搜档网
当前位置:搜档网 › PTH除胶渣速率、微蚀速率、沉铜速率测量

PTH除胶渣速率、微蚀速率、沉铜速率测量

PTH除胶渣速率、微蚀速率、沉铜速率测量
PTH除胶渣速率、微蚀速率、沉铜速率测量

PTH除胶渣速率、微蚀速率、沉铜速率测量

1、除胶速率测量方法:

a:取双面裸铜FR4基板(5*5cm),用砂纸打磨好四周,清洗干净,放入烤炉以120度烘烤30min,取出放入干燥器内冷却至室温,称重W1mg;

b、按DESMEAR流程,经预中和,中和,水洗后,于120度哄烤30min,取出放入干燥器内冷却至室温,称重W2mg;

c、除胶渣速率=(W1-W2)mg/板面积cm2

除胶渣控制范围为0.15-0.45mg/cm2

2、微蚀速率测量方法

a、取5cm X 5cm的1.6mm厚雙面銅箔板,面積記為S(cm2);

b、放入烘爐中,在120°C烘30分鐘;

c、在防潮瓶內冷卻至室溫,用分析天平稱重W1(克);

d、隨生產板浸入生產線內的除油缸中,並於微蝕缸後取出(保證浸蝕時間跟生產板一致);

e、用水清洗後,於烘爐中120°C烘30分鐘;

f、在防潮瓶中冷卻至室溫,用分析天平犯法重W2(克);

g、計算:蝕銅速率(微米/分鐘)=10000 X (W1-W2)/(8.93X 2 X S ),微蚀速率控制范围30-70u"

3、沉铜速率测量方法

a、将5*5cm裸铜基板,进行沉铜工序(不经除胶渣工序);

b、放试板入250ml烧杯;加蒸馏水20ml;

c、加入3ml30%硫酸,1.5ml30%双氧水,待铜完全溶解后,用1:1氨水中和至深蓝色,加甲醇10ml,3滴PAN指示剂;

d、用0.05MEDTA溶液滴定至绿色

h、沉铜速率(微米)=(M.V)EDTA×35.5/S滴定毫升数。

称重工具为电子天平,所用板材为FR-4,沉铜速率控制范围15-25u

钨精矿化学分析方法

国家标准《钛及钛合金化学分析方法第27部分钕量的测定 电感耦合等离子体发射光谱法》 编制说明 1 工作简况 1.1任务来源及计划要求 根据全国有色金属标准化技术委员会“关于转发2013年第一批有色金属国家、行业标准制修订计划的通知”(有色标委[2013]19号)文件精神,并根据有色金属稀有分标委会2013标准年会任务落实情况。由西北有色金属研究院负责起草钛及钛合金化学分析方法第27部分钕量的测定》,批准文号:工信厅科[2013]163号,项目计划编号为20132106-T-610,项目要求2014年度完成。 1.3 主要工作过程和内容 1.2 起草单位情况 西北有色金属金属研究院成立于1965年。是我国重要的稀有金属材料研究基地和行业技术开发中心、是国内**稀有金属科研生产基地项目和稀有金属材料加工国家工程研究中心、金属多孔材料国家重点实验室、超导材料制备国家工程实验室、中国有色金属工业西北质量监督检验中心、层状金属复合材料国家地方联合工程研究中心等的依托单位,地处西安、宝鸡两地六区。研究院现有资产总值64.6亿元,仪器设备3000多台套,占地3428亩,正式职工2874人,其中科技人员近千余人,有中国工程院院士1人,教授、高工200多人,博士、硕士300余名。形成了以钛产业为主业,覆盖超导材料、金属纤维及制品、稀贵金属材料等产业的多元化格局,其产品广泛应用于航空、航天、航海、信息、电子、能源、环保等国民经济重要领域。 材料分析中心其前身可追溯至成立于1966年11月的西北有色金属研究院第三研究室(金属物理研究室)和第二研究室(化学分析研究室)。在四十多年的发展中,中心完成各类课题320项,获奖成果24项,其中省部级科技进步二等奖4项、三等奖9项,市局级科技进步一等奖1项、二等奖1项。制/修订国家、行业标准50多项;主持了《钛及钛合金化学分析方法》、《锆及锆合金化学分析方法》等标准方法,研制了《钛合金化学成分标准物质》一套,并获得科技部三等奖;申报专利10余项,发表论文500余篇。中心资质齐全,通过了CMA、CAL、CNAS、DilAC认证,是全国(稀有金属)质量控制与评价实验室、中国有色金属工业西北质量监督检验中心、陕西省有色金属产品质量监督检验站、陕西省有色金属材料分析检测与评价中心、陕西省核工业用金属材料分析检测与评价中心的主体,同时也承担了钛及钛合金生产许可证、铜及铜合金管材生产许可证检验机构。中心主要业务:有色金属的矿冶产品和加工材、贵金属及其加工产品及钢铁类产品的化学成份分析及物理性能测试任务,授权承接国家和省级技术监督部门规定的定期检验、监督抽查、产品鉴定及企事业单位的委托检验和仲裁检验,同时提供技术咨询、实验室规划设计,分析方法研究,标准试样研制和人员培训等服务项目。中心现有资产4200万元,拥有光电能谱-俄歇能谱联用仪、原子力显微镜、扫描电镜等检测设备60台套。 1.3 主要工作过程和内容 1.3.1 制修订编审原则 1)以满足我国海绵钛、钛及钛合金实际生产和使用的需要为原则。提高标准的适用性。 2)以与实际相结合为原则,提高标准的可操作性。 3)充分考虑国家法律、安全、卫生、环保法规的要求。 4)完全按照GB/T 1.1—2009《标准化工作导则第1部分:标准的结构和编写规则》、GB/T 1.4-2009《标准编写规则第4部分:化学分析方法》的要求对本部分进行了编写。 5)本标准的制定有利于促进国内外铜磁铁矿市场公平贸易,并与国际钛及钛合金产品的检验分析接轨,具有可操作性。 1.3.2 工作分工 1.3. 2.1西北有色金属研究院负责该标准方法起草,完成试验报告并送验证单位验证,征求意见后最终

铜冶炼渣选矿生产实践最新综述(论文未发表)

