搜档网
当前位置:搜档网 › 第四章 隐马尔科夫模型和CpG岛预测

第四章 隐马尔科夫模型和CpG岛预测

Matlab学习系列34. 马尔可夫预测

33. 马尔可夫预测 马尔可夫预测,是一种预测事件发生的概率的方法。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。 马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须具有足够的统计数据,才能保证预测的精度与准确性。换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。 (一)经典马尔可夫模型 一、几个概念 状态:指某一事件在某个时刻(或时期)出现的某种结果; 状态转移:事件的发展,从一种状态转变为另一种状态; 马尔可夫过程:在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移是无后效性的,则这样的状态转移过程就称为马尔可夫过程。 状态转移概率:在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态i E 转为状态j E 的状态转移概率 ()(|)i j j i ij P E E P E E p →== 状态转移概率矩阵:假定某一个事件的发展过程有n 个可能的状

态,即1,,n E E ,则矩阵 1111n n nn p p P p p ????=?????? 其中,ij p 为从状态i E 转为状态j E 的状态转移概率,称为状态转移概率矩阵。 状态转移矩阵满足: (i) 01, ,1,,ij p i j n ≤≤= (ii) 1 1n ij j p ==∑ 二、状态转移矩阵的计算 即求出从每个状态转移到其它任何一个状态的状态转移概率ij p ,一般采用频率近似概率的思想进行计算。 例1某地区农业收成变化的三个状态,即E1“丰收”、E2“平收”和E3“欠收”。下表给出了该地区1960~1999年期间农业收成的状态变化情况(部分)。 计算该地区农业收成变化的状态转移概率矩阵。 datas=xlsread('Agriculture.xlsx');

隐马尔科夫模型

隐马尔科夫模型 一、引入 二、定义 三、隐马尔科夫模型的计算 (1)估值问题 (2)解码问题 (3)训练问题 四、隐马尔科夫各种结构 H M M的由来 ?1870年,俄国有机化学家V l a d i m i r V.M a r k o v n i k o v第一次提出马尔科夫模型 ?马尔可夫模型和马尔可夫链

? 隐式马尔可夫模型(H M M ) 马尔可夫性 ? 如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程 ? X (t+1) = f(X(t)) 马尔可夫链 ? 时间和状态都离散的马尔科夫过程称为马尔科夫链。 设在时刻t 的随机变量用t S 表示,其观察值用t s 表示,则如果当11s S ,

22s S =,……,t t s S =的前提下,11++=t t s S 的概率是如下式所示,则称为n 阶Markov 过程。 )|()|(1 1 111111t n t t n t t t t t t t s S s S P s S s S P +-+-++++===== (1) 这里t S 1 表示1S ,2S ,……,t S ,t s 1 表示1s ,2s ,……,t s ,t t s S 11=表示11s S =, 22s S =,……,t t s S =。特别的当如下式成立时,则称其为1阶Markov 过程, 又叫单纯马尔可夫过程。 )|()|(111 111t t t t t t t t s S s S P s S s S P =====++++ (2) 即:系统在任一时刻所处的状态只与此时刻的前一时刻所处的状态有关。而且,为了处理问题方便,考虑式(2)右边的概率与时间无关的情况,即: )|[)1,(1i t j t ij s S s S P t t P ===++ (3)

基于离散隐马尔科夫模型的语音识别技术

第24卷 第2期 2007年6月 河 北 省 科 学 院 学 报Journal of the Hebei Academy of Sciences Vol .24No .2June 2007 文章编号:1001-9383(2007)02-0008-04 基于离散隐马尔科夫模型的语音识别技术 高清伦,谭月辉,王嘉祯 (军械工程学院计算机工程系,河北石家庄 050003) 摘要:概述语音识别技术的基本原理,对当前三种主要识别技术———动态时间规整技术、隐含马尔科夫模型 技术及人工神经网络技术进行比较,重点介绍基于离散隐马尔科夫模型(DH MM )的语音识别系统的实现。关键词:语音识别;隐马尔科夫模型;动态时间规整;人工神经网络中图分类号:T N912.34 文献标识码:A Speech recogn iti on technology ba sed on d iscrete H MM GAO Q ing 2l un,TAN Yue 2hu i,WAN G J i a 2zhen (D epart m ent of Co m puter Engineering,O rdnance Engineering College,Shijiazhuang Hebei 050003,China ) Abstract:The conditi on and the basic p rinci p le of s peech recogniti on technol ogy are intr oduced,three differ 2ent kinds of s peech recogniti on syste m s such as DT W ,H MM ,ASR are compared,and p lace e mphasis on how t o realize DH MM in s peech recogniti on syste m is p resented e mphatically . Keywords:Speech recogniti on;H idden Markov Model (H MM );Dyna m ic Ti m e W ar p ing (DT W );A rtificial Neural Net w ork (ANN ) 语音识别技术是语音信号处理技术一个重要的研究方向,是让机器通过识别和理解过程把人 类的语音信号转变为相应的文本或命令的技术,它属于多维模式识别和智能计算机接口的范畴,涉及到声学、语音学、语言学、计算机科学、信号与信息处理和人工智能等诸多学科,是21世纪衡量一个国家信息科学技术发展水平的重要标准之一。 1语音识别技术概述 语音识别系统本质上是一种模式识别系统, 目前有很多语音识别算法,但其基本原理和基本 技术相似。一个完整的语音识别系统一般都包括有特征提取、模式匹配和参考模式库3个基本单元,它的基本结构如图1所示。 (1)特征提取 所谓特征提取就是从语音信号中提取用于语 音识别的有用信息,其基本思想是将预处理过的信号通过一次变换,去掉冗余部分,而把代表语音本质特征的参数抽取出来,如平均能量、平均跨零率、共振峰、LPC 系数、MFCC 系数等。 图1语音识别系统基本结构 (2)模式匹配 这是整个语音识别系统的核心,它是根据一定规则(如H MM )以及专家知识(如构词规则、语法规则、语义规则等),计算输入特征与参考模式 3收稿日期:2007-01-26 作者简介:高清伦(1976-),男,河北沧州人,硕士,主要从事信息工程理论应用方面的研究.

