分式方程为整式方程;

(2)解这个整式方程;

(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根.

考点2 列分式方程解应用题

『例2』(2012珠海)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支. (1)求第一次每支铅笔的进价是多少元?

(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?

『解析』(1)设第一次每支铅笔进价为x 元,根据题意列方程得,

=30,

解得,x=4,检验:当x=4时,分母不为0,故x=4是原分式方程的解. 答:第一次每只铅笔的进价为4元.

(2)设售价为y 元,根据题意列不等式为:

×(y ﹣4)+

×(y ﹣5)≥420,解得,y≥6.

答:每支售价至少是6元.

『备考兵法』分式方程的应用,解题时要检验,先检验所求x?的值是否是方程的解,再检验是否符合题意.

考点3 探究型问题 『例3』(2011杭州市模拟)阅读下列材料解答下列问题: 观察下列方程:○

132=+x x ;○256=+x x ;○3712

=+x

x ……

(1)按此规律写出关于x 的第n 个方程为 ,此方程的解为 (2)根据上述结论,求出)2(221

)

1(≥+=-++n n x n n x 的解.

『解析』(1)(1)

21n n x n x ++

=+;12,1x n x n ==+ . (2)(1)

111

n n x n n x +-+

=++-. 由(1)得1,11x n x n -=-=+, ∴11x n =+ 22x n =+ .

经检验,11x n =+,22x n =+是原方程的解. 『备考兵法』考查简单情形提出猜想是解这类问题的关键.

【当堂过关】

1. (2012宿迁模拟)方程

1

1

112+=-+x x x 的解是( ) A 、﹣1 B 、2 C 、1 D 、0

『解析』方程的两边同乘(x+1),得2x ﹣x ﹣1=1,解得x=2,检验得原方程的解为x=2. 『答案』B

A 、 2

x =

B 、3x =

C 、x=5

D 、无解

『解析』方程的两边同乘2(x-2),得3-2x=x-2,解并检验得5

3

x =

. 『答案』B

3. (2012长春模拟)小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x 米/分,根据题意,下面列出的方程正确的是( ) A .28002800

304-=x x

B .

28002800

304-=x x

C .

28002800

305-=x x

D .

28002800

30-=5x x

『解析』根据时间=路程÷速度,以及关键语“骑自行车比步行上学早到30分钟”可得出的

等量关系是:小玲上学走的路程÷步行的速度﹣小玲上学走的路程÷骑车的速度=30. 『答案』A

4. (2012重庆模拟)有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字不同外其余相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使

关于x 的分式方程

12ax x --+2=1

2x

-有正整数解的概率为 . 『解析』解分式方程得:x =2

2a

-,能使该分式方程有正整数解的只有0(a =1时得到的方

程的根为增根),∴使关于x 的分式方程12ax x --+2=1

2x

-有正整数解的概率为14.

『答案』1

4

5. (2012连云港)今年6月1日起,国家实施了中央财政补贴条例支持高效节能电器的推广使用,某款定速空调在条例实施后,每购买一台,客户可获财政补贴200元,若同样用11万元所购买的此款空调数台,条例实施后比实施前多10%,则条例实施前此款空调的售价为 元.

『解析』假设条例实施前此款空调的售价为x 元,根据题意得出

x

110000

(1+10%)=20

110000

-x ,解得:x =2200,经检验得出:x =2200是原方程的解.

『答案』2200

6. (1) (2012武汉)解方程:.

(2) (2012重庆)解方程:

解:(1)方程两边都乘以3x (x+5)得,6x=x+5,解得x=1, 检验:当x=1时,3x (x+5)=3×1×(1+5)=18≠0, 所以x=1是方程的根,因此,原分式方程的解是x=1.

(2)方程两边都乘以(x ﹣1)(x ﹣2)得,2(x ﹣2)=x ﹣1,2x ﹣4=x ﹣1,x=3, 经检验,x=3是原方程的解,所以,原分式方程的解是x=3.

7. (2012丹东模拟)某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2.5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕.两批文具的售价均为每件15元.

(1)问第二次购进了多少件文具?

(2)文具店老板在这两笔生意中共盈利多少元? 解:(1)设第一次购进x 件玩具,

x 1000=x

22500

﹣2.5,x=100,2x=2×100=200. 答:第二次购进200件文具.

(2)(100+200)×15﹣1000﹣2500=1000(元).答:盈利1000元. 8. (2012安顺)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米? 解:设原计划每天铺设管道x 米,则,

解得x=10,经检验,x=10是原方程的解. 答:原计划每天铺设管道10米.

【浙江两年中考】 1. (2012丽水)把分式方程

21

=x+4x

转化为一元一次方程时,方程两边需同乘以( ) A .x B .2x C .x +4 D .x(x +4)

『解析』根据各分母寻找公分母x(x +4),方程两边乘最简公分母,可以把分式方程转化为整式方程. 『答案』D

2. (2012台州)小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了1

4

,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( )

A .

B .

C .

D .

『解析』由题设公共汽车的平均速度为x 千米/时,则根据出租车的平均速度比公共汽车多20千米/时得出租车的平均速度为x +20千米/时.等量关系为:回来时路上所花时间比去时节省了

14,即回来时路上所花时间是去时路上所花时间的3

4

. 『答案』A

3. (2012温州)若代数式

2

1x 1

--的值为零,则x= .

『解析』由2

1x 1

--=0,得x=3. 『答案』3

4. (2012宁波)分式方程

x 21

=x+42

-的解是 . 『解析』方程的两边同乘2(x+4),得2(x ﹣2)=x+4,解得x=8.检验得x=8. 『答案』x=8

5. (2011义乌)解分式方程:

23-+x x =2

3

. 解:2(x +3)=3(x -2),解得:x =12,检验:当x =12时,x -2=12-2=10≠0, ∴原方程的根是x =12.