铜冶炼渣选矿生产实践最新综述 耿联胜 (阳谷祥光铜业有限公司) 提要:本文重点全面综述了国内外铜冶炼厂在铜冶炼渣缓冷和渣选矿生产实践方面的最新情况,对铜冶炼行业的渣选工艺设计和生产技术管理具有非常重要的参考价值。 关键词:铜冶炼渣渣缓冷渣选矿生产实践工艺参数 1.引言 在上个世纪五十年代以前,在世界火法炼铜行业中,熔炼炉生产出来的炉渣所采用的贫化技术,多以技术比较成熟的电炉贫化、熔炼炉贫化工艺为主,选矿贫化法还没有出现。选矿贫化铜冶炼炉渣自1930 年提出技术思路,上世纪50年代末日本率先工业应用,之后很多国家相继采用,发展很快。日本、芬兰、加拿大、澳大利亚等国铜冶炼厂在上个世纪70年代就已采用选矿方法处理转炉渣。其原因在于选矿贫化在技术、经济以及节能和环保上都是先进的。它不仅普遍用于贫化转炉渣,一些原先火法不宜再贫化的低铜熔炼炉渣和鼓风炉渣,也属它有效应用范围。我国对铜炉渣选矿贫化的研究起步较早,仅比日本晚几年,上世纪60年代初白银有色金属公司开始系统研究,随后全国各大铜业公司和研究院所进行的各种规模的试验研究和应用成果相继出现。上世纪80年代后期我国第一座转炉渣选厂在贵溪冶炼厂建成。随着铜冶炼技术引进和技术改造的加快,我国转炉渣的选矿生产实践也越来越多,金隆铜业公司、大冶冶炼厂相继采用选矿方法回收转炉渣中的有价金属,取得良好效果。2007年山东阳谷祥光铜业建成投产,是国内第一家直接采用选矿贫化技术处理铜闪速熔炼炉渣的冶炼企业。2009年东营方圆有色金属有限公司渣选矿建成投产,2010年以后铜陵有色金属集团控股有限公司、白银有色集团股份有限公司、金川集团股份有限公司等单位陆续采用选矿贫化技术并开工建设。 生产实践证明,选矿贫化法应用效果良好,铜炉渣贫化后含铜达到了0.35%以下,有的能降低到0.3%以下。在冶金中间产物分离(比如金川高硫镍的镍铜分离技术)和炉渣资源化回收铜铁方面,科技人员进行了较为深入的研究,在研究和应用过程中,人们逐渐发现了选矿技术综合回收性能好、绿色环保、低成本和效率高的产业优势。在世界资源渣枯竭紧张的大形势下,选矿技术在铜冶炼行业乃至整个冶金行业资源化研究与实践方面,日益得到人们的追捧,我国已经涌现巨大技术研究浪潮,并取得重大研究成果。渣选矿技术的研究与应用必将进入了一个蓬勃发展时期。 由于铜精矿原料、铜冶炼渣的种类以及渣冷却工艺不同,造成铜冶炼渣的性质复杂多样,通过选矿试验研究推荐各种不同的选矿工艺,在生产实践中也会出现同一种铜冶炼渣采用不相同的选矿工艺流程。认真学习和掌握各种铜冶炼渣的性质和相应选矿流程的特点,分析和总结每种流程的先进之处,对于我们做好铜冶炼渣选矿技术研究和生产管理工作,具有非常重要的参考和指导意义。本文就目前已知的国内外比较典型的铜冶炼渣选矿生产实践案例进行介绍。 2. 铜冶炼渣冷却生产实践 经过长期的试验研究和生产实践证明,最好的渣冷却工艺就是渣缓冷技术。目前,国内外绝大部分铜冶炼厂采用了渣缓冷技术处理各种用于渣选矿处理前的铜冶炼渣。在此以某铜业的渣缓冷制度为例进行介绍。 某铜业闪速熔炼炉渣冷却工艺原设计,采用自然缓冷2小时,再加水冷却46小时,共计冷却48小时,但

湿法炼锌副产铜渣的综合利用

湿法炼锌副产铜渣的综合利用 鲁兴武,邵传兵,易超,李俞良 (西北矿冶研究院 冶金新材料研究所,甘肃白银 730900) 摘要:研究了湿法炼锌副产铜渣的综合利用新工艺。最佳浸出条件为:液固比10∶1,浸出温度80 ℃,浸出剂(硫酸)浓度3.5 mol/L ,浸出时间8 h 。浸出液含铜浓度达到30~45 g/L ,铜浸出率可以达到98%以上。经萃取、洗涤、三级错流反萃后,反萃液中铜浓度达到45~50 g/L ,电积后可以得到标准阴极铜。 关键词:铜渣;综合利用;萃取;锌湿法冶金 中图分类号:TF811;TF813 文献标识码:A 文章编号:1007-7545(2012)06-0000-00 Comprehensive Utilization of Copper Slag By-product in Zinc Hydrometallurgy LU Xing-wu ,SHAO Chuan-bing ,YI Chao ,LI Yu-liang (Institute of Metallurgy New Materials of Northwest Institute of Mining and Metallurgy, Baiyin 730900, Gansu, China) Abstracts: The new comprehensive utilization technology of copper slag by-product in zinc hydrometallurgy was investigated. The optimal leaching conditions including ratio of liquid to solid of 10∶1, leaching temperature of 80 ℃, leaching agent (sulfuric acid) concentration of 3.5 mol/L, and leaching time of 8 h. The copper concentration in lixivium reaches 30~45 g/L, and the copper leaching rate is higher than 98%. The copper concentration in stripping solution reaches 45~50 g/L after extraction, washing and three-stage cross-flow stripping of copper. The cathode copper can be produced with electrowinning process. Key words: copper slag; comprehensive utilization; extraction; zinc hydrometallurgy 2010年全国锌产量为516.4万t ,其中湿法炼锌的产量占锌总产量的70%以上[1]。对于年产10万t 的湿法炼锌企业,每年处理净化系统铜镉渣产生的铜渣约1 kt ,仅有50%左右的铜渣被卖到铜冶炼企业,进入粗铜冶炼,其中的锌不能得到有效回收,剩余的富铜渣被堆放到渣场,造成了二次资源的闲置和环境污染。因此开展铜渣综合回收技术研究具有现实意义[2-4]。 1 试验原料和方法 所用铜渣为某湿法炼锌企业铜镉渣处理后得到的副产品[5],主要化学成分(%):Cu 40.0、Zn 5.0、Cd 0.8、Pb 3.0、Fe 2O 3 1.5、O 7.5、其它42.2。采用图1所示流程产出标准阴极铜。 图1原则工艺流程图 Fig.1 Principle flow chart of copper slag comprehensive recovering 收稿日期:2011-12-13 作者简介:鲁兴武(1985-),男,甘肃武威人,大学,助理工程师. doi :10.3969/j.issn.1007-7545.2012.06.006