Markov的各种预测模型的原理与优缺点介绍

Markov的各种预测模型的原理与优缺点介绍 建立有效的用户浏览预测模型,对用户的浏览做出准确的预测,是导航工具实现对用户浏览提供有效帮助的关键。 在浏览预测模型方面,很多学者都进行了卓有成效的研究。AZER提出了基于概率模型的预取方法,根据网页被连续访问的概率来预测用户的访问请求。SARUKKAI运用马尔可夫链进行访问路径分析和链接预测,在此模型中,将用户访问的网页集作为状态集,根据用户访问记录,计算出网页间的转移概率,作为预测依据。SCHECHTER构造用户访问路径树,采用最长匹配方法,寻找与当前用户访问路径匹配的历史路径,预测用户的访问请求。XU Cheng Zhong等引入神经网络实现基于语义的网页预取。徐宝文等利用客户端浏览器缓冲区数据,挖掘其中蕴含的兴趣关联规则,预测用户可能选择的链接。朱培栋等人按语义对用户会话进行分类,根据会话所属类别的共同特征,预测用户可能访问的文档。在众多的浏览模型中,Markov模型是一种简单而有效的模型。Markov模型最早是ZUKERMAN等人于1999年提出的一种用途十分广泛的统计模型,它将用户的浏览过程抽象为一个特殊的随机过程——齐次离散Markov模型,用转移概率矩阵描述用户的浏览特征,并基于此对用户的浏览进行预测。之后,BOERGES等采用了多阶转移矩阵,进一步提高了模型的预测准确率。在此基础上,SARUKKAI建立了一个实验系统[9],实验表明,Markov预测模型很适合作为一个预测模型来预测用户在Web站点上的访问模式。 1 Markov模型 1.1 Markov模型 Markov预测模型对用户在Web上的浏览过程作了如下的假设。 假设1(用户浏览过程假设):假设所有用户在Web上的浏览过程是一个特殊的随机过程——齐次的离散Markov模型。即设离散随机变量的值域为Web空间中的所有网页构成的集合,则一个用户在Web中的浏览过程就构成一个随机变量的取值序列,并且该序列满足Markov性。 一个离散的Markov预测模型可以被描述成三元组,S代表状态空间;A是转换矩阵,表

基于隐马尔科夫模型的股指预测

基于隐马尔科夫模型的股指预测和股指期货模拟交易研究 张莎莎河南大学在读研究生商学院 引言 计算标的股票价格的加权值得到的结果,即是股票指数。股指期货也可称为股价指数期货、期指,是指以股价指数为标的物的标准化期货合约,双方约定在未来的某个特定日期,可以按照事先确定的股价指数的大小,进行标的指数的买卖,到期后通过现金结算差价来进行交割。2010年2月20日,中国金融期货交易所沪深300股指期货合约,以及详细的业务规程,由中国证监会正式批准施行。自2010年4月16日以来,在上海和深圳将近有300个股票指数期货合约正式开始交易。与股指期货相对应的是套期保值、组合风险管理和风险套利。对股票指数的预测,如果投资者判断的方向正确,那么就可以获得高回报,否则他们将遭受巨大损失。无论是在哪个或者领域,人们都希望找到一种能够预测股票走势的定量方法,以达到获得超额收益的目的。所谓的市场时机,就是要选择购买(做多)和卖出(做空)的时间,创造一套模拟程序来预测指数走势。根据时间和方法的选择,可划分为基本的定时和定时技术。基于时机的宏观经济,能够影响资产价格或行业预测的资产价格,一般适用于长期市场,决定未来发展趋势;而定时技术的选择,即使是在重复类似的交易价格的前提下,来确定资产价格的趋势,只要有足够的自由裁量权的赢家还是可以获得超额收益,主要适用于短期市场甚至高频市场。早在上世纪八十年代末,就有国外学者把隐马尔可夫模型定义为一个双重嵌套的随机过程。而国内金融工程领域对该模型的研究尚处于不成熟阶段。罗军2009年做出的广发证券研究报告表明,在国内,该模型在周择时的应用上还是卓有成效的。 一、相关理论 (一)马尔科夫过程 马尔科夫过程,指的是一类具有马尔科夫性的随机过程,因安德烈·马尔可夫(A.A.Markov,1856-1922)而得名。对于这个过程,如果该过程当前的状态是确定的,那么与之相应的过去的历史状态和以后的未来状态是不相关的。可将其定义如下:

数学建模之马尔可夫预测

马尔可夫预测 马尔可夫过程是一种常见的比较简单的随机过程。该过程是研究一个系统的 状况及其转移的理论。它通过对不同状态的初始概率以及状态之间的转移概率的研究,来确定状态的变化趋势,从而达到对未来进行预测的目的。 三大特点: (1)无后效性 一事物的将来是什么状态,其概率有多大,只取决于该事物现在所处的状态如何,而与以前的状态无关。也就是说,事物第n 期的状态,只与第n 期内的变化和第n-1期状态有关,而与第n-1期以前的状态无关。 (2)遍历性 不管事物现在所处的状态如何,在较长的时间内马尔可夫过程逐渐趋于稳定状态,而与初始状态无关。 (3)过程的随机性。 该系统内部从一个状态转移到另一个状态是,转变的可能性由系统内部的原先历史情况的概率值表示。 1.模型的应用, ①水文预测, ②气象预测, ③地震预测, ④基金投资绩效评估的实证分析, ⑤混合动力车工作情况预测, ⑥产品的市场占有情况预测。 2.步骤 ①确定系统状态 有的系统状态很确定。如:机床工作的状态可划分为正常和故障,动物繁殖后代可以划分为雄性和雌性两种状态等。但很多预测中,状态需要人为确定。如:根据某种产品的市场销售量划分成滞销、正常、畅销等状态。这些状态的划分是依据不同产品、生产能力的大小以及企业的经营策略来确定的,一般没有什么统一的标准。在天气预报中,可以把降水量划分为旱、正常和涝等状态。 ②计算初始概率()0i S 用i M 表示实验中状态i E 出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L ③计算一步转移概率矩阵

令由状态i E 转移到状态j E 的概率为()|ij j i P P E E =,则得到一步转移概率矩阵为: 1112121 2221 2n n n n nn p p p p p p P p p p ??????=??????L L M M M M L ④计算K 步转移概率矩阵 若系统的状态经过了多次转移,则就要计算K 步转移概率与K 步转移概率矩阵。 K 步转移概率矩阵为: 11121212221 2()k n n k n n nn p p p p p p P k p p p p ??????==??????L L M M M M L ⑤预测及分析 根据转移概率矩阵对系统未来所处状态进行预测,即: () ()111210212221 2K n K n n n nn p p p p p p S S p p p ??????=??????L L M M M M L 例题: 设某企业生产洗涤剂为A 型,市场除A 型外,还有B 型、C 型两种。为了生产经营管理上的需要,某企业要了解本厂生产的A 型洗涤剂在未来三年的市场占有倩况。为此,进行了两项工作,一是进行市场调查,二是利用模型进行预测。 市场调查首先全面了解各型洗涤剂在市场占有情况。年终调查结果:市场洗涤剂目前总容量为100万件,其中A 型占40万,B 型和C 型各占30万。 再者,要调杏顾客购买各型洗涤剂的变动情况。调查发现去年购买A 型产品的顾客,今年仍购A 型产品24万件,转购B 型和C 型产品备占8万件,去年购买B 型产品顾客,今年仍购B 型产品9万件,转购A 型15万件,转购C 型6万件,去年购买C 型产品的顾客,今年仍购C 型产品9万件,转购A 型15万件,转购B 型6万件。计算各型产品保留和转购变动率。 模型的建立: ①计算初始概率 用i M 表示i E 型产品出现的总次数,则初始概率为 ()()0 1 1,2,i i i n i i M S F i n M =≈= =∑L (1) ②计算各类产品保留和转购变动率

基于隐马尔可夫模型(hmm)的模式识别理论

基于隐马尔可夫模型(hmm)的模式 识别理论 报告人: 时间:2020年4月21日 地点:实验室

概述 基于隐马尔可夫模型(hmm)的模式识别方法在模式识别中有着广泛的应用。如语音识别、手写字识别、图想纹理建模与分类。hmm还被引入移动通信核心技术“多用户的检测”。近年来,另外在生物信息可学、故障诊断等领域也开始得到应用。 近几年已经已被学者用于人脸识别的研究之中,是今年来涌现出来的优秀人脸识别方法之一。 经过不断改进,尤其是最近的嵌入式隐马尔可夫模型(ehmm)已经在人脸识别方面取得很大的进展,经过实验,识别率较高,有很好的鲁棒性等优点。 隐马尔可夫模型基本理论依据来源于随机过程中马尔可夫过程理论。

马尔可夫及其马尔可夫过程 马尔可夫(A. Markov ,1856—1922)俄国数学家. 他开创了一种无后效性随机过程的研究,即在已知当前状态的情况下,过程的未来状态与其过去状态无关,这就是现在大家熟悉的马尔可夫过程.马尔可夫的工作极 大的丰富了概率论的内容,促使它成为自然科学和技术直接有关的最重要的数学领域之一. 在工程技术方面目前已被广泛用于通信,模式识别方面。

x(t) 与马尔可夫过程相关的概念. 随机变量与随机过程把随机现象的每个结果对应一个数,这种对应关系 称为随机变量.例如某一时间内公共汽车站等车乘客的人数,电话交换台 在一定时间内收到的呼叫次数等等,都是随机变量的实例. 随机过程随机过程是一连串随机事件动态关系的定量描述.即和“时间” 相关的随机变量。一般记为x(t)。比如在一天24小时,在每个整点时刻徐 州火车站的旅客数量。 马尔可夫过程与马尔可夫链设x(t)是一随机过程,过程在时刻t0+1所处 的状态与时刻t0所处的状态相关,而与过程在时刻t0之前的状态无关,这 个特性成为无后效性.无后效的随机过程称为马尔可夫过程(Markov Process). 举例:比如在万恶的旧社会流离失所的百姓在每天的饥饿程度是一个随机 过程。假如他们在t0时刻(今天)的饥饿状态是五分饱,他们在t0+1所 (明天)的饥饿状态的概率取决于t0时刻(今天),而和t0时刻(今天) 之前(昨天、前天。。。)无关。这样的一个随机过程就是一个马尔可 夫过程。

