搜档网
当前位置:搜档网 › 在xilinx ise12.2 环境下用自带的isim仿真详解

在xilinx ise12.2 环境下用自带的isim仿真详解

在xilinx ise12.2 环境下用自带的isim仿真详解
在xilinx ise12.2 环境下用自带的isim仿真详解

在xilinx ise12.2 环境下用自带的isim仿真详解

最近项目用到FPGA,也开始了FPGA的学习历程,硬件为红色飓风的E45,FPGA是spartan6系列的,软件开发环境是xilinx ise12.2的版本。

之前一直在做单片机,有一定的C基础,对FPGA的学习也算快吧,花了一天的时间移植了一个FPGA的串口程序,测试通过,收发正常,心里美滋的,在第三天的时候要做一个SPI的时序,由于程序是自己写的,所以对时序没把握,就需要仿真,看一下波形,可谁知道这一仿真就是2天的时间,搞得我头疼闹热的,到处查资料,看网站,弄得我好不痛苦啊,明明很简单的事情,却花了两天的时间,哎,在此也深感一个人学习的痛苦,也感到资源的可贵啊,为了我的两天时间,我决定写下记录,以此让跟我一样遇到问题的人能够少花时间。

以下是我从网上收集的在xilinx ise12.2 环境下用自带的isim 仿真步骤:

https://www.sodocs.net/doc/8a13787509.html,/view/fce6e53c0912a21614792981.html

该链接的资料是OK的,但是有些小的细节需要说了,同时也我遇到的问题。

1.在生成verilog hex fixture 之后,一定要记得在Add

stimulus here之后加上你的动作代码,要不然仿真

是不会有动作的,问题很幼稚,但是他花了我2个

小时的时间,回头看了好几遍文档在注意到有自己

要添加的东西。

一般的添加格式为:

initial

begin

clk = 1'b0;

rst = 1'b0;

#5

clk = 1'b1;

rst = 1'b1;

end

always #10 clk = ~clk;

2.对于isim的界面,需要用好几个工具。

1所指的10us的选项,一般默认都很小,所以要根据具体的时间自己修改,小问题,也花了我不少时间

2所指的功能键是一次运行10us,很有用的

3所指的放大器在看波形的很好用

如果仿真出现红线和蓝线,证明仿真失败!

这是我两天以来出现的最多的仿真界面,到现在才明白如果信号不是绿色的证明都是有问题的,仿真是失败的!之所以会出现这种问题都是因为自己的设计功底太差。

3.仿真是程序应该注意的问题.

以下为一段可以正确运行的程序:

moduleled_run(iClk,oLed);

inputiClk;

output [3:0] oLed;

reg [3:0] oLed;

reg [24:0] count;

reg [1:0] state;

wireclk;

always @ (posedgeiClk)

count=count+1;

assignclk=count[24];

always @ (posedgeclk)

begin

case(state)

2'b00: oLed<=4'b0001;

2'b01: oLed<=4'b0010;

2'b10: oLed<=4'b0100;

2'b11: oLed<=4'b1000;

endcase

state=state+1;

end

endmodule

但是仿真是失败的,原因来自于:没有rst信号。对于count 的初始值仿真器无从取得,导致仿真失败。

应该对其做以下修改:

moduleled_run(iClk,oLed,rst);

inputiClk;

inputrst;

output [3:0] oLed;

reg [3:0] oLed;

reg [1:0] count;

reg [1:0] state;

wireclk;

always @ (posedgeiClk or negedgerst)

begin

if(!rst)

count = 0;

else

count=count+1;

end

assignclk=count[1];

always @ (posedgeclk or negedgerst)

begin

if(!rst)

oLed<= 4'b0001;

else

begin

case(state)

2'b00: oLed<=4'b0001;

2'b01: oLed<=4'b0010;

2'b10: oLed<=4'b0100;

2'b11: oLed<=4'b1000;

endcase

state=state+1;

end

end

endmodule

对于FPGA的仿真而言,每个值都应该有其初始值,而我恰恰是忽略了这一点。

最后要注意的地方:

仿真时要点击生产的verilog hex fixture文件,而不是其本身的V

Calm_Yi于2012.02.23

EMEQ实验室

安工大系统工程实验报告

《系统工程》实验报告 姓名:**** 班级:**** 学号:**** 指导老师:**** 2014年12 月4 日

实验三 简单库存模型 一、 实验目的 1、 熟悉STELLA 软件的基本操作 2、 加深对系统动力学主要要素和基本思想的理解 3、 学会利用STELLA 软件建立一阶反馈系统模型、仿真运行及结果分析 二、 实验要求 1、简单库存模型各变量及其因果关系图如下图: 2、各变量之间的关系可用如下方程表示: LI?K=I ?J+DT*R1?JK NI=1000 RR1?KL=DK/Z AD?K=Y-I ?K CZ=5 CY=6000 3、要求利用STELLA 建立上述库存模型的流图,仿真计算并分析结果 三、实验步骤 1、确定水准变量、速率变量、辅助变量、常量及水准变量初值; 2、熟悉STELLA 软件操作指导,建立模型的四个基本构造块为:栈(stock )、流(flow )、转换器(converter)、连接器(connector ),设置仿真参数(采用默认值); 2、根据因果关系图连接流; 3、确定水准方程、速率方程、辅助方程、赋初值方程和常量方程; 库存量 库存 差额 订货量 + (—) R1 D I — + 期望库存Y

4、建立模型仿真结果分析所需的数据模块; 5、仿真及结果分析 实验内容: 1.确定水准变量、速率变量、辅助变量、常量及水准变量初值; 2.建立四个基本块,根据关系图连接,如下图 3.确定水准方程、速率方程、辅助方程、赋初值方程和常量方程,并且运行仿真得输出特性示意图,如下图.

4.仿真得出数据随时间变化的精确流程,如下图

仿真机器人

一.简介 (3) 二. 发展历史 (3) 三.体系结构 (6) 四.仿生机器人的国内外研究现状 (9) 4.1水下仿生机器人 (10) 4.2空中仿生机器人 (10) 4.3地面仿生机器人 (11) 4.4仿人机器人 (11) 五.仿真机器人的发展趋势及技术 (12) 5.1机器人机构技术 (12) 5.2机器人控制技术 (12) 5.3数字伺服驱动技术 (13) 5.4多传感系统技术 (13) 5.5仿真机器人应用技术 (13) 5.6仿真机器人网络化、灵巧化和智能化技术 (13) 六.参考文献 (13)

一.简介 简单来说,仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人系统。从本质上来讲,所谓“仿生机器人”就是指利用各种机、电、液、光等各种无机元器件和有机功能体相配合所组建起来的在运动机理和行为方式、感知模式和信息处理、控制协调和计算推理、能量代谢和材料结构等多方面具有高级生命形态特征从而可以在未知的非结构化环境下精确地、灵活地、可靠地、高效地完成各种复杂任务的机器人系统.(摘自《仿生机器人的研究》许宏岩,付宜利,王树国,刘建国著) 二.发展历程 器人技术作为一门新兴学科,在工业飞速发展的今天扮演着非常重要的作用,而其发展与机械电子、机电一体化、控制原理等多学科的发展息息相关。仿生机器人作为机器人领域的一大分支,可以说是本世纪一个不可忽视的领域,也将是机器人日后发展的大方向。 仿生学是20世纪60年代出现的一门综合性边缘学科, 它由生命科学与工程技术科学相互渗透、相互结合而成。它在精密雷达、水中声纳、导弹制导等许多应用领域中都功不可没。仿生学将有关生物学原理应用到对工程系统的研究与设计中, 尤其对当今日益发展的机器人科学起到了巨大的推动作用。当代机器人研究的领域已经从结构环境下的定点作业中走出来, 向航空航天、星际探索、军事侦察攻击、水下地下管道、疾病检查治疗、抢险救灾等非结构环境下的自主作业方面发展. 未来的机器人将在人类不能或难以到达的已知或未知环