铅精矿化学分析方法 锑含量的测定 硫酸铈滴定法(标准状态:即将实施)

I C S77.120.60 D42 中华人民共和国国家标准化指导性技术文件 G B/Z39124 2020 铅精矿化学分析方法 锑含量的测定 硫酸铈滴定法 M e t h o d f o r c h e m i c a l a n a l y s i s o f l e a d c o n c e n t r a t e s D e t e r m i n a t i o no f a n t i m o n y c o n t e n t C e(S O4)2t i t r a t i o nm e t h o d 2020-10-11发布2021-09-01实施 国家市场监督管理总局

中华人民共和国 国家标准化指导性技术文件 铅精矿化学分析方法 锑含量的测定 硫酸铈滴定法 G B/Z39124 2020 * 中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100029)北京市西城区三里河北街16号(100045)网址:w w w.s p c.o r g.c n 服务热线:400-168-0010 2020年10月第一版 * 书号:155066四1-65610

前言 本指导性技术文件按照G B/T1.1 2009给出的规则起草三 本指导性技术文件由中国有色工业协会提出三 本指导性技术文件由全国有色金属标准化技术委员会(S A C/T C243)归口三 本指导性技术文件起草单位:中华人民共和国连云港海关二株洲冶炼集团股份有限公司二深圳市中金岭南有色金属股份有限公司二云南驰宏锌锗股份有限公司二国家再生有色金属橡塑材料质量监督检验中心(安徽)二北矿检测技术有限公司二昆明冶金研究院二河南豫光金铅股份有限公司二山东恒邦冶炼股份有限公司二国标(北京)检验认证有限公司二西安汉唐分析检测有限公司二广东先导稀材股份有限公司二华南理工大学三 本指导性技术文件主要起草人:赵秀荣二王恒二姜郁二秦立俊二乔柱二郑丽霞二师世龙二程林二丁轶聪二陈殿耿二向德磊二周益二刘英波二黄萍二腰木拉二钱俊妃二孙伟嘉二刘春峰二杨伟二吴荣献二周君玲二张艳峰二栾海光二张力久二戴凤英二禄妮二向清华二朱赞芳二王安迪二王雪菲三 本指导性技术文件仅供参考三有关对本指导性技术文件的建议和意见,向国务院标准化行政主管部门反映三

铜及铜合金化学分析方法

DY/QW014-01 铜及铜合金化学分析方法 作业指导书 1 范围 本指导书规定了铜中锌的测定方法。 本指导书适用于铜中锌量的测定,测定范围:0.0005%~2.00% 。 2 方法提要 试料用硝酸或硝酸加氢氟酸,或盐酸加过氧化氢溶解后,使用空气-乙炔火焰于原子吸收光谱仪波长213.8nm 处测量锌的吸光度,基体铜的干扰在配制标准溶液系列时加入相应量的铜予以消除,合金中存在的其他元素不干扰测定。 3 试剂 除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水或去离子水或相当纯度的水。 3.1 氢氟酸(ρ1.15g/mL) 3.2 过氧化氢(ρ1.11g/mL) 3.3 过氧化氢(1+9) 3.4 盐酸(1+1) 3.5 硝酸(1+1) 3.6 硼酸溶液(40g/L) 3.7 铜溶液称:取10g 纯铜(锌质量分数小于0.00001%)置于500mL 烧杯中,加入70mL 硝酸(3.5)。加热溶解完全,煮沸除去氮的氧化物,冷却移入500mL 容量瓶中。用水稀释至刻度混匀,此溶液1mL 含20mg 铜。 3.8锌标准贮存溶液:称取0.5000g 纯锌(锌质量分数不小于99.9%),置250mL 烧杯中加入10mL 硝酸(3.5) ,加热至溶解完全,煮沸除去氮的氧化物,冷却后移入1000mL 容量瓶中,用水稀释至刻度,混匀。此溶液1mL 含500μg 锌。 3.9 锌标准溶液:移取20.00mL 锌标准储存溶液(3.8)置于500mL容量瓶中,加入100mL硝酸(1+1),用水稀释至刻度混匀。此溶液1mL含20μg锌。 4 仪器 4.1 原子吸收光谱仪附锌空心阴极灯 4.2 所用原子吸收光谱仪应达到下列指标