基于隐马尔科夫模型的移动应用端行为模式识别

摘要:随着移动应用的普及,作为恶意行为识别的基础,移动应用端的行为模式分析也成为当前研究热点。本文创新地从系统环境数据入手,通过对系统多方面数据的监控,建立隐马尔可夫模型,使用该模型对后续行为产生的系统环境数据进行隐马尔科夫估值计算,从而实现对后续行为模式的识别,同时在后续识别过程中不断优化模型。本文通过实验证明该方式具有一定有效性,为移动应用端行为模式识别提供了更多可能。 关键词:移动应用端;隐马尔可夫模型;行为模式 中图分类号:tp311.5 文献标识码:a 文章编号:1006-4311(2016)19-0173-03 0 引言 在移动设备迅速普及的今天,开展移动安全性研究势在必行。目前针对移动应用端恶意行为检测的方式主要是对移动应用端的应用程序进行反编译,分析其源码是否存在于恶意行为代码特征库,以此作为评判标准。但随着恶意行为代码特征库的不断增加会导致系统开销增大,检测速度变慢。另外,随着黑客们使用的代码混淆技术的发展,也使之能够逃避这种静态分析手段[1]。 因为程序的运行会造成系统环境数据变化,所以系统环境数据可以反映系统运行情况。本文提出一种基于隐马尔可夫模型的行为模式识别方式,通过对移动应用端系统运行环境的cpu使用率、内存使用率、进程数、服务数、流量数监测获得时间序列数据,对特定行为进行隐马尔科夫建模,以待测行为的时间序列与特定的模型之间相似度为评判标准,并在每次评判之后优化模型[2]。该方法目的在于有效识别行为模式,对移动端恶意行为分析的后续研究提供前提,丰富了行为检测的手段,具有一定的实用价值。 1 马尔可夫模型介绍 2 隐马尔可夫模型介绍 2.1 隐马尔可夫模型 在马尔可夫模型中,每一个状态代表一个可观察的事件。而在隐马尔科夫模型中观察到的事件是状态的随机函数,因此隐马尔科夫模型是一双重随机过程,其中状态转移过程是不可观察的,而可观察的事件的随机过程是隐蔽的状态转换过程的随机函数(一般随机过程)[3]。对于一个随机事件,有一观察值序列:o=o1,o2,…ot,该事件隐含着一个状态序列:q=q1,q2,…qt。 2.2 隐马尔科夫模型使用前提 假设1:马尔可夫性假设(状态构成一阶马尔可夫链)p(qi|qi-1…q1)=p(qi|qi-1)假设2:不动性假设(状态与具体时间无关)p(qi+1|qi)=p(qj+1|qj),对任意i,j 成立。 假设3:输出独立性假设(输出仅与当前状态有关)p(o1,…ot|q1,…,qt)=∏p(ot|qt)隐马尔科夫模型在解决实际问题的过程中,需要事先知道从前一个状态st-1,进入当前状态st的概率p(st|st-1),也称为转移概率,和每个状态st产生相应输出符号ot的概率p(ot|st),也称为发射概率。描述它的数学表达式为:λ={n,m,a,b,∏},下面对各个参数逐一描述: n表示隐状态s的个数,其取值为{s1,s2,…,sn}, m表示显状态o的个数,其取值为{o1,o2,…,on}, 2.3 隐马尔科夫可以解决的三个问题 ①评估问题:已知一个显状态序列o={o1,o2,…,on},并且有确定的λ={n,m,a,b,∏}组成的hmm参数,求发生此显状态的概率p(o|hmm)有效的解决算法是前向算法。 3 基于隐马尔科夫的移动应用端行为模式识别 3.1 获取时间序列

实验7 马尔科夫预测

实验7:马尔柯夫预测 7.1实验目的 1、了解状态及状态转移的概念,理解马尔科夫链定义和性质,能根据具体实例和研究目的划分状态; 2、掌握用Excel 软件计算一步转移概率矩阵的全过程; 3、掌握利用Excel 软件进行马尔科夫链、市场占有率、马尔科夫稳态的相关预测。 7.2实验原理 7.2.1 马尔柯夫预测的基本原理 马尔可夫预测法是马尔科夫过程和马尔科夫链在经济预测领域的一种应用,这种方法通过对事物状态划分、研究各状态的初始概率和状态之间转移概率来预测事物未来状态变化趋势,以预测事物的未来。 7.2.1.1马尔可夫链 若时间和状态参数都是离散的马尔科夫过程,且具有无后效性,这一随机过程为马尔可夫链。无后效性可具体表述为如果把随机变量序列{}(),Y t t T ∈的时间参数s t 作为“现在”,那么s t t >表示“将来”,s t t <表示“过去”,那么,系统在当前的情况()s Y t 已知的条件下,()Y t “将来”下一时刻所处的的情况与“过去”的情况无关,随机过程的这一特性称为无后效性。 7.2.1.2状态及状态转移 1、状态是指客观事物可能出现或存在的状况。在实际根据研究的不同事物、不同的预测目的,有不同的预测状态划分。 (1)预测对象本身有明显的界限,依状态界限划分。如机器运行情况可以分为“有故障”和“无故障”两种状态,天气有晴、阴、雨三种状态。(2)研究者根据预测事物的实际情况好预测目的自主划分。如:公司产量按获利多少人为的分为畅销、一般销售、滞销状态。这种划分的数量界限依产品不同而不同。 2、状态转移是指所研究的系统的状态随时间的推移而转移,及系统由某一时期所处的状态转移到另一时期所处的状态。发生这种转移的可能性用概率描述,称为状态转移概率 7.2.2状态转移概率矩阵及计算原理 1、概念:状态转移概率指假如预测对象可能有E 1,E 2,…,E n 共n 种状态,