【命题趋势提醒】

分式方程是中考命题的重要内容之一,在中考中占有一定的比例,命题的形式有填空、选择、计算、解答题等,主要考查分式方程的解法和与分式方程有关的实际问题.

【迎考精炼】

一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选,多选,错选均不给分) 1. (2012芜湖模拟)分式方程

253

22x x x

-=--的解是( ) A 、x =﹣2 B 、x =2 C 、x =1 D 、x =1或x =2 『解析』方程的两边同乘(x ﹣2),得2x ﹣5=﹣3,解得x =1.检验得原方程的解为x =1. 『答案』C

2. (2012成都)分式方程

3121

x x =- 的解为( ) A .1x = B . 2x = C . 3x = D . 4x =

『解析』去分母得3x ﹣3=2x ,移项得3x ﹣2x=3, x=3,检验3x =. 『答案』C

3. (2012山西模拟)分式方程

1223

x x =+的解为( ) A 、x =﹣1 B 、x =1 C 、x =2 D 、x =3 『解析』方程的两边同乘2x (x +3),得x +3=4x ,解得x =1.检验得原方程的解为x=1. 『答案』B

4. (2012年宿迁模拟)关于x 的方程

211

x a

x +=-的解是正数,则a 的取值范围是( ) A 、a<-1 B 、a ≠-2 C 、a <-1且a ≠-2

D 、a >-1且a ≠2

『解析』解方程后列不等式组求解. 『答案』C

5. (2012上海市奉贤调研试题)解方程2

2

12x x x x

-+=

-时,如果设2

y x x =-,那么原方程可变形为关于y 的整式方程是( )

A .2210y y --=;

B .2210y y +-=;

C .2210y y ++=;

D .2210y y -+=.

『解析』去分母即得. 『答案』B

6. (2012天水模拟)如图,点A 、B 在数轴上,它们所对应的数分别是﹣4与22

35

x x +-,且

点A 、B 到原点的距离相等.则x =( )

A 、-2.2

B 、2.2

C 、x =

7

9 D 、-

7

9

『解析』∵点A 、B 在数轴上,它们所对应的数分别是﹣4与22

35

x x +-,点A 、B 到原点的距

离相等,∴4=22

35

x x +-,∴x =2.2.检验:把x =2.2代入3x ﹣5≠0,∴分式方程的解为:x =2.2.

『答案』B

7. (教材习题变式题)方程1+1

)1(2

-+x x =0有增根,则增根是( )

A.1

B.-1

C.±1

D.0 『解析』使分母为0的根是增根. 『答案』A

8. (2012黑河模拟)分式方程11x x --=()()

12m x x -+有增根,则m 的值为( )

A 、0和3

B 、1

C 、1和﹣2

D 、3

『解析』∵分式方程

11x x --=()()

12m x x -+有增根,∴x﹣1=0,x+2=0,∴x=1,x=﹣2. 两边同时乘以(x ﹣1)(x+2),原方程可化为x (x+2)﹣(x ﹣1)(x+2)=m ,

整理得,m=x+2,当x=1时,m=1+2=3;当x=﹣2时,m=﹣2+2=0. 『答案』A

9. (2012沈阳模拟)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )

A 、6010%)801(3025=+-x x

B 、10%)801(30

25=+-x x

C 、

60

10

25%)801(30=

-+x x D 、

1025

%)801(30=-+x

x

『解析』若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通

比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程. 『答案』A

10. (2012綦江模拟)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个 甲型包装箱可装x 个鸡蛋,根据题意下列方程正确的是( ) A .x 10000-5010000

+x =10 B .

5010000-x -x 10000

=10

C .x 10000-50

10000-x =10

D .5010000+x -x

10000

=10

『解析』根据若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱

比每个乙型包装箱可多装50个鸡蛋,可列出分式方程. 『答案』B

二、填空题(本大题共6小题,每小题4分,共24分,请将答案填在横线上) 11. (2012无锡)方程

的解为 .

『解析』方程的两边同乘x (x ﹣2),得:4(x ﹣2)﹣3x=0,解得:x=8.检验得原方程的解为x=8. 『答案』x=8

12. (2012广安模拟)分式方程22

12525

x x x -=-+的解x =_____________.

『解析』方程两边都乘(2x +5)(2x -5),得()()()()2252252525x x x x x +--=+-,

整理,得635x =-,解得356x =-.经检验356

x =-是原分式方程的解. 『答案』35

6

-

13. (2012乐山模拟)当x= 时,

1

12

x =-. 『解析』去分母得x ﹣2=1,∴x=3,检验原方程的根为x=3. 『答案』3

14. (2012成都模拟)已知x =1是分式方程

x

k

x 311=+的根,则实数k = . 『解析』将x =1代入x k x 311=+得,1

3111k

=+, 解得,k =61.

『答案』6

1

15. (2012青岛模拟)某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用1小时,采用新工艺前每小时加工多少个零件?若设采用新工艺前每小时加工x 个零件,则根据题意可列方程为 .

『解析』由于某车间加工120个零件后,采用了新工艺,工效是原来的1.5倍,设采用新工艺前每小时加工x 个零件,那么采用新工艺后每小时加工1.5x 个零件,又同样多的零件就少用1小时,由此即可列出方程解决问题.

『答案』120120

11.5x x

-= 16. (2012阜新模拟)甲、乙两名同学同时从学校出发,去15千米处的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?若设乙每小时行x 千米,根据题意列出的方程是 .