铜冶炼渣中单质铜对浮选指标的影响及控制方案研究

铜冶炼渣中单质铜对浮选指标的影响及控制方案研究 我国铜冶炼企业在每年都会产生大量的铜冶炼渣,其中单质铜对于浮选指标是有一定程度影响的。本文主要分析了铜冶炼渣当中的单质铜对于浮选指标的影响以及提出了相应的控制方法,对铜渣的浮选提出工艺上的意见,予以相关企业参考与借鉴。 标签:铜冶炼;单质铜;浮选指标;影响;控制方案 1 铜渣的性质 铜冶炼渣是一种人工矿石,其理化性质,物理组成,矿物之间的共生关系与矿物之间的嵌布粒度粗细与冶炼的技术,设备以及冷却方式等因素相关,所以炉渣性质一般都是不太稳定的。铜渣一般呈现黑色,块状,易碎难磨,性脆是铜渣的主要性质。其矿物组成成分中绝大多数是铁橄榄石,其次是磁铁矿,还有少量脉石组成的玻璃体。其中的铜矿物多呈硫化物形态存在。由于冶炼技术的不同,硫化铜矿、氧化铜矿、金属铜及化合铜矿等以不同含量分布于炉渣之中,部分渣料因处理的铜矿石原料特殊,產生的炉渣中含有金、银等贵重金属以及铅、锌、钴、镍等有价成分。铜渣当中还含有铝,钙,镁等重要元素,其主要是以氧化镁,氧化钙,三氧化二铝的形式所存在。铜矿物或被硅铁氧化物所包裹,或与铜铁矿物共同形成斑状结构及多矿物共生嵌于铁橄榄石基体中。炉渣的冷却方式有三种:自然冷却、水淬、保温冷却+水淬,其中保温冷却+水淬有利于铜的浮选回收,根据其不同的冷却方式,铜渣可以分为自然冷却渣、水淬渣与缓冷渣。铜渣中铜矿物的结晶粒度大小和炉渣的冷却速度密切相关,炉渣缓冷有利于铜相粒子迁移聚集长大,即在炉渣的缓冷过程中,炉渣溶体的初析微晶可通过溶解-沉淀形成成长,形成结晶良好的自形晶或半自形晶,同时有用矿物因此扩散迁移、聚集并长大成相对集中的独立相,使其易于单体解离和选别回收。铜渣的冷却方式对于炉渣的结晶过程与铜渣组分颗粒的凝聚长大都有着一定程度的影响,而且还会影响铜渣的结晶颗粒大小与每种矿物之间的共生关系。渣中铜如果在自然缓慢的冷却那么其结晶的速度是很快的,若采用水淬冷却的方式,在高温的铜渣冷却速度则会更快,有可能会出现非结晶质的结构,与此同时还会阻碍铜矿物质的颗粒聚集长大,铜颗粒分布呈现树状又或者是针状的其他矿物当中。目前自然冷却铜渣与缓冷渣铜渣浮选回收铜成功的案例较多,但水淬铜渣由于其矿物成分多,物相复杂,且相互连生包裹,使得铜矿物与脉石难以分离,从而加大了回收难度。因此,我们要采用水淬冷却的铜渣让其细磨将大部分的铜颗粒与同脉石进行解离,这样就会使得铜渣很难磨矿之后使用浮选的方式进行回收。这样也有利于析出铜细颗粒在缓慢的冷却过程中借助扩散与凝结的作用慢慢的聚集在一起。若冷却速度足够缓慢,那么缓慢成长的结果是形成结晶良好的自形晶和半自形晶,借扩散和迁移作用,铜渣熔体的初析微晶就能通过溶解一沉淀形式缓慢成长;此两类铜晶体微粒将成长为独立的晶像,易于磨矿工序的单体解离和浮选过程的药剂作用。 2 水淬浮选工艺

当前我国铜渣资源利用现状研究

万方数据

万方数据

万方数据

万方数据

万方数据

当前我国铜渣资源利用现状研究 作者:刘纲, 朱荣, LIU Gang, ZHU Rong 作者单位:北京科技大学冶金与生态工程学院,北京,100083 刊名: 矿冶 英文刊名:MINING AND METALLURGY 年,卷(期):2008,17(3) 被引用次数:10次 参考文献(11条) 1.曹异生"十五"期间我国铜市场回顾及前景展望 2006(15) 2.陈海清;李沛兴;刘水根铜渣火法强化贫化工艺研究[期刊论文]-湖南有色金属 2006(03) 3.柴田悦郎;孙海平;森克己ステケをしてのがかう溶铁への酸素移行速度 1999(01) 4.李沛兴;刘水根;张振健铜渣火法强化贫化工艺研究[期刊论文]-湖南有色金属 2006(03) 5.G布鲁特应用浮选和与黄铁矿焙烧工艺从铜渣中回收有价金属[期刊论文]-国外金属矿选矿 2007(10) 6.张林楠;张力;王明玉铜渣的处理与资源化[期刊论文]-矿产综合利用 2005(05) 7.Chen W J;邓文基铜的火法冶金 1998 8.Lifset PJ;Gordon RB Where has all the copper gone:the stocks and flows project,part 1 2002(10) 9.王学文铜炉渣真空热处理的研究 1991(04) 10.宗力水淬铜渣代砂混凝土[期刊论文]-青岛建筑工程学院学报 2003(02) 11.vaisdurd S;Bemer A;Brandon DG Slags and mattes in vanyukov's process for the extraction of copper 2002(08) 本文读者也读过(10条) 1.马国军.王战仁.李光强.朱诚意.向喜.Ma Guojun.Wang Zhanren.Li Guangqiang.Zhu Chengyi.Xiang Xi诺兰达铜渣中有价元素的回收[期刊论文]-武汉科技大学学报(自然科学版)2008,31(5) 2.陈帮.夏晓鸥.刘方明.CHEN Bang.XIA Xiao-ou.LIU Fang-ming高硬度铜渣综合利用研究[期刊论文]-铜业工程2009(2) 3.张林楠.张力.王明玉.隋智通.ZHANG Lin-nan.ZHANG Li.WANG Ming-Yu.SUI Zhi-tong铜渣的处理与资源化[期刊论文]-矿产综合利用2005(5) 4.曹洪杨.张力.付念新.夏凤申.隋智通.冯乃祥.CAO Hong-yang.ZHANG Li.FU Nian-xin.XIA Feng-shen.SUI Zhi-tong.FENG Nai-xiang国内外铜渣的贫化[期刊论文]-材料与冶金学报2009,8(1) 5.李磊.王华.胡建杭.李博.Li Lei.Wang Hua.Hu Jianhang.Li Bo铜渣综合利用的研究进展[期刊论文]-冶金能源2009,28(1) 6.李博.王华.胡建杭.李磊.LI Bo.WANG Hua.HU Jian-hang.LI Lei从铜渣中回收有价金属技术的研究进展[期刊论文]-矿冶2009,18(1) 7.张忠益.匡志恩.杨钢.吴建存.叶兴富.朱绍菊.田仁宿.ZHANG Zhong-yi.KUANG Zhi-nen.YANG Gang.WU Jian-cun .YE Xin-fu.ZHU Shao-ju.TIAN Ren-shu铜渣中回收Zn、Cu的试验研究[期刊论文]-云南冶金2008,37(1) 8.李磊.胡建杭.王华.LI Lei.HU Jian-hang.WANG Hua铜渣熔融还原炼铁过程研究[期刊论文]-过程工程学报2011,11(1) 9.刘纲.朱荣.王昌安.王振宙.高峰.LIU Gang.ZHU Rong.WANG Chang-an.WANG Zhen-zhou.GAO Feng铜渣熔融氧化提铁的试验研究[期刊论文]-中国有色冶金2009(1) 10.张林楠.张力.王明玉.隋智通.ZHANG Lin-nan.ZHANG Li.WANG Ming-yu.SUI Zhi-tong铜渣贫化的选择性还原过程[期刊论文]-有色金属2005,57(3)