人力供给预测之马尔科夫模型

人力供给预测之马尔科夫模型 马尔科夫模型是根据历史数据,预测等时间间隔点上的各类人员分布状况。此方法的基本思想是根据过去人员变动的规律,推测未来人员变动的趋势。因此,运用马尔科夫模型时假设——未来的人员变动规律是过去变动规律的延续。既是说,转移率要么是一个固定比率,要么可以通过历史数据以某种方式推算出。 步骤: (1)根据历史数据推算各类人员的转移率,得出转移率的转移矩阵;(2)统计作为初始时刻点的各类人员分布状况; (3)建立马尔科夫模型,预测未来各类人员供给状况。 运用马尔科夫模型可以预测一个时间段后的人员分布,虽然这个时间段可以自由定义,但较为普遍的是以一年为一个时间段,因为这样最为实用。在确定转移率时,最粗略的方法就是以今年的转移率作为明年的转移率,这种方法认为最近时间段的变化规律将继续保持到下一时间段。虽然这样很简便,但实际上一年的数据过于单薄,很多因素没有考虑到,一个数据的误差可能非常大。因为以一年的数据得出的概率很难保证稳定,最好运用近几年的数据推算。在推算时,可以采用简单移动平均法、加权移动平均法、指数平滑法、趋势线外推法等,可以在试误的过程中发现哪种方法推算的转移率最准确。尝试

用不同的方法计算转移率,然后用这个转移率和去年的数据来推算今年的实际情况,最后选择与实际情况最相符的计算方法。转移率是一类人员转移到另一类人员的比率,计算出所有的转移率后,可以得到人员转移率的转移矩阵。 转移出i类人员的数量 i类人员的转移率= (3-1) i类人员原有总量 人员转移率的转移矩阵: P11 P12 (1) P21 P22 (2) P = P31 P32 (3) (3-2)

基于隐马尔可夫模型的入侵检测方法

基于隐马尔可夫模型的入侵检测方法 赵婧,魏彬,罗鹏 摘要:针对当前网络安全事件频发以及异常检测方法大多集中在对系统调用数据的建模研究上等问题,提出一种基于隐马尔可夫模型的入侵检测方法。该算法基于系统调用和函数返回地址链的联合信息来建立主机进程的隐马尔可夫模型。此外,针对常用训练方法存在的不足,设计了一种快速算法用以训练模型的各个参数。实验结果表明:基于系统调用和函数返回地址链的联合信息的引入能够有效区分进程的正常行为和异常行为,大幅度降低训练时间,取得了良好的运算效果。 关键词:入侵检测;隐马尔可夫模型;系统调用序列 入侵检测作为一种网络安全防卫技术,可以有效地发现来自外部或内部的非法入侵,因此针对入侵检测算法的研究具有重要的理论和很强的实际应用价值。 基于动态调用序列对系统的入侵行为进行发掘是入侵检测领域主要的检测方法之一。自Forrest在1996年首次提出使用系统调用进行异常检测的思路和方法以来,有很多基于此的改进算法被提出。 文献提出一种基于频率特征向量的系统调用入侵检测方法,将正常系统调用序列抽取出的子序列的频率特征转换为频率特征向量。文献提出基于枚举序列、隐马尔科夫2种方法建立系统行为的层次化模型。然而,这类方法在误报率以及漏报率方面仍与实际需求有着一定的差距。 此外,由于隐马尔可夫模型(hiddenmarkovmodel,HMM)是一种描述离散时间内观察数据非常强大的统计工具,因此在基于主机的入侵检测研究中,HMM方法是目前重要的研究方向之一。 美国新墨西哥大学的Warrender等首次于1999年在IEEESymposiumonSecurityandPrivacy 会议上提出将HMM应用于基于系统调用的入侵检测中。2002年,Qiao等提出使用HMM对系统调用序列进行建模,利用TIDE方法划分状态序列的短序列,建立正常数据的状态短序列库来进行检测。2003年,Cho等提出用HMM对关键的系统调用序列进行建模。文献设计了一种双层HMM模型进行入侵检测,而其中所用到的训练方法存在局部最优以及时间效率较低等问题限制了其在实际中的应用。文献依据在网络数据包中发现的频繁情节,设计了基于HMM的误用检测模型。文献设计了一种基于节点生长马氏距离K均值和HMM的网络入侵检测方法。近些年,针对此方面的研究热度依然不减。然而,从目前的研究情况看,虽然基于隐马尔可夫模型的入侵检测技术能取得较好的检测效果,但是也存在着如下几个问题: 1)基于HMM的入侵检测技术主要集中在对主机的命令序列或者系统调用序列进行建模,单一的数据源提供的信息较少,因此检测效果仍然不够理想。 2)在线学习问题,隐马尔可夫模型的建立需要消耗大量的时间和空间对参数进行调整学习,这导致了HMM难以得到有效的利用。综上所述,为克服现有模型算法所存在的问题,提出一种新的基于系统调用和进程堆栈信息的HMM入侵检测方法,该方法的主要思想是将系统调用和函数返回地址信息作为检测数据源,并利用HMM来构建主机特权进程的正常行为模型。其次,针对经典模型训练法存在局部最优且算法的复杂度较高等问题,设计一个更为简单的训练算法来计算HMM的参数,进而提升算法效率。最后,设计了附加观察值和附加状态等参数,用以消除非完备的数据以及零概率对模型的影响。 1、隐马尔可夫模型 马尔可夫模型中的每个状态都与一个具体的观察事件相互对应,但实际问题可能会比Markov链模型所描述的情况更复杂,人们所能观察到的事件一般情况下并不是与状态完全