通信工程系统仿真实验报告

通信原理课程设计 实验报告 专业:通信工程 届别:07 B班 学号:0715232022 姓名:吴林桂 指导老师:陈东华

数字通信系统设计 一、 实验要求: 信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。对传输系统进行误码率分析。 二、系统框图 三、实验原理: QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。QAM 就是一种频率利用率很高的调制技术。 t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb 式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号; t 0s i n ω 为正交信号或者Q 信号; m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅; m 为 m A 和m B 的电平数,取值1 , 2 , . . . , M 。 m A = Dm*A ;m B = Em*A ; 式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空

间上的坐标,有输入数据决定。 m A 和m B 确定QAM 信号在信号空间的坐标点。称这种抑制载波的双边带调制方式为 正交幅度调制。 图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M) QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。 图3.3.5 QAM 相干解调原理图 四、设计方案: (1)、生成一个随机二进制信号 (2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制 (5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调 五、实验内容跟实验结果:

网络性能的仿真+ns2

实验一:网络性能的仿真 一、实验要求 1)对64个计算机结点,每个计算机采用若干100Mbps集线器(HUB)的 方式连接到一台服务器上。采用NS2仿真软件,对于以上的具体环节进 行网络性能的仿真,给出网络的吞吐量,丢包率,总时延,抖动率等参 数的仿真曲线,并对结果进行分析。 2)将以上环境中的集线器(HUB)换成交换机(switch),给出网络的信道 利用率,吞吐量,传输时延,排队延迟等参数的仿真曲线,并对结果进 行分析。 二、实验目的 通过本次实验的完成,首先能够学会在Ubuntu环境下安装搭建NS2运行的环境。其次对于tcl语言有了更加全面的了解。通过对具体环境的网络环境进行仿真,可以加深对网络的信道利用率,吞吐量,传输时延,排队延迟等参数的计算及了解。最后通过仿真环境中集线器(HUB)和交换机(Switch)之间的仿真的区别,加深对HUB和交换机之间差别的理解。 三、实验原理 1、NS2( Network Simulator version 2),NS(Network Simulator)是一种针对网络技术的源代码公开的,免费的软件模拟平台。计算机网络是一个相当复杂的系统,包含了各种通信协议和网络技术,而网络仿真是网路通信技术研究的重要手段之一,网络仿真是指采用计算机软件对网络协议,网络拓扑,网络性能进行模拟分析的一种研究手段。NS2是一种面向对象的网络仿真器,本质是一个离散事件模拟器,它可以仿真各种不同的IP网,实现一些网络传输协议,比如TCP和UDP,还包括业务源流量产生器,比如FTP,CBR等。NS2使用C++和Otcl作为开发语言。NS可以说是Otcl的脚本解释器,它包含仿真事件调度器、网络组件对象库以及网络构建模型库等。NS是用Otcl和C++编写的。由于效率的原因,NS将数据通道和控制通道的实现相分离。为了减少分组和事件的处理时间,事件调度器和数据通道上的基本网络组件对象都使用C++写出并编译的,这些对象通过映射对Otcl解释器可见。当仿真完成以后,NS将会产生一个或多个基于文本的跟踪文件。只要在Tcl脚本中加入一些简单的语句,这些文件中就

运算放大器的电路仿真设计

运算放大器的电路仿真设计 一、电路课程设计目的 错误!深入理解运算放大器电路模型,了解典型运算放大器的功能,并仿真实现它的功能; 错误!掌握理想运算放大器的特点及分析方法(主要运用节点电压法分析); ○3熟悉掌握Multisim软件。 二、实验原理说明 (1)运算放大器是一种体积很小的集成电路元件,它包括输入端和输出端。它的类型包括:反向比例放大器、加法器、积分器、微分器、电 压跟随器、电源变换器等. (2) (3)理想运放的特点:根据理想运放的特点,可以得到两条原则: (a)“虚断”:由于理想运放,故输入端口的电流约为零,可近似视为断路,称为“虚断”。 (b)“虚短”:由于理想运放A,,即两输入端间电压约为零,可近似视为短路,称为“虚短”. 已知下图,求输出电压。