铝渣化学分析方法

炼钢脱氧用铝渣系列标准 编制说明 山东出入境检验检疫局检验检疫技术中心 2015年8月30日

一、前言 根据工业和信息化部《2014年第三批行业标准制修订计划》,由山东出入境检验检疫局、中国铝业郑州有色金属研究院有限公司中国铝业股份有限公司郑州研究院共同起草《铝渣》、《铝渣物相分析X射线衍射法》、《铝渣化学分析方法第1部分氟含量的测定离子选择电极法》、《铝渣化学分析方法第2部分金属铝含量的测定气体容量法》、《铝渣化学分析方法第3部分碳、氮含量的测定元素分析仪法》、《铝渣化学分析方法第4部分硅、钙、镁含量的测定电感耦合等离子体发射光谱法》,项目计划编号2014-1367T-YS。全国有色金属标准化技术委员会在2015年4月26日~4月28日湖南省长沙市召开的《炼钢脱氧用铝渣》有色金属行业标准会议上决定将标准名称更改为《炼钢脱氧用铝渣》、《炼钢脱氧用铝渣物相分析X射线衍射法》、《炼钢脱氧用铝渣化学分析方法第1部分氟含量的测定离子选择电极法》、《炼钢脱氧用铝渣化学分析方法第2部分金属铝含量的测定气体容量法》、《炼钢脱氧用铝渣化学分析方法第3部分碳、氮含量的测定元素分析仪法》、《炼钢脱氧用铝渣化学分析方法第4部分硅、钙、镁含量的测定电感耦合等离子体发射光谱法》。 随着经济的发展,铝的消耗量逐渐增多,铝资源也变得逐渐紧缺。而在铝冶炼、 铝生产和加工过程中会产生大量铝渣,这些铝渣中不同程度的含有金属铝等有价资源,逐渐成为了一种流通的商品,以铝渣为基础的贸易商品的不断出现,迫切需要对 铝渣进行分析检测,其中氟的含量是一项重要的技术指标。 炼钢脱氧用铝渣是利用电解铝、铝铸造、废杂铝回收加工等过程中产生的铝渣(灰),经过研磨、筛分、分级生产的一种粒状粉末,其中含有氧化铝、金属铝、氮化铝、钙镁等氧化物、氟化物等,可用于炼钢时脱氧脱硫,是对铝渣(灰)这类固体废物有效的资源化再生利用。 二标准试验 (1)《炼钢脱氧用铝渣》 1.术语和定义 1.1炼钢脱氧用铝渣 Aluminum Slag for Steel Making Deoxidizing Agent

《铜冶炼炉回收铜》国家标准

《铜冶炼炉渣回收铜》国家标准 编制说明 铜陵有色金属集团控股有限公司 2010年8月

《铜冶炼炉渣回收铜》国家标准编制说明 1、任务来源 根据中色协综字[2010]015号文件,关于下达2009年第二批有色金属国家、行业标准制(修)订项目计划通知,《铜冶炼炉渣回收铜》由铜陵有色金属集团控股有限公司负责起草,参加起草单位大冶有色金属集团控股有限公司。负责起草单位接到通知后立即成立标准编制小组。经过半年的相关准备,制定出本讨论稿。 2、铜冶炼炉渣回收铜产品简介 目前国内铜冶炼所采用的主要是熔炼和吹炼二道炼铜工艺,以往第一道工艺所产生的熔炼渣由于含铜量较低基本上作为废料丢弃,也有部分作为建筑行业添加剂销售。第二道工艺所产生的吹炼渣由于含铜量相对较高,有的厂家返回上道工序使用,有的采用选矿富集再利用。 由于近年来铜价较高,不少厂家对含铜量较低熔炼渣在投入和产出比进行了测算;同时,随着选矿回收技术的提高,各冶炼厂纷纷上马选矿厂回收熔炼渣中铜金属。 无论是熔炼渣还是吹炼渣所回收的铜,与井下和地表开采的铜矿物所选的铜精矿相比除含硫品位较低和粒度较细外,其性质基本相同,各冶炼厂都是把该产品与铜精矿配料使用。 3、标准编制前期工作 在编制标准期间,首先,进行了相关信息和资料的搜集。标准编制小组于今年6月至7月,先后前往云南铜业公司、大冶有色金属控

股公司、江西铜业公司、金川有色金属公司、中条山有色金属集团公司、祥光铜业公司、铜陵有色稀贵金属公司、铜陵有色金口岭矿业公司、铜陵有色天马山矿业公司进行实地考察调研,收集了大量的相关数据和资料,并取样进行了分析。 通过调研,基本掌握国内铜冶炼炉渣回收铜的生产和需求厂家的情况,覆盖面达到90%以上,应当说具有广泛的代表性。具体收集和分析的相关数据见附表。 4、标准编制原则 4.1本标准格式按照GB/T1.1-2009最新版本要求编写。 4.2本标准参考YS/T 318-2007《铜精矿》标准进行编写。 4.3本标准编制遵循“先进性、实用性、统一性、规范性”的原则,使标准制定具有可操作性。 4.4本标准充分考虑了使用单位的意见和建议。 5、标准中主要内容确定 5.1关于标准名称 标准的名称有三个可采用:“铜冶炼炉渣回收铜”、“铜冶炼炉渣回收铜精矿”、“铜冶炼炉渣渣精矿”,我们建议采用“铜冶炼炉渣回收铜”作为该产品的标准名称。该产品名称确定是为了区别于井下或地表开采铜矿物所选的铜精矿,来源于铜冶炼中。 5.2关于产品分类 根据调研所收集和取样分析的资料,按照精矿含铜品位高低不同确定为三个品级,三级品含铜品位不小于15%,一级品含铜品位不小

铅精矿化学分析方法 第14部分:二氧化硅含量的测定 钼蓝分光光

I C S77.120.60 H13 中华人民共和国国家标准 G B/T8152.14 2019 铅精矿化学分析方法第14部分:二氧化硅含量的测定钼蓝分光光度法 M e t h o d s f o r c h e m i c a l a n a l y s i s o f l e a d c o n c e n t r a t e s P a r t14:D e t e r m i n a t i o no f s i l i c o nd i o x i d e c o n t e n t M o l y b d e n u mb l u e s p e c t r o p h o t o m e t r y 2019-08-30发布2020-07-01实施 国家市场监督管理总局