隐马尔科夫

隐马尔科夫模型 1.隐马尔科夫模型的定义及相关术语 定义:隐马尔科夫模型是关于时序的模型,其描述一个隐藏的马尔科夫链随机生成不可观测的随机状态序列,再由各个状态生成一个观测,从而生成可观测的随机序列的过程。 状态序列:隐藏的马尔科夫链随机生成状态序列; 观测序列:每一个状态可以生成一个观测,则状态序列可以生成观测序列。 模型参数:隐马尔科夫模型有三个参数:初始概率分布π,状态转移概率分布A,观测概率分布B。 2隐马尔科夫模型建立基于的假设 (1)齐次马尔科夫性假设。 隐藏的马尔科夫链在任意时刻t的状态只依赖于其前一刻的状态,与其他时刻的状态和观测无关,也与t时刻无关。 (2)观测独立性假设。 任意时刻的观测只与本时刻的状态有关,与其他状态及观测无关。 3隐马尔科夫的三个问题 (1)概率计算问题。给定隐马尔科夫模型λ=(π,A,B)和观测序列O,计算在该模型下,该观测序列出现的概率。 (2)学习问题。隐马尔科夫模型参数的学习。给定观测序列,估计模型λ=(π,A,B)的参数,使得在该模型下该观测序列出现的概率最大。 (3)预测问题。给定模型参数和观测序列,求最有可能的状态序列。 4.概率计算 前向计算和后向计算。<统计学习方法>P177有例子。 5.学习算法 (1)监督学习。 根据观测序列和状态序列组合。采用极大似然的思想估计状态转移概率:

^1a =ij ij N j A Aij =∑ 其中,ij A 表示训练集中状态i 转移到状态j 中频数。 同样可以得到,状态为j 观测为k 的概率: ^1jk ij M jk k B b A ==∑ (2)非监督学习方法。 当我们只知道观测序列O 而不知道状态序列I 时,可以将状态序列I 看做隐变量,从而采用EM 算法进行求解,则我们要求解的目标是: (|)(|,)(|)I P O P O I P I λλλ=∑ EM 算法的E 步: Q 函数: 其中(,|)(|,)|P I O P I O P λλλ---= (O ),因为分母为常数,所以省略。即上式仍符合: (,)=(log (,|)|,)I Q E P O I O λλλλ--的形式。 有: i11112221(,|)=()()...()i i i i iT iT iT T P O I b o a b o a b o λπ- 则: i1()(1)()11(,)log (,|)(log())(,|)(log(()))(,|) T T i t i t i t t I I t I t Q P O I a P O I b o P O I λλπλλλ---- +===++∑∑∑∑∑ 上式,右侧的三项分别独自包含了模型参数的一项,下面分别对每一项进行分析。 对第一项运用朗格朗日乘子法计算: 首先写出拉格朗日函数: i 1i 11log (,|)(()1)N N i i P O i i r πλπ-===+-∑∑ s.t. i 1)1)N i π=-∑=0; 对i π求偏导并令结果为0得到: 1i (,|)0P O i i r λπ- =+= (2)

基于隐马尔科夫模型的命名实体识别

基于马尔科夫模型的命名实体识别 NE识别的数学描述 利用HMM解决序列标注问题,即给定一个观察值的序列,要寻找一个最优的标记序列,使得条件概率最大。根据贝叶斯公式可得: 在NE识别问题中,X是给定的句子,观察值为词性或词,则上式中P(X)对所有的类别都是一样的,因此可以忽略不考虑。则上面的公式可以转化为下面的形式: 即HMM实质式求解一个联合概率。上式中的标记序列Y可以看做是一个马尔科夫链,则对上式利用乘法公式有: 基于HMM的NE识别的问题就是如何在给定的模型下,从一定观察值序列的所有可能的状态下,选取最有的标记序列。常用的方法是viterbi算法,它属于动态规划算法,动态规划的思想是把问题分解,先解决最基本的子问题,再逐步外推寻找更大的子问题的最优解,在有限步后达到整个问题的最优解,即得到最有的NE标记序列 隐马尔科夫模型 观察到的事件是状态的随机函数,该模型是一个双重的随机过程,其中模型的状态转换过程是不可观察的。可观察的事件的随机过程是隐藏的状态转换过程的随机函数。形式化的描述为一个五元组。 1. S表示模型中的状态,N是模型的状态数。所有独立的状态定义为,且用来表示t时刻的状态。 2. O表示每个状态的观察值,M表示每个状态上对应的可能的观察值的数目。观察值对应于模型系统的实际输出,观察值记为: 3. 状态转移概率矩阵,其中,1<=i,j<=N,表示从状态i转移到状态j的概率,满足:>=0,;且。 4. 输出观察值概率分布矩阵,其中表示在状态下,t时刻出现的概率,即,1<=j<=N,1<=k<=M. 5. 初始状态分布向量,其中,即在t=1时刻处于状态的概率,满足:。 HMM模型需解决的三个问题: (1)评估问题。给定一个观察序列,以及模型,如何有效的计算,也就是这个观测序列有多大可能是由该模型产生的; (2)解码问题。给定观测序列以及模型,如何选择一个状态序列,使得观测序列O式最具可能的,即求解; (3)学习问题。如何能够通过调整参数以最大化 ICTCLAS分词的词性列表 名词(1个一类,7个二类,5个三类) 名词分为以下子类: n 名词 nr 人名 nr1 汉语姓氏 nr2 汉语名字 nrj 日语人名 nrf 音译人名 ns 地名