理论分析: 由题意可得:(列节点方程) 011(1)822A U U +-= 0111 ()0422 B U U +-= A B U U = 解得: 三、 电路设计内容与步骤 如上图所示设计仿真电路. 仿真电路图:

V18mV R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 0.016 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 0.011 V + - 根据电压表的读数,, 与理论结果相同. 但在试验中,要注意把电压调成毫伏级别,否则结果误差会很大, 致结果没有任何意义。如图所示,电压单位为伏时的仿真结 果:V18 V R11Ω R22Ω R32Ω R44Ω U2 DC 10MOhm 6.458 V + - U3 OPAMP_3T_VIRTUAL U1 DC 10MOhm 4.305 V + - ,与理论结果相差甚远。 四、 实验注意事项 1)注意仿真中的运算放大器一般是上正下负,而我们常见的运放是上负下正,在仿真过程中要注意。

系统工程实验报告

系统工程实验报告 学院:管工学院 班级:工业工程102班 姓名:管华同 学号:109094042

实验一:解释结构模型 一、实验目的: 熟悉EXCEL,掌握解释结构模型规范方法。 二、实验内容: 1.已知可达矩阵如下表1 12345678 111010000 201000000 311110000 401010000 501011000 601011111 701011011 800000001 2. EXCEL中对错误!未找到引用源。中的可达矩阵用实用方法建立其递阶结构模型。(1)对可达矩阵进行缩减,得到缩减矩阵 12345678 111010000 201000000 311110000 401010000 501011000 601011111 701011011 800000001 (2)按小到大给每行排序 1 2 3 4 5 6 7 8 每行的和 2 0 1 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 1 1 4 0 1 0 1 0 0 0 0 2 1 1 1 0 1 0 0 0 0 3 5 0 1 0 1 1 0 0 0 3 3 1 1 1 1 0 0 0 0 4 7 0 1 0 1 1 0 1 1 5 6 0 1 0 1 1 1 1 1 6

(3)调整行列构成对角单位矩阵 2 8 4 1 5 3 7 6 每行的和 2 1 0 0 0 0 0 0 0 1 8 0 1 0 0 0 0 0 0 1 4 1 0 1 0 0 0 0 0 2 1 1 0 1 1 0 0 0 0 3 5 1 0 1 0 1 0 0 0 3 3 1 0 1 1 0 1 0 0 4 7 1 1 1 0 1 0 1 0 5 6 1 1 1 0 1 0 1 1 6 (4)画出递阶结构有向图 28 4 15 37 6(4)递阶结构模型完成。第一级第五级第二级 第三级第四级

桥梁抗风性能仿真

利用CFD-ACE进行桥梁抗风性能仿真一、计算实例简述 本计算实例为重型支援桥假设时三个阶段的风桥耦合仿真。 其模型结构如图所示: 图1.1位重型支援桥某工作状态模型 前期使用GEOM软件进行模型建立,网格划分等工作,并把此计算案例分为三个域进行计算:1号域为桥体本身;2号域为桥体附近的空气流域;3号域为桥体远方的空气流域。 为了提高计算效率以及计算精确度,则需要在1号和2号域中网格相比3号域中更为精密。下图为三个域的示意图。 图1.2域1 和域2示意图

其中如图1.2所示,实体桥结构内部为1号域,桥体周围的立方六面体(紫色六面体)到桥表面之间的空间为2号域。 图1.3 3号域示意图 3号域为最大的立方六面体到中间的立方六面体之间的空间。 二、操作界面介绍 打开CFD-ACE,其工作界面如下图所示: 图2 CFD-ACE软件工作界面 其主要分为菜单区、实体(域)显示区域、设置面板、操作对象选择区等四个部分。