中华人民共和国 国家标准 铅精矿化学分析方法第14部分:二氧化硅含量的测定钼蓝分光光度法 G B/T8152.14 2019 * 中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100029)北京市西城区三里河北街16号(100045) 网址:w w w.s p c.o r g.c n 服务热线:400-168-0010 2019年7月第一版 * 书号:155066四1-62942

前言 G B/T8152‘铅精矿化学分析方法“分为14个部分: 第1部分:铅含量的测定酸溶解-E D T A滴定法; 第2部分:铅含量的测定硫酸铅沉淀-E D T A返滴定法; 第3部分:三氧化二铝含量的测定铬天青S分光光度法; 第4部分:锌含量的测定 E D T A滴定法; 第5部分:砷含量的测定原子荧光光谱法; 第6部分:极谱法测定铋含量; 第7部分:铜含量的测定火焰原子吸收光谱法; 第8部分:二硫代二安替比林甲烷分光光度法测定铋含量; 第9部分:氧化镁含量的测定火焰原子吸收光谱法; 第10部分:银含量和金含量的测定铅析或灰吹火试金和火焰原子吸收光谱法; 第11部分:汞含量的测定原子荧光光谱法; 第12部分:镉含量的测定火焰原子吸收光谱法; 第13部分:铊含量的测定电感耦合等离子体质谱法和电感耦合等离子体-原子发射光谱法; 第14部分:二氧化硅含量的测定钼蓝分光光度法三 本部分为G B/T8152的第14部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分由中国有色金属工业协会提出三 本部分由全国有色金属标准化技术委员会(S A C/T C243)归口三 本部分起草单位:北矿检测技术有限公司二广东省工业分析检测中心二广东省韶关市质量计量监督检测所二江西铜业铅锌金属有限公司二郴州市金贵银业股份有限公司二中国有色桂林矿产地质研究院有限公司二湖南有色金属研究院二深圳市中金岭南有色金属股份有限公司二铜陵有色金属集团控股有限公司二南通出入境检验检疫局检验检疫综合技术中心二湖南省有色地质勘查研究院二昆明冶金研究院三本部分主要起草人:马丽二阮桂色二谢辉二袁齐二唐华全二曾龙二卢美玲二刘娟二顾丽二王晋平二王超颖二魏祥晖二刘维理二张永进二邱伟明二代斌二陈小山二胡贞贞二张雪莲二王婷香二叶欣二李国伟二王茁二施昱三

《铜精矿化学分析方法 金和银量的测定

《铜精矿化学分析方法金和银量的测定 火试金和原子吸收光谱法》 国家标准编制说明 一、任务来源及要求 根据中国有色金属工业协会文件《关于下达2009年第一批有色金属国家、行业标准制(修)订项目计划的通知》(中色协综字[2009]165号)的要求,由大冶有色金属股份有限公司负责制定国家标准《硫化铜、铅和锌精矿试样中吸湿水分测定重量法》,计划编号为20091098-T-610,项目完成时间为2011年。 二、标准制定原则 1、本标准是ISO 10378-2005(E)国际标准的等同转换。 2、本标准格式按照GB/T 1.1-2009的标准要求进行制定。 3、本标准的制定有利于促进国内外硫化铜精矿市场公平贸易,并与 硫化铜精矿国际标准接轨,具有可操作性。 三、标准主要内容 1、本标准规定了硫化铜精矿试样中金和银量的测定方法―火试金和原子吸收光谱法。测定范围:Au:0.5g/t~300 g/t ;Ag:25 g/t~1500 g/t。 2、本标准样品的制备按ISO9599的要求制备试样或用预干试料(见附录A)。 3、本标准方法提要:将试料与氧化铅等配料混合,在还原条件下,于坩锅中熔融,铅捕集试料中的贵金属形成铅扣。灰吹使铅扣中的贱金属与贵金属分离,从而形成含有少量其它金属的金银合金粒。以硝

酸处理金银合粒,从合粒中分离出金,称重。如果金粒质量小于0.05mg,则用王水溶解金粒,用火焰原子吸收光谱法(FAAS)测定金量。用原子吸收光谱法(FAAS)测定分金后溶液中银量。为最大限度回收金和银,将所有残渣再处理。第二次合粒用酸溶解,然后用FAAS 方法测定金和银,并进行空白的校正。 4、为使分析试料代表性好,采用多点多次取样的方式从试样中称取10g~20g试料。 5、预熔化:为保证铅扣质量在30~45g之间,进行预熔化试验,依据试样的还原能力,决定配料中硝酸钠或硝酸钾等氧化剂的用量。 6、加银分金:为保证合粒分金完全,银与金的比例应超过2.5:1。合粒中银、金比率就达不到要求,或者是当金含量超过30%时不易分离。如果用原子吸收或ICP测定银,银应该在分金前测定。所以金银必须分开测定。金应该按照此附录分金的步骤进行,银应该按照7.9中溶解方法测定。 如果用重量法测定银,应该在分金前对贵金属合粒称重。按照附录D进行分金,按照7.8中步骤分离,按照附录G冲洗金粒,在收集分离后的溶液中测定杂质含量。 注1:如果已知道银与金比率不到2.5:1,则在初熔化前加入适量银以保证银、金比率4:1。 注2:如果金的质量小于50μg,合粒不需要分离就能溶解,金银含量按7.9步骤测定。此种情况下,不需要分金。 如果试料中银的质量小于7500μg,那么银应该按照7.9中方法