论述马尔可夫模型的降水预测方法

随机过程与随机信号处理课程论文

论述马尔可夫模型的降水预测方法 摘要:预测是人们对未知事物或不确定事物行为与状态作出主观的判断。中长 期降水量的预测是气象科学的一个难点问题, 也是水文学中的一个重要问题。今年来,针对降水预测的随机过程多采用随机过程中的马尔可夫链。本文总结了降水预测的马尔可夫预测的多种方法和模型,对其中的各种方法的马尔可夫链进行了比较和分析,得出了一些有用的结论。 关键字:降水预测,随机过程,马尔可夫链,模拟 前言:大气降水是自然界水循环的一个重要环节。尤其在干旱半干旱地区, 降 水是水资源的主要补给来源, 降水量的大小,决定着该地区水资源的丰富程度。因此, 在水资源预测、水文预报中经常需要对降水量进行预报。然而, 由于气象条件的变异性、多样性和复杂性, 降水过程存在着大量的不确定性与随机性, 因此到目前为止还难以通过物理成因来确定出未来某一时段降水量的准确数值。在实际的降水预测中,有时不必预测出某一年的降水量,仅需预测出某个时段内降水的状况既可满足工作需要。因此,预测的范围相应扩大,精度相应提高。因此对降水的预测可采用随机过程的马尔可夫链来实现。 用随机过程中马尔可夫链进行预测是一种较为广泛的预测方法。它可用来预测未来某时间发生的变化, 如预测运输物资需求量、运输市场等等。马尔可夫链, 就是一种随机时间序列, 它表示若已知系统的现在状态, 则系统未来状态的规律就可确定, 而不管系统如何过渡到现在的状态。我们在现实生活中, 有很多情况具有这种属性, 如生物群体的生长与死亡, 一群体增加一个还是减少一个个体, 它只与当前该生物群体大小有关, 而与过去生物群体大小无关。] 本文针对降水预测过程中采用马尔可夫链进行模拟进行了综述和总结。主要的方法有利用传统的马尔可夫链的方法模拟;有采用加权的马尔可夫链模拟来进行预测;还有基于模糊马尔可夫链状模型预测的方法;还有通过聚类分析建立降水序列的分级标准来采用滑动平均的马尔可夫链模型来预测降水量;从这些方法中我们可以看出,马尔可夫链对降水预测有着重要的理论指导意义。 1.随机过程基本原理 我们知道,随机变量的特点是,每次试验结果都是一个实现不可预知的,但为确定的量。而在实际中遇到的许多物理现象,实验所得到的结果是一个随时间变化的随机变量,且用一个或多个随机变量我们有时无法描述很多这种现象的的全部统计规律,这种情况下把随时间变化的随机变量的总体叫做随机过程。对随机过程的定义如下:

基于隐马尔科夫模型的人脸识别

基于隐马尔科夫的人脸识别 1人脸检测及常用算法 人脸检测,指的是从输入的图像(或者视频)中确定人脸的位置、大小和姿态的过程, 是进行人脸识别的基础,也是实现人脸识别功能的一个关键环节。 人脸检测是一种计算机视觉中的模式识别问题,就是将所有的人脸作为一个模式,而非人脸作为另一种模式,人脸检测的核心问题就是将人脸模式和非人脸模式区别开来。人脸检测的算法主要分为两大类,基于先验知识的和基于后验知识的学习和训练的算法。 常见人脸检测的算法有:基于特征子脸人脸检测算法:该算法将所有人脸的集合视作一个人脸子空间,通过检测样本与子空间之间的投影距离检测样本中是否存在人脸;基于模板匹配的人脸检测算法:该算法先设计一个代表标准人脸的模板,将进行检测的样本与标准模板进行比对,通过考察样本与标准模板的匹配程度,设置合理的阈值来检测样本中是否存在人脸;神经网络人脸检测算法:该算法是一种学习算法,用于学习的训练集分为属于人脸图像的训练集和非人脸图像的训练集两类,通过学习从而产生分类器进行人脸检测;基于纹理模型的算法,对于人脸图像的灰度共生矩阵进行计算可以获得倒数分差、惯量相关特征这三个特征矩阵,然后通过迭代计算求得人脸图像矩阵中的参数。使用这种方法取得的模型就被称为人脸纹理模型。若人脸姿态有旋转,通过对眼睛进行定位可以计算出人脸的旋转角度或者使用投影直方图FFT 变换等方法确定人脸旋转的方向,再进行人脸检测。 1.1Haar 特征 Harr 特征是一种矩形特征,在特征提取时由四类特征组成特征模板—边缘特征、圆心环绕特征、线性特征和特定方向的特征。特征模板包括白色矩形和黑色矩形两种。白色矩形内像素和(Sum 白)减去黑色矩形像素和(Sum 黑)就是模板的特征值。Haar 特征反映的是图像中相邻矩形区域的灰度变化。 Haar 特征的每一个特征值feature 可以表示为: ()i N i i r rectsum feature ?=∑=1 ω 其中i ω表示矩形的权重,()i r rectsum 表示矩形所包围图像的灰度值之和。Paul Viola 和Michacl Joncs 提出积分图算法提高图像举行特征的计算速度。 对于对象中的任意一点()y x ,A ,其灰度值为()y x i ,,积分图()()∑' ≤≤'''=y y x x y x i y x ii ,,,, 经过对图片的一次遍历,就可以得到图像中每一个点的积分图的值。 假设需要计算矩形 D 的特征,其顶点为点 1、2、3、4。这样,矩形 D 的