『解析』若设乙每小时行x 千米,根据甲、乙两名同学同时从学校出发,去15千米处的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,可列出方程. 『答案』

1515112

x x -=+ 三、解答题(本大题共6小题,共46分.解答应写出文字说明、证明过程或演算过程)

17.(8分)(1)(2012宁夏模拟)解方程:31=-x ;

解:(1)原方程两边同乘(x ﹣1)(x+2),

得x (x+2)﹣(x ﹣1)(x+2)=3(x ﹣1),展开、整理得﹣4x=﹣5,解得x=4

5

, 检验:当x=

45时,(x ﹣1)(x+2)≠0,∴原方程的解为:x=4

5. (2)方程的两边同乘(x –1)(x+1),得3x+3–x –3=0,解得x=0.

检验:把x=0代入(x –1)(x+1)=–1≠0.∴原方程的解为:x=0.

18.(6分)(2012信阳市二中模拟)先化简32+x x ÷943

2-x ?2

1(1+323-x ),若结果等于

3

2

,求出相应的x 的值.

解:原式=

23

x x +?

23233

x x +-()()?1

2?223x

x -=32x . 由2

3x

=23

,可解得x = 19.(8分)(201淮安模拟)七(1)班的大课间活动丰富多彩,小峰与小月进行跳绳比赛.

在相同的时间内,小峰跳了100个,小月跳了140个.如果小月比小峰每分钟多跳20个,试求出小峰每分钟跳绳多少个? 解:设小峰每分钟跳x 个,则

=

,x=50,

检验:x=50时,x (x+20)=3500≠0.∴x=50是原方程的解. 答:小峰每分钟跳50个.

20.(8分)(2012扬州)为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?

解:设原计划每天种x 棵树,据题意得,

,解得x =30,经检验得出:x =30是原方程的解.

答:原计划每天种30棵树. 21.(8分)(2012徐州模拟)徐州至上海的铁路里程为650km .从徐州乘“C”字头列车A ,“D”字头列车B 都可到达上海,已知A 车的平均速度为B 车的2倍,且行驶时间比B 车少2.5h .

(1)设A 车的平均速度是xkm/h ,根据题意,可列分式方程: ; (2)求A 车的平均速度及行驶时间. 解:(1)设A 车的平均速度是xkm/h ,可列分式方程:

650650

2.52

x x -=. (2)设B 车的速度是xkn/h .

650650

2.52x x

-=.解得;x=130.2x=260. 650÷260=2.5故A 车的平均速度是260千米每小时,行驶的时间2.5小时.

22.(8分)(2012防城港模拟)上个月某超市购进了两批相同品种的水果,第一批用了2000

元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.

(1)求两批水果共购进了多少千克?

(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售

价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?

(利润率=成本

利润×100%)

解:(1)设第一批购进水果x 千克,则第二批购进水果 2.5x 千克,依据题意,得

x

x 5.25500

12000=+,解得x =200,经检验x =200是原方程的解,∴x +2.5x =700. 答:这两批水果共购进700千克. (2)设售价为每千克a 元,根据题意,得

%265500

20005500

2000%)101(700≥+---a ,

630a ≥7500×1.26,a ≥630

26

.17500?,∴a ≥15,

答:售价至少为每千克15元.

北师大版数学八下5.4《分式方程(第一课时)》 教案

分式方程 第一课时 一、教学目标: (1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义. (2)通过观察,归纳分式方程的概念. (3)体会分式方程到整式方程的转化思想. (4)掌握分式方程的解法 二、教学重点: 掌握分式方程的概念和分式方程的解法. 三、教学难点: 利用分式的基本性质、等式的基本性质将等式方程转化为一元一次方程去解,并体会两者的联系与区别. 四、教学过程: (一)回顾与思考 1. 什么叫做一元一次方程? 只含有一个未知数,并且未知数的指数为1,这样的方程叫做一元一次方程. 2. 下列方程哪些是一元一次方程? (1)3x-5=3 (2)x+2y=5 5)3(2=?x x 15 13)4(=+?x x 3.解一元一次方程的步骤有哪些? 去分母、去括号、移项、合并同类项、系数化为1. 4. 请解方程: 解: 去分母,得 5x-3(x+1)=15 去括号,得 5x-3x-3=15 移项,得 5x-3x=15+3 合并同类项, 得 2x=18 系数化为1,得 x=9 经检验:x=9是原方程的根. 15 13=+?x x

(二)新知探究 1.小麦实验田问题 有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg 和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg ,分别求出这两块试验田每公顷的产量. 你能找出这一问题中的所有等量关系吗? (1)第一块面积=第二块面积, (2)每公顷的产量土地面积 总产量= (3)第一块实验田每公顷的产量=+kg 3000第二块试验田每公顷的产量 如果设第一块实验田每公顷的产量为xkg ,那么第二块试验田每公顷的产量是(x+3000)kg. 根据题意,可得方程: 2.高速公路问题 从甲地到乙地有两条长路:一条是全长600km 的普通公路,另一条是全长480km 的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上快45h km /,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间. 这一问题中有哪些等量关系? 如果设客车由高速公路从甲地到乙地所需的时间为 xh ,那么它由普通公路从甲地到乙地所需的时间为2x h . 根据题意,可得方程 452600480=?x x 3.捐款问题 (这个题目不要求学生讨论.让学生独立完成.) 为了帮助遭受自然灾害的地区重建家园.某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人, 3000150009000+=x x

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

第六讲 函数与方程

函数与方程 一、函数的零点: 定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。 特别提醒: 函数零点个数的确定方法: 1、判断二次函数的零点个数一般由判别式的情况完成; 2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行; 3、对于一般函数零点的个数的判断问题不仅要在闭区间[] ,a b 上是连续不间断的,且f(a)?f (b )<0,还必须结合函数的图像和性质才能确定。函数有多少个零点就是其对应的方程有多少个实数解。 二、二分法: 定义:对于区间[] ,a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。 特别提醒: 用二分法求函数零点的近似值 第一步:确定区间[] ,a b ,验证:f(a)?f (b )<0,给定精确度; 第二步:求区间[] ,a b 得中点1x ; 第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)?f (x 1)<0,则令1b x =; 若f(x 1)?f (b )<0,则令1a x = 第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则 重复第二、三、四步。 (20-40分钟) 类型一求函数的零点 例1:求函数y =x -1的零点:

《分式方程》第二课时导学案

3.4.2 分式方程(二) ●学习目标 1.通过讨论交流说出解分式方程的步骤,并解分式方程。 2.小组交流讨论得出解分式方程验根的必要性及出现增根的原因。 ●学习重点 通过讨论交流熟练解分式方程,并说出解分式方程的步骤。 ●学习难点 小组交流讨论得出解分式方程验根的必要性及出现增根的原因。 ●学习过程 一.提出问题,引入新课 1、当 x 时,分式 无意义。 2、下列方程是分式方程的是( ) 二自主学习 目标:1.同桌间相互交流得出解分式方程的一般步骤 2.小组内讨论交流得出验根的必要性及方程出现增根的原因。 52433.=+x x A 775.-=x x B 2351.+=+x x C 2)1(3 1.=+x D 32--x x

内容:课本88-89页 方法:(1)自学例1,例2,自己总结得出解分式方程的一般步骤,同桌之间可互相交流。(2)自学议一议,说出分式方程出现增根的原因,不懂得地方在小组长的带领下进行交流。 时间:8分钟 三:合作交流 1:课本中出现的疑问。 2:分式方程出现增根的原因。 四:检测题 1.解方程: (1)13-x =x 4;(2)1210-x +x 215-=2. [分析]先总结解分式方程的几个步骤,然后解题. 解:(1)13-x =x 4 去分母,方程两边同乘以x (x -1),得 3x=4(x -1) 解这个方程,得x=4 检验:把x=4代入x (x -1)=4×3=12≠0, 所以原方程的根为x=4. (2)1210-x +x 215-=2

去分母,方程两边同乘以(2x -1),得 10-5=2(2x -1) 解这个方程,得x=4 7 检验:把x=47代入原方程分母2x -1=2×47-1=25≠0. 所以原方程的根为x=47. 五:小结 解分式方程一般需要经过哪几步骤? (1)在方程两边都乘以最简公分母,约去分母,化成整式方程。 (2)解这个整式方程。 (3)验根。 简记:一去分母-----乘以最简公分母。 二解整式方程。 三验根 六:反馈练习

分式方程的概念-解法及应用

分式方程的解法及应用 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 分式方程的概念以及解法; ● 分式方程产生增根的原因; ● 分式方程的应用题。 重点难点: ● 重点:分式方程转化为整式方程的方法及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象出数量 关系. ● 难点:检验分式方程解的原因,实际问题中数量关系的分析. 学习策略: ● 经历“实际问题——分式方程——整式方程”的过程,发展分析问题、解决问题的能力,渗透数学的转化思想,培 养数学的应用意识。 二、学习与应用 (一)什么叫方程?什么叫方程的解? 答:含有 的 叫做方程. 使方程两边相等的 的值,叫做方程的解. (二)分式的基本性质: 分式的分子与分母同乘(或除以)同一个 ,分式的值不变,这个性质叫做分式的基本性质.用式子表示是: M B M A B A M B M A B A ÷÷=??=,(其中M 是不等于0的整式). “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(三)等式的基本性质:等式的两边都乘(或除以)同一个数或 (除数不能为0),所得的结果仍是等式。 (四)解下列方程:(1)9-3x =5x +5; (2)5 2221+-=--y y y 知识点一:分式方程的定义 里含有未知数的方程叫分式方程。 要点诠释: (1)分式方程的三个重要特征:①是 ;②含有 ;③分母里含 有 。 (2)分式方程与整式方程的区别就在于分母中是否含有 (不是一般 的字母系数),分母中含有未知数的方程是 ,不含有未知数的方程是 方程,如:关于x 的方程 x x =-21和12723+=-x x 都是 方程,而关于x 的方程x x a =-21和d c b x =+1都是 方程。 知识点二:分式方程的解法 (一)解分式方程的基本思想 把分式方程化为 方程,具体做法是“去分母”,即方程两边同乘最简公分 母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 (二)解分式方程的一般方法和步骤 (1) ,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个 方程。 (3) :把整式方程的根代入最简公分母,使最简公分母不等于零的根是 原方程的根,使最简公分母等于零的根是原方程的 。 注:分式方程必须 ;增根一定适合分式方程转化后的整式方程, 知识要点——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听 课学习。请在虚线部分填写预习内容,在实线部分填写课堂学习内容。课堂笔记或者其它补 充填在右栏。详细内容请参看网校资源ID :#tbjx5#233542

第8讲 函数与方程

第八讲《函数与方程》 【学习目标】理解零点与方程实数解的关系,掌握函数的概念,性质,图像和方法的综合问题,熟悉导数与零点的结合,方程,不等式,数列与函数结合的问题。【基础知识回顾】: 1、 2.用二分法求方程近似解的一般步骤:

【基础知识自测】 1、已知不间断函数)(x f 在区间[]b a ,上单调,且)()(b f a f ?<0,则方程0)(=x f 在区间??b a ,上 ( ) (A ) 至少有一实根 ( B ) 至多有一实根 (C )没有实根 ( D )必有唯一的实根 2、函数x x f x 2ln )(- =的零点所在的大致区间是( ) (A ) (1,2) ( B ) (2,3) ( C ) (e,3) ( D )(e,+∞) 4、若函数)(x f 的图像与函数)(x g 的图像有且只有一个交点,则必有( ) (A )、函数)(x f y =有且只有一个零点 (B )、函数)(x g y =有且只有一个零点 C 、函数)()(x g x f y +=有且只有一个零点 D 、函数)()(x g x f y -=有且只有一个零点 5、已知y=x(x-1)(x+1)的图像如图所示,令f(x)=x(x-1)(x+1)+0.01,则下列关于f(x)=0的解得叙述正确的是 ① 有三个实根 ② 当x>1时,恰有一实根 ③当0