铜冶炼渣中铜的综合回收

世上无难事,只要肯攀登 铜冶炼渣中铜的综合回收 铜冶炼渣选矿与自然矿石相比,选矿多一道炉渣缓冷工序,这也是渣选矿与自然矿石选矿最大差别之处,钢冶炼炉渣实际是一种人造矿石,这种矿石中的铜矿物颗粒与相组成取决于炉渣冷却方式与冷却速度,炉渣的冷却方式有三种:自然冷却、水淬、保温冷却+水淬,其中保温冷却+水淬有利于铜的浮选回收。炉渣中铜矿物的结晶粒度大小和炉渣的冷却速度密切相关,炉渣缓冷有利于铜相粒子迁移聚集长大,即在炉渣的缓冷过程中,炉渣溶体的初析微晶可通过溶解-沉淀形成成长,形成结晶良好的自形晶或半自形晶,同时有用矿物因此扩散迁移、聚集并长大成相对集中的独立相,使其易于单体解离和选别回收。目前,我国铜冶炼渣年产1100 万吨,含铜27.5 万吨,是二次铜资源的重要组成部分。铜冶炼炉渣的处理方式主要有火法贫化、湿法浸出和选矿富集几种。火法贫化的弃渣含铜高、能耗高、环境污染严重;选矿富集工艺虽然渣缓冷场占地面积大,基建投资较高,但铜回收率较高,选矿尾渣含铜可以控制在0.3%以内,并且渣中金银回收率较高、能耗低、成本低,因而被广泛应用。国内采用选矿富集处理铜冶炼渣的企业主要有白银有色集团、江西铜业集团、铜陵有色集团、大冶有色集团及祥光铜业集团等。 江西铜业贵溪冶炼厂、山东阳谷祥光铜业冶炼厂目前已成功应用铜冶炼渣缓 冷半自磨+球磨铜矿物浮选。新工艺,有效解决了铜冶炼渣中铜晶体粒度过细 导致难以单体解离、常规破碎因冶炼渣中夹带冰铜块导致的中细碎设备生产能力和运转率低等一系列技术难题,实现了钢冶炼渣中铜的有效回收。3 年应用数据表明,对于含铜2.7%左右的铜冶炼渣,获得的铜精矿品位大于26%,尾渣品位含铜低于0.3%。 白银有色集团排渔场堆存的白银炉渣约为700 万吨,并且毎年还在产出新的

铜 渣 的 处 理 与 资 源 化(专题)

铜渣的处理与资源化 摘要:铜渣中含有大量的可利用的资源,对其回收利用日益受到人们的重视。本文总结了各种铜冶炼渣的化学成分和矿物组成,介绍了国内外处理铜冶炼渣的各种方法。通过比较各种处理方法的优点和不足,提出了一种新的能充分利用渣中的铜、铁两种资源的选择性析出的处理方法并对相关机理进行了说明。 关键词:铜渣;资源化;贫化;选择性析出 1 前言 贵金属资源稀少,价格昂贵,越来越受到世界各国的普遍重视,贵金属工业废料是当今世界日益紧缺的贵金属资源中很贵重的二次资源,对这些工业废料有效的处理和利用,具有可观的经济价值。铜渣中含有大量的可利用的资源。现代炼铜工艺侧重于提高生产效率,渣中的残余铜含量增加,回收这部分铜资源是现阶段处理铜冶炼渣的主要目的。当然,渣中的大部分贵金属是与铜共生的,回收铜的同时也能回收大部分的贵金属。渣中的主要矿物为含铁矿物(表1),铁的品位一般超过40%,远大于铁矿石29.1%.的平均工业品位[1,2]。铁主要分布在橄榄石相和磁性氧化铁矿物中,可以用磁选的方法得到铁精矿。显然,针对铜渣的特点,开展有价组分分离的基础理论研究,开发出能实现有价组分再资源化的分离技术,为含铜炉渣再资源产业化提供技术依据,对国民经济和科技发展具有重要的现实意义。

2 铜渣的工艺矿物学特征 随着铜冶金技术的不断发展,传统的炼铜技术包括鼓风炉熔炼,反射炉熔炼和电炉熔炼正在逐渐被闪速熔炼取代,与此同时,与上述二次熔炼的方法不同的所谓一步熔炼出粗铜的熔池熔炼方法,如诺兰达法、瓦纽科夫法、艾萨法也逐步受到人们的重视。冶炼厂转炉、闪速熔炼等含铜较高的炉渣(尤其是含砷等有害元素较高的炉渣),返回处理困难,这些物料往往需要开路处理。 炼铜炉渣主要成分是铁硅酸盐和磁性氧化铁,铁橄榄石(2FeO·SiO2)、磁铁矿(Fe3O4)及一些脉石组成的无定形玻璃体(表2,表3 )。机械夹带和物理化学溶解是金属在渣中的两种损失形态。一般而言,铜在渣中的损失随炉渣的氧势、锍品位、渣Fe/SiO2比增大而增大。熔炼渣中的铜主要以冰铜或单纯的辉铜矿(Cu2S)状态存在,几乎不含金属铜,多见铜的硫化物呈细小珠滴形态不连续分布在铁橄榄石和玻璃相间。而吹炼渣中存在少量金属铜,在含铜高的炉渣中,Cu2S含量也随之增大。机械夹带损失的有价金属皆因冶炼过程中大量生成Fe3O4,致使炉渣粘度提高,渣锍比重差别减小,使渣锍无法有效分离。

化学分析专业技术工作总结doc

化学分析专业技术工作总结 篇一:任工程师以来的专业技术工作报告(分析化学专业) 任工程师以来的专业技术工作报告 本人***,男,汉,1975年10月出生,广东省韶关市**县人。1998年毕业于华南理工大学应用化学专业,获学士学位。1998年6月到广州****分析测试中心工作,XX年11月取得工程师专业技术资格,被聘为工程师。 一、专业知识 被聘工程师以来,本人能学习吸收先进的科技知识,不断更新和充实自己的知识结构,掌握本专业国内外现状及发展趋势,运用基础理论指导科研工作。 XX年11月至今,本人在广州*****分析测试中心从事化学分析与研究工作。本人从事贵金属分析工作已经有9年多的时间,能学习吸收先进的科技知识,不断更新和充实自己的知识结构,掌握了多种贵金属分析方法,是贵金属分析的中坚力量。具有较强的科研创新能力,积极进行科技交流活动,目前在各种核心刊物上共发表论文多篇。 XX年,参加全国专业技术人员计算机应用能力考试,取得了Word 97、Windows98、Network等三个科目的合格证书,XX年又取得了Excel XX、Powerpoint XX等二个科目的合格证书。 XX年,通过了中华人民共和国人事部统一组织的全国职