连续隐马尔科夫链模型简介

4.1 连续隐马尔科夫链模型(CHMM) 在交通规划和决策的角度估计特定出行者的确切的出行目的没有必要,推测出行者在一定条件下会有某种目的的概率就能够满足要求。因此本文提出一种基于无监督机器学习的连续隐马尔科夫链模型(CHMM)来识别公共自行车出行链借还车出行目的,根据个人属性、出行时间和站点土地利用属性数据,得到每次借还车活动属于某种出行目的的概率,进一步识别公共自行车出行链最可能的出行目的活动链。 4.1.1连续隐马尔科夫链模型概述 隐马尔可夫链模型(Hidden Markov Model,HMM)是一种统计模型,它被用来描述一个含有隐含未知状态的马尔可夫链。隐马尔可夫链模型是马尔可夫链的一种,其隐藏状态不能被直接观察到,但能通过观测向量序列推断出来,每个观测向量都是通过状态成员的概率密度分布表现,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。 本文将隐马尔科夫链和混合高斯融合在一起,形成一个连续的隐马尔科夫链模型(CHMM),并应用该模型来识别公共自行车出行链借还车活动目的。连续隐马尔科夫链模型采用无监督的机器学习技术,用于训练的数据无需是标记的数据,该模型既不需要标记训练数据,也没有后续的样本测试,如提示-回忆调查。相反,该模型仅利用智能卡和总的土地利用数据。后者为隐藏活动提供额外的解释变量。出行链内各活动的时间和空间信息是从IC卡数据获得,相关土地利用数据是根据南京土地利用规划图和百度地图POI数据获得。 在本文的研究中,一个马尔可夫链可以解释为出行者在两个连续活动状态之间的状态转换,确定一个状态只取决于它之前的状态,一个状态对应一个出行者未知的借还车活动[48-50]。本研究坚持传统的马尔可夫过程的假设,将它包含进无监督的机器学习模型。“隐藏马尔可夫”源于一个事实,即一系列出行链的活动是不可观察的。 对于CHMM,高斯混合模型负责的是马尔可夫链的输入端,每一个活动模式下的隐藏状态都有属于一个特征空间的集群输出概率,每个集群是观察不到的,隐藏状态集群的数量必须事先给出。一些研究者称这些集群为二级隐状态[51]。

马尔可夫模型估计三模冗余可靠性

基础问题:预测系统的可靠性 解决方案:利用马尔可夫模型预测 一、背景知识 1、马尔可夫模型(分为一阶和高阶马尔可夫模型,本文介绍一阶模型) ①基于假设:状态传输的概率仅仅依赖于现在的状态; ②转移矩阵T:用来描述从当前状态转移到下一状态的条件概率; m行n列的元素代表从状态m转换到状态n的可能性 下一状态的概率分布=当前的概率分布X传输矩阵T ③通过一系列的数学变化(比较多但是简单)再加上拉普拉斯变换和逆变换,求得在任意时刻系统的概率分布; ④对于二状态系统,即为在正常和故障两个状态的分布, 可靠性=P(正常),或者可靠性=1-P(故障) 2、TMR ①当只有一个模块发生错误,表决器还能正确输出;当两个及其以上模块发生错误,可能会导致表决器输出错误; ②对于FPGA:scrubbing周期性刷新FPGA配置存储器 Scrubbing rate:根据期望出现的错误率来调整

二、具有修复功能的TMR 三、“持久性” 处理擦写的FPGA应用程序都会经历由错误诱发的永久性服务中断和暂时性服务中断,分别被称为永久中断持久错误和暂时中断非持久错误。 当一个错误诱发产生非持久错误,应用程序变得暂时不可用。一旦擦写修复了错误,则功能错误就会结束,系统回到正常操作模式。但是,当一个错误诱发产生了持久错误,应用程序变为永久不可用。 传统上,FPGA应用程序故障发生在任何服务中断之后。通过容忍暂时性的服务中断,一个应用程序只会在出现永久性服务中断后发生故障。 为了测量通过容忍暂时性的服务中断对可靠性的提高,建立了一个容忍非持久错误系统的模型。 0:功能正常状态 1:暂时不可用状态(非持久错误) 2:故障状态(持久错误) λ:错误概率p:由敏感状态进入持久错误状态的概率μ:擦写概率

马尔可夫链预测方法

马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

相关主题