分式方程(第二课时)教学设计

分式方程(2) 〖教学目标〗 ◆1、掌握用分式方程解应用题的一般方法和步骤. ◆2、理解公式变形的实质就是简单的字母分式方程,其在变形过程中的方法和分式方程的解法一致,但应注意谁是常量,谁是变量. ◆3、掌握简单的公式变形方法,在实际应用中能基本变形. 〖教学重点与难点〗 ◆教学重点:利用分式方程解应用题和公式变形是本节重点. ◆教学难点:公式变形中用到字母分式方程的知识,学生较难理解,是本节难点. 〖教学过程〗 (一):1:复习用一元一次方程解应用题的一般步骤 ① 理解问题,搞清未知和已知,分析数量关系 ② 制订计划,考虑如何根据等量关系设元,列出方程 ③ 执行计划,列出方程并求解 ④ 回顾,检验答案的正确性及是否符合题意 2:用分式方程解应用题的一般步骤和一元一次方程类似。 例1:工厂生产一种电子配件,每只成本为2元,毛利率为25%,后 来该工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%,问这种配件每只的成本降低了多少元?(精确到0.01元) 分析:这道题主要弄清楚一个分式,毛利率=100%-?售价成本成本

解:设这种电子配件每只的成本降低了X 元,改进工艺前,每只售 价为2(125%) 2.5?+=元,由题意得2.5(2)25%15%2x x --=+- 解这个方程约x=314 0.21≈(元) 经检验:314 x =是方程的根,且符合题意 答:每只成本降低了0.21元。 (二):分式变形:公式变形其实就是解字母方程,注意把要表示的字母当成 未知数,其余的当成已知数。 例2:把公式111f u v =+ 变为已知f 、v ,求u 的公式 111v f u f v fv -=-= fv u v f ∴= - ②当堂训练:已知商品的买入价为a ,售出价为b ,毛利率b a p a -= (b>a )把这个分式变形成已知p 、b ,求a 的分式 解:pa=b-a pa+a=b (p+1)a=b 1b a p =+ (三):课内练习:见书本习题 (四):作业:见作业题 教学反思: 这个内容是要我们掌握用分式方程解应用题的一般方法和步骤.理解公式变形的实质就是简单的字母分式方程,其在变形过程中的方法和分式方程的解法

《分式方程(第一课时)》教学设计

分式方程(第1课时)教学设计 一、教学目标 知识与能力(1)了解分式方程的概念。 (2)了解需要对分式方程的解进得检验的原因。 过程与方法会用去分母的方法解可化为一元一次方程的简单分式方程,体会化归思想和程序化思想。 情感态度与价值观通过对本节课的学习使学生养成严谨的数学思维,培养学生发现问题,分析问题,解决问题的能力。 二、教学重难点 重点利用去分母的方法解分式方程。 难点了解用去分母的方法解分式方程产生增根的原因。 三、学情及学法分析 这是八年级学生第一次接触分式方程,在对整式方程的认识还不够深入的情况下,就遇到比解整式方程复杂的求解过程和可能产生增根的新情况,学生对此内容的接受会有很大困难,特别是产生增根的原因,学生没有认知准备。 四、教学过程 1、创设情境,引入课题 问题1 为了解决引言中的问题,我们得到了方程 9060 3030 v v = +- 。仔细观察这个方程, 未知数的位置有什么特点? 师生活动:学生独立思考并作答。 设计意图:由实际问题引出分母中含有未知数胡方程,让学生了解研究分式方程的必要性。 追问1:方程12 23 x x = + , 2 110 525 x x = -- , 2 1 133 x x x x =+ ++ 与上面的方程有什么共同 特征? 追问2:你能再写出几个分式方程吗? 设计意图:让学生进一步巩固对分式方程概念的认识。 2、思考探索,获取新知 问题2 你能试着解分式方程 9060 3030 v v = +- 吗? 师生活动:学生分组讨论,相互交流。教师适当给出提示和纠正。并派出学生代表将不同的解法展示在黑板上,学生相互交流。 设计意图:让学生在已有的知道经验基础上,尝试解分式方程。 问题3 这些解法有什么共同特点? 师生活动:学生讨论之后,教师总结,这些解法的共同点是先去分母将分式方程转化为整式方程式,再解整式方程,进而通过以下几个问题明确解分式方程的方法和依据: (1)如何把它转化为整式方程? (2)怎样去分母? (3)在方程两过乘什么样的式子才能把每一个分母都约去? (4)这样做的依据是什么? 学生思考后得出结论:分母中含有未知数的方程,通过去分母就化为整式方程了。利用等式的性质2可以在方程两边都乘以一个式子——各分母的最简公分母。 设计意图:通过探究活动,学生探索出解分式方程的基本思路是将分式方程化为整式方程,

分式方程的解法及应用(提高)

分式方程的解法及应用(提高) 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ●了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. ●会列出分式方程解简单的应用问题. 学习策略: ●解分式方程去分母是关键; ●解分式方程的应用注意找等量关系,最后要验根. 二、学习与应用 1.一艘轮船在静水中的速度是20km/h,水流速度为v km/h,则轮船顺流航行的速度为,逆流航行的速度为 ,顺流航行100km所用的时间为,逆流航行60km所用的时间为 . 2. 解方程 21101 1 36 x x ++ -=时,去分母,去括号后为 . 3.将方程 11111 24396 x x x x +++=去分母后得到方程________. 要点一、分式方程的概念 分母中含有的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含 有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一 般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有 未知数的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对 要点梳理——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源 ID:#45981#405285 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