称外语A级考试,成绩优良。 XX年—XX年,中南大学材料工程专业工程硕士研究生,以优良成绩完成了所有基础课程,已进入写硕士研究生论文阶段。 二、主要工作经历和业绩成果 XX年12月至XX年12月作为主要参加者(在项目中排名第二)参与****技术创新项目“贵金属二次资源中贵金属分析方法研究”。在样品前处理技术及分析测试方面开展了大量的、系统的研究工作,取得研究成果如下:在样品前处理方面,提出了磨样机制取杂铜样品的方法和对高铜含量样品无需预先分离而直接用火试金法分离样品中的金、铂和钯;在分析 测试方面,采用原子吸收光谱法、电感耦合发射光谱法、滴定法和重量法,解决了贵金属二次资源中金、铂和钯的测定问题。该项目部分成果已应用于实际检测工作中,并取得了较好的经济效益,具有广泛的应用前景。该项目XX年12月通过了由中国有色金属工业协会组织的科学技术成果鉴定,并获得XX年度中国有色金属工业协会科学技术奖三等奖。 XX年主要作为参加者参与项目“铜阳极泥中银的分析方法研究”。研究提出了一种简单、快速、结果准确的铜阳极泥中银的分析方法,XX年11月申请发明专利,XX年3月21

铜炉渣选矿处理工艺

我国既是一个铜资源相对缺乏的国家,又是一个铜矿资源消耗较大的国家。据相关资料表明,截止2007年,我国已探测铜矿资源的储量为7048万t,仅占世界总铜矿资源的5.5%,已开发利用的达4100万t。而尚未开采的铜矿资源特点为:贫多富少、原矿品位低、采选困难。同时,我国铜矿平均品位仅为0.78%,储量在200万t上的矿床的品位大都不超过1%。目前,品位在0.2~0.3%的铜矿已被开采。由于矿石品位较低的原因,铜冶炼过程会产生大量炉渣。我国每年铜冶炼产渣约400~500万t,至今已累计约5000万t以上,这些渣中含有相当数量的贵金属和稀有金属,长期堆放不仅大量占用土地,还严重污染环境,更是严重的资源浪费。因此,开发利用二次资源成为实现可持续发展的重要途径。 本项目日处理铜炉渣2000t,年处理铜炉渣40万t,原矿铜品位3.5%。年产铜精矿47000t,铜品位24%,铜回收率80.57%,尾砂353000t。 生产工艺 本项目选矿采用两段闭路破碎、二段闭路磨矿、一段粗选、两段扫选、一段精选的工艺流程,选矿药剂为添加调整剂氧化钙、捕收剂为丁胺黑药、丁黄药组合。 破碎工序:铜炉渣采用密闭的带式输送机输送至粗料仓,铜炉渣最大块度350mm,由振动给料机送入颚式破碎机,粒度从~350mm碎至~100mm,然后进圆锥破碎机进行细碎,细碎产品(<15mm)送至筛分车间,振动筛筛上大料返回到圆锥破碎机进行细碎,筛下料经胶带运输机输送至粉矿仓。 磨矿工序:采用两段闭路磨矿,一段由一台MQG2436格子型球磨机与一台2FG-20螺旋分级机组形成闭路,共4个系列;磨矿细度要求达到-0.074mm占55%;二段磨矿由一台MQY2436溢流型球磨机与FX350*4旋流器组形成闭路,共4个系列,磨矿细度-0.074mm占79.12%。二段磨矿排矿与一段分级机溢流一起由渣浆泵扬送至水力旋流器给矿管,水力旋流器底流进入二段磨机,溢流流至浮选。

铅精矿化学分析方法 氧化钙量的测定试验报告(株洲冶炼 修改稿)

铅精矿化学分析方法 第 XX 部分:氧化钙含量的测定原子吸收光谱法 试验报告 株洲冶炼集团股份有限公司 于亮王军 2020年9月

铅精矿化学分析方法 第 XX 部分:氧化钙含量的测定 原子吸收光谱法 1 实验部分 1.1 试剂 除非另有说明,在分析中仅使用确认为分析纯及以上纯度的试剂和符合GB/T 6682规定的二级水及以上纯度的水。 1.1.1 氢氟酸(ρ=1.15g/mL)。 1.1.2 盐酸(ρ=1.19g/mL) 。 1.1.3 硝酸(ρ=1.42g/mL)。 1.1.4 氢溴酸(ρ=1.50g/mL)。 1.1.5 高氯酸(ρ=1.76g/mL)。 1.1.6 盐酸(1+1) 。 1.1.7锶溶液(20g/L):称取30.43g氯化锶(SrCl2·6H2O)于250mL烧杯中,用水溶解后,转移至500mL容量瓶中,用水稀释至刻度,混匀。本条修改为:镧溶液(50g/L):称取29.35g 氧化镧(La2O3,≥99%)于250mL烧杯中,缓慢加入50mL硝酸(1.1.3),加热溶解完全,冷却后以水定容至500mL,混匀。 1.1.8 氧化钙标准贮存溶液:称取1.7849g碳酸钙(基准试剂,预先在105℃~110℃烘干1h,置于干燥器中冷却至室温)于250mL烧杯中,加少量水润湿,加入40mL盐酸(1.1.6)溶解完全后,转移至1000mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含1mg氧化钙。 1.1.9 氧化钙标准溶液:移取20.00mL氧化钙标准贮存溶液(1.1.8)于100mL容量瓶中,用水稀释至刻度,混匀。此溶液1mL含200μg氧化钙。 1.2 仪器 原子吸收光谱仪(普析TAS-990),附钙空心阴极灯。 1.3 试验步骤 1.3.1 称取0.2g(精确0.0001g)置于250mL聚四氟乙烯烧杯中,加入少量水润湿,加入10mL盐酸(1.1.2),置于电热板上低温加热5min,加入10mL硝酸(1.1.3),5mL~10mL 氢氟酸(1.1.1),加热蒸至体积约10mL,加入5mL高氯酸(1.1.5),继续加热溶解,蒸至高氯酸冒白烟(如含碳高,补加5 mL高氯酸(1.1.5)),蒸至近干,取下冷却。加入10 mL盐酸(1.1.6),用水冲洗杯壁,加热使盐类完全溶解,取下冷却至室温。将溶液转移至100mL 容量瓶中,用水稀释至刻度,混匀,静置。

相关主题