1.菜单区 File、Edit、View、Units、Tool、Windows分别为基本操作的操作菜单。 为文件打开、存储、撤销快捷按钮。 为控制模型显示方式的选项按钮,其中可选择模型的可视角度、透明度、阴影等。 为CFD-ACE计算过程中对计算仿真过程或者结果操作的按钮。其功能有时时观察收敛曲线、打开与其关联的CFD-VIEW软件等。 图2.1.1菜单区工作界面 2.实体(域)显示区域 图2.2.1实体(域)显示区域 其操作方式主要为鼠标操作,其中鼠标左键功能为拖动,鼠标右键功能为旋转,滚轮功能为放大。同时可以通过此区域进行操作对象的选择。 3.操作对象区域 此区域为操作对象选择区域,方便对其进行选择,选择后,被选部分会在实体显示区域显示。然后进行相关操作。

第9节仿真坏境下的机器人

第9节仿真坏境下的机器人 目前有很多教学用机器人都开发了虚拟环境,在电脑中就可以模拟机器人的活动情况,并且和真的机罪人发生的动作几乎一样。 我的问题 1.我们要学习的虚拟环境是什么? 2.如何在仿真环境下让机器人运动? 3.我们可以让机器人做什么? 活动建议 1.熟悉VJCl.5仿真环境的主程序窗口和仿真窗口。 2.在仿真环境下通过程序控制机器人直行与转向。 3.掌握直行模块与转向模块中的速度与时间的关系。 4.利用“直行模块”与“转向模块”,让机器人在仿真环境下画一些简单的图形。 操作指南 一、认识VJCl.5仿真环境 下面让我们来认识一下VJCl.5仿真环境,井在仿真环境下调用“走六边形.flw”的程序,让机器人走“六边形”。 1.启动VJCI.5仿真软件 执行“开始’一“程序”、“VJCl.5仿真版”一“VJCl.5仿真版”命令。 2.认识主程序窗口(如图2—6所示)

’,·.·: (1)打开“走六边形”程序。 执行“文件”- “打开”命令,找到VJCl.5仿真版,安装目录下的“例程”文件夹中的“走六边形.nw”文件。这时我们就可以看到走六边形的程序了(如图2—7所示)。

(2)进入仿真环境。 执行“工具”呻“仿真当前程序”命令,或者单击工具栏中的“仿真”按钮B,进入仿真环境(如图2-8所示).

(3)仿真运行。 单击仿真窗口界面左下角的“运行”按钮后会出现仿真机器人(如图2-9所示),用鼠标拖动机器人到运行显示区相应位置后单击鼠标左键,机器人就开始运行了(如图2-10所示)。

(4)返回主程序窗口。 单击仿真窗口左上角的“退出”按铆p可回到主程序窗口。 二、机器人画正方形 1.机器人直行 (1)在主程序窗口单击“执行器模块库”中的“直行”模块(如图2—11(a)所示)。

电子产品架构设计、性能仿真分析概要

电子产品架构设计、性能仿真分析 系统解决方案 - VisualSim ? EDA 技术经过了二十几年的发展,针对电子设计流程中某一专门领域的设计验证工具(如FPGA 、DSP 设计或PCB 设计)已经发展得相当成熟,自动化程度越来越高,使用也变得越来越简便快捷。但与此形成对比的是,对于通信、多媒体处理等领域的复杂电子产品或ASIC 设计,由于可选择的芯片或IP 以及相关系统实现方案越来越多、可能的设计约束条件(实时性、功耗、成本与物理尺寸等)越来越苛刻,项目开发团队开始体验到首次设计硬件、软件(原型设计)交付后测试失败的痛苦。系统设计师开始把更多的注意力放在电子系统设计的方法学上面,寻求真正面向电子系统总体设计的EDA 工具、为复杂电子系统的体系结构设计提供科学有效的手段。