分式方程的概念及解法

分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和 都是分式方程,而关于的方程和都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。 规律方法指导 1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 1、下列各式中,是分式方程的是() A.B.C.D. 举一反三:

第二讲函数与方程(答案)

第二讲 函数与方程 A: 题型一 判断给定函数有无零点以及零点个数的确定 1.判断下列函数在给定区间上是否存在零点: (1)f (x )=x 2-3x -18,x ∈[1,8]; (2)f (x )=x 3-x -1,x ∈[-1,2]; (3)f (x )=log 2(x +2)-x ,x ∈[1,3]. 解(1)方法一 因为f(1)=-20<0,f(8)=22>0, 所以f(1)·f(8)<0,故f(x)=x 2-3x-18,x ∈[1,8]存在零点. 方法二 令x 2-3x-18=0,解得x=-3或6, 所以函数f(x)=x 2-3x-18,x ∈[1,8]存在零点. (2)∵f (-1)=-1<0,f(2)=5>0, ∴f (x )=x 3-x-1,x ∈[-1,2]存在零点. (3)∵f (1)=log 2(1+2)-1>log 22-1=0. f(3)=log 2(3+2)-3<log 28-3=0.∴f (1)·f (3)<0 故f(x)=log 2(x+2)-x 在x ∈[1,3]上存在零点. 2.求下列函数的零点: (1)y =x 3-7x +6;(2)y =x +x 2-3. 解(1)∵x 3-7x+6=(x 3-x)-(6x-6) =x(x 2-1)-6(x-1)=x(x+1)(x-1)-6(x-1) =(x-1)(x 2+x-6)=(x-1)(x-2)(x+3) 解x 3-7x+6=0,即(x-1)(x-2)(x+3)=0 可得x 1=-3,x 2=1,x 3=2. ∴函数y=x 3-7x+6的零点为-3,1,2. (2)∵x+.) 2)(1(23322 x x x x x x x --=+-=- 解x+,032=-x 即x x x )2)(1(--=0,可得x=1或x=2. ∴函数y=x+x 2-3的零点为1,2. (3)32)(2+--=x x x f ;(4)1)(4-=x x f (5)322--=x x y (6)x x y 1 - =(7)72)(+=x x f (8)2223+--=x x x y (9)6423++-=x x x y 2.(1)求函数x x x x f 23)(23+-=的零点的个数; 答案1 (2)求函数x x x f 64)(3-=的零点的个数; (3)求函数x x x f 4 )(- =的零点的个数; (4)求方程02424=--x x 在区间[-1,3]内至少有几个实数解; (5)求函数123+--=x x x y 在[0,2]上的零点的个数;

分式方程的概念解法及应用

分式方程的概念,解法及应用 目标认知 学习目标: 1.使学生理解分式方程的意义,掌握可化为一元一次方程的分式方程的一般解法. 2.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一 次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧. 3.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未 知问题转化成已知问题,从而渗透数学的转化思想. 4.能够利用分式方程解决实际问题,能从实际问题中抽象出数量关系,体会方程与实际问题的联系; 5.通过实际问题的解决,使分析问题和解决问题的能力得到培养和训练,进一步体验“问题情景——建立模型——求解——解释和应用”的过程; 重点: 分式方程转化为整式方程的方法及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象出数量关系. 难点: 检验分式方程解的原因,实际问题中数量关系的分析. 知识要点梳理

要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于 的方程和 都是分式方程,而关于

的方程和 都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。

第12讲 函数与方程

函数与方程 1、 掌握函数的零点和二分法的定义. 2、 会用二分法求函数零点的近似值。 一、函数的零点: 定义:一般地,如果函数()y f x =在实数a 处的值等于零即()0f a =,则a 叫做这个函数的零点。对于任意函数,只要它的图像是连续不间断的,其函数的零点具有下列性质:当它通过零点(不是偶次零点)时函数值变号;相邻两个零点之间的所有的所有函数值保持同号。 特别提醒: 函数零点个数的确定方法: 1、判断二次函数的零点个数一般由判别式的情况完成; 2、对于二次函数在某个闭区间上零点的个数以及不能用判别式判断的二次函数的零点,则要结合二次函数的图像进行; 3、对于一般函数零点的个数的判断问题不仅要在闭区间[],a b 上是连续不间断的,且f(a)?f (b )<0,还必须结合函数的图像和性质才能确定。函数有多少个零点就是其对应的方程有多少个实数解。 二、二分法: 定义:对于区间[],a b 上连续的,且()()0f a f b -<的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而等到零点近似值的方法,叫做二分法。

特别提醒: 用二分法求函数零点的近似值 第一步:确定区间[],a b ,验证:f(a)?f (b )<0,给定精确度; 第二步:求区间[],a b 得中点1x ; 第三步:计算()1f x ;若()1f x =0,则1x 就是函数零点;若f(a)?f (x 1)<0,则令1b x =; 若f(x 1)?f (b )<0,则令1a x = 第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点近似值a ()b 或,否则 重复第二、 三、四步。 类型一求函数的零点 例1:求函数y =x -1的零点: 解析:令y =x -1=0,得x =1, ∴函数y =x -1的零点是1. 答案:1 练习1:求函数y =x 3 -x 2 -4x +4的零点. 答案:-2,1,2. 练习2:函数f (x )=2x +7的零点为( ) A .7 B .7 2 C .-72 D .-7 答案:C 类型二 零点个数的判断 例2:判断函数f (x )=x 2-7x +12的零点个数 解析:由f (x )=0,即x 2-7x +12=0得 Δ=49-4×12=1>0, ∴方程x 2 -7x +12=0有两个不相等的实数根3,4, ∴函数f (x )有两个零点,分别是3,4. 答案:2个 练习1:二次函数y =ax 2 +bx +c 中,a ·c <0,则函数的零点个数是( )

(完整版)分式方程的解法及应用(基础)

分式方程及应用 【典型例题】 类型一、判别分式方程 1、下列方程中,是分式方程的是( ). A .3214312x x +--= B .124111x x x x x -+-=+-- C .21305x x += D .x a x a b +=,(a ,b 为非零常数) 类型二、解分式方程 2、 解分式方程(1) 10522112x x +=--;(2)225103x x x x -=+-. 举一反三: 【变式】解方程:21233x x x -=---. . 类型三、分式方程的增根 3、m 为何值时,关于x 的方程 223242 mx x x x +=--+会产生增根? 举一反三: 【变式】如果方程11322x x x -+=--有增根,那么增根是________. (二)分式方程的特殊解法 一、交叉相乘法 例1.解方程:231+= x x 二、化归法 例2.解方程: 01 2112=---x x 三、左边通分法

例3:解方程: 87178=----x x x 四、分子对等法 例4.解方程:)(11b a x b b x a a ≠+=+ 五、观察比较法 例5.解方程: 417425254=-+-x x x x 六、分离常数法 例6.解方程: 87329821+++++=+++++x x x x x x x x 七、分组通分法 例7.解方程:4 1315121+++=+++x x x x (三)分式方程求待定字母值的方法 例1.若分式方程 x m x x -=--221无解,求m 的值。 例2.若关于x 的方程 11122+=-+-x x x k x x 不会产生增根,求k 的值。 例3.若关于x 分式方程 432212-=++-x x k x 有增根,求k 的值。 例4.若关于x 的方程 1151221--=+-+-x k x x k x x 有增根1=x ,求k 的值。 . 类型四、分式方程的应用 例、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲 班种60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两 班每小时各种多少棵树? 举一反三:

分式方程第一课时教案

课题:8.5分式方程 (第1课时) 教学目标:1 ?经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用. 2. 经历“实际问题-分式方程方程模型”的过程,发展学生分析问题、解决 问题的能力,渗透数学的转化思想人体,培养学生的应用意识。 3. 在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问 题的进取心,体会数学的应用价值. 教学重点:将实际问题中的等量关系用分式方程表示 教学难点:找实际问题中的等量关系 教学过程 教学过程集体讨论内容 一、情境创设 1、甲、乙两人加工同一种服装,乙每天比甲多加工1件,已知乙加工 24件服装所用时间与甲加工20件服装所用时间相同.甲每天加工多少服 装? 如果设甲每天加工x件服装,那么乙每天加工件服装, 根据题意,可列出方程: 2、一个两位数的各位数字是4,如果把各位数字与十位数字对调,那 么所得的两位数与原两位数的比值是-。原两位数的十位数字是几? 4 如果设原两位数的十位数字是X,那么可以列出方程: 3、某校学生到距离学校15km的山坡上植树,一部分学生骑自行车出 发40min后,另一部分学生乘汽车出发,结果全体学生同时到达。已知汽 车的速度是自行车的速度的3倍,求自行车速度。 如果设自行车的速度是x km/h,那么可列出方程: 二、探索活动 1、可以米取不同的方式,探寻各个实际问题中的数量关系。(如列表、画 线段示意图等) 2、上面所得到的方程有什么共同特点?(学生可分组讨论交流) 分母中含有未知数的方程叫做分式方程。 3、分式方程与整式方程有什么区别? 4、探寻分式方程的解法:如何解分式方程24=20?(让学生各抒己见) X 1 X 可以引导学生类比猜想,可以先猜想在验证。 说明:解分式方程的一般步骤是先去分母,;把不熟悉的分式方程转化 为熟悉的一兀一次方程来解决。 三、例题教学 3 2 例1解方程:---- 0。 x x 2 教师可以板书出解分式方程的一般过程及完整的书写格式。

人教版-数学-八年级上册--16.3 分式方程 第一课时 教案

16.3 分式方程(1) 一、教学目标 1.使学生理解分式方程的意义. 2.使学生掌握可化为一元一次方程的分式方程的一般解法. 3.了解解分式方程解的检验方法. 4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想. 二、教学重点和难点 1.教学重点: (1)可化为一元一次方程的分式方程的解法. (2)分式方程转化为整式方程的方法及其中的转化思想. 2.教学难点:检验分式方程解的原因 3.疑点及分析和解决办法: 解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握. 三、教学方法 启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法. 四、教学手段 演示法和同学练习相结合,以练习为主. 五、教学过程 (一)复习及引入新课 1.提问:什么叫方程?什么叫方程的解? 答:含有未知数的等式叫做方程. 使方程两边相等的未知数的值,叫做方程的解.

解:(1)当x=0时, 右边=0, ∴左边=右边, 这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程. (二)新课 板书课题: 板书:分式方程的定义. 分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程. 练习:判断下列各式哪个是分式方程. 在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程. 先由同学讨论如何解这个方程.

分式方程的概念-解法及应用

分式方程的解法及应用 一、目标与策略 爭抡明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: 分式方程的概念以及解法; 分式方程产生增根的原因; 分式方程的应用题。 重点难点: 重点:分式方程转化为整式方程的方法及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象岀数量 关系. 难点:检验分式方程解的原因,实际问题中数量关系的分析. 学习策略: 经历“实际问题一一分式方程一一整式方程”的过程,发展分析问题、解决问题的能力,渗透数学的转化思想,培养数学的应用意识。 二、学习与应用 “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾一一复习 学习新知识之前,看看你的知识贮备过关了吗?*答:含有的叫做方程. 使方程两边相等的............... …的值,叫做方程的解. (二)分式的基本性质: 分式的分子与分母同乘(或除以)同一个,分式的值不变,这个性质叫做分式的基本性质?用式子表示是: A A M A A M(其中M是不等于0的整式)

(三)等式的基本性质:等式的两边都乘(或除以)同一个数或 ................... (除数不能为0),所得的结果仍是等式。 (四)解下列方程:(1)9—3x= 5x+ 5; (2)y y 12 y 2 2 5 I -- 知识要点一一预习和课堂学习■认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听 课学习。请在虚线部分填写预习内容,在实线部分填写课堂学习内容。课堂笔记或者其它补w 充填在右栏。详细内容请参看网校资源ID : #tbjx5#233542 - 知识点一:分式方程的定义 .......... 里含有未知数的方程叫分式方程。 要点诠释: (1)分式方程的三个重要特征:①是_______________ ;②含有 ____________ ;③分母里含 (2 )分式方程与整式方程的区别就在于分母中是否含有__________________ (不是一般 的字母系数),分母中含有未知数的方程是__________________ ,不含有未知数的方程是 _ 方程,女口:关于X的方程1 2 x和—卫7都是_____________ 方程,而关于X的 x x 2 2x 1 方程Lx 2 x和x 1d都是_______________________ 方程。 a be 粒:|知识点二:分式方程的解法 (一)解分式方程的基本思想 把分式方程化为_________ 方程,具体做法是“去分母”,即方程两边同乘最简公分 母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 (二)解分式方程的一般方法和步骤 (1)________ ,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个______ 方程。 (3) _____ :把整式方程的根代入最简公分母,使最简公分母不等于零的根是 原方程的根,使最简公分母等于零的根是原方程的 ________________ 。 注:分式方程必须_____________ ;增根一定适合分式方程转化后的整式方程,

分式方程第一课时教学设计

《分式方程》第一课时教案 教学目标: 知识与技能 通过观察、分析、归纳分式方程的概念,体会到分式方程可以作为实际问题的模型。 教学思考 通过对实际问题的分式,感受分式方程作为刻画现实世界的有效模型的意义。 解决问题 能够根据实际问题建立分式方程的的数学模型,并能归纳出分式方程的描述性定义,识别方程的类型。 情感与态度 通过问题情景激发学生的民族自豪感,引导树立环保意识。在建立分式方程的数学模型过程中,培养学生克服困难的勇气,锻炼数学思维能力。 教学重点和难点 重点:根据实际问题的数量关系列出分式方程,归纳、识别分式方程。 难点:根据实际问题中的等量关系列出分式方程。 课前准备 多媒体课件 教学过程 开门见山,板书课题《分式方程》

一、创设情景、引出新知 创设问题情景1、雅典奥运会110米栏决赛和男篮“八强”半决赛相关图片。 创设问题情景2、我国沙化较为严重的部分地区图片和对绿色世界向往的美丽画面。 创设这两个情景激发学生的学习积极性,展示两道问题: 1、刘翔在雅典奥运会110米栏中以12.91秒的成绩夺冠,被称为“世界飞人”。刘翔决心在下一次比赛中打破世界记 录,决心要以x 秒跑完110米栏,并且平均速度要提高 米/秒,你能不能根据题意列出方程呢? 2、奥运会期间姚明7场球个人投进2分球和3分球共得115分,为中国队进入八强立下汗马功劳,知道他一共投入 3分球所得分数是投入2分球所得分数的 ,请问他一共投进了几个3分球?(只列方程不解答) 通过这两道题目启发学生分析其中的相等关系,列出正确的方程,由此来引出新知识《分式方程》,为归纳分式方程的定义和找相等关系列分式方程作好铺垫。 二、系统归纳、应用新知 让学生通过观察以上问题得到的三个方程 (1) (3) (2) 100153100191.12110110= -x 53 31153=-x x 205000 4800+=x x

分式方程的概念及解法

变式】方程 中,x 为未知量,a,b 为已知数,且 ,则这个方程是( ) 分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1 .分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2 .分式方程与整式方程的区别就在于分母中是否含有未知数 ( 不是一般的字母系数 ) ,分母中含有未知 数的方程是分式方程,不含有未知数的方程是整式方程,如:关于 的方程 都是分式方程,而关于 的方程 和 都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化 为整式方程,然后利用整式方程的解法求解。 2 .解分式方程的一般方法和步骤 (1) 去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2) 解这个整式方程。 (3) 验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母 等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方 程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的 值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制 取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许 值之外的值,那么就会出现增根。 规律方法指导 1 .一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为 0,因此应如下检验:将 整式方程的解代入最简公分母,如果最简公分母的值不为 0,则整式方程的解是原分式方程的解,否则, 这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 举一反三:1、下列各式中,是分式方程的是( A . C . 和 B . D .

专题二 函数概念与基本初等函数 第五讲函数与方程 (1)

专题二 函数概念与基本初等函数Ⅰ 第五讲 函数与方程 一、选择题 1.(2018全国卷Ⅰ)已知函数0()ln 0?=?>? ,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)- B .[0,)+∞ C .[1,)-+∞ D .[1,)+∞ 2.(2017新课标Ⅲ)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .12- B .13 C .12 D .1 3.(2017山东)已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y x m = 的图象有且只有一个交点,则正实数m 的取值范围是 A .(])0,123,?+∞? B .(][)0,13,+∞ C .()223,?+∞? D .([)23,+∞ 4.(2016年天津)已知函数()f x =2(4,0,log (1)13,0 3)a x a x a x x x ?+,且1a ≠)在R 上单 调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是 A .(0,23] B .[23,34] C .[13,23]{34} D .[13,23){34 } 5.(2015安徽)下列函数中,既是偶函数又存在零点的是 A .y cos x = B .y sin x = C .y ln x = D .2 1y x =+ 6.(2015福建)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 A .6 B .7 C .8 D .9

相关主题