Mirabilis Design公司的VisualSim?是业界首个专门用于复杂电子系统架构设计和性能分析的电子系统级(ESL)建模仿真工具。借助VisualSim?的快速虚拟原型开发技术,设计团队在项目开发的最初阶段即可以对一个复杂电子系统的不同硬件、软件实现方案进行快速性能仿真分析和研究评价,验证和优化设计设想,以确定可以满足全部约束条件的最优系统实现结构方案。 与MATLAB/Simulink、SPW等用于算法模型仿真和分析、选择的系统级设计工具不同,VisualSim?把关注的焦点放在对算法、协议、数据流和控制流等系统行为的实现架构的建模上。对于初步设定的系统硬件处理平台与外设结构、软件算法流程调度、高速数据存储与交换方案、网络协议等,VisualSim?可以帮助系统工程师回答如下的问题:该实现平台方案是否能够满足全部的系统设计需求?实时处理采用何种硬件/软件划分结构来实现最为有效?采用何种类型、数量的硬件资源(处理器/DSP、ASIC/FPGA、高速存贮器等)可以“恰当”地满足功能需要?软件任务调度算法如何与硬件资源进行合理匹配?高速数据流通道等采用何种总线形式或DMA模式传输更为高效?等类似传统系统设计工具无法解答的问题。 VisualSim?的方法学是:将更多的时间用于设计、分析不同的系统实现模型,而不是用于进行模型编码。在全图形化的环境中,VisualSim?独特的参数化模块库能够快速把设计功能抽象映射为各种系统实现结构、并据此进行事务级(Transaction Level)或时钟精度的仿真分析,得到系统的数据处理输出延时(Latency)、处理器利用率、总线冲突情况与总线利用率、多处理器任务分配平衡、缓冲需求、功耗等的性能指标。设计团队进而可以据此来设计、评价和选择不同的平台方案,而所有这些工作都是在实际硬件交付前就通过VisualSim?虚拟原型模型实现的。 作为一款业界领先的动态系统架构建模与性能仿真分析工具,VisualSim?专注于加速系统建模与仿真,IP复用和可执行模型的生成。VisualSim?具有完全集成的图形化软件环境,支持多种运行平台。由于采用了基于伯克利大学Ptolemy框架的多域仿真器,VisualSim?能够同时支持模

系统工程仿真计算实验报告

系统工程实验报告 开课实验室: 1、实验目的 通过vensim仿真软件使用介绍,结合理论课内容,根据系统工程课后案例构建系统动力学模型,使学生得到仿真软件的基本技能训练。 2、实验内容 本部分实验分两个环节,第一环节主要熟悉vensim软件各功能模块的情况并能够完成课本例题的仿真;第二个环节主要是运用vensim软件解决课后习题第9、10、11、12题的流程图绘制以及仿真,并结合部分试题撰写实验报告(把过程截图放到报告中)。 9、绘制因果关系图和流程图 9.1因果关系图 9.2流程图 10 画出因果关系图和流程图,写出相应的DYNAMO方程,对该校未来3~5年的在校本科生和教师人数进行仿真计算,分析系统动力学方法的优点,以及缺点,能否用其他模型

方法来分?又如何分析? 10.1因果关系图 10.2流程图 10.3DYNAMO方程 L S.K=S.J+DT*SR.JK L T.K=T.J+DT*TR.JK N S=10000 N T=1500 R SR.KL=X*T.K R TR.KL=W*S.K C X=1 C Y=0.05 10.4仿真计算(以年为单位)

系统动力学方法的优点: (1)系统动力学是自然科学的理论体系(系统论,控制论,信息论)与经济学的综合,可以用来分析复杂的社会经济系统,帮助做出决策。 (2)系统动力学的方法是一种面向实际结构模型的建模方法,可以方便的处理非线性和时变现象,能做长期、动态、战略的仿真分析与研究。 (3)系统动力学定义复杂系统为高阶次、多回路和非线性的反馈结构,绘制因果关系图和流图,可以知道各个因素之间的因果关系。 (4)系统动力学以仿真实验为基本手段,以计算机为主要工具,进行计算时较为方便,数据较为精确。 系统动力学的缺点: (1)系统动力学是在对一些系统的研究之后,进行主观抽象和和概括的结果,存在一定的主观性。(2)进行系统动力学仿真计算时,必须有数据的支撑才能进行仿真。 (3)DYNAMO方程的建立需要一定的数学基础,需要也一定的计算机软件操作基础。 (4)系统动力学能做长期、动态的战略分析,相对于短期,中期,较为有限。 可以使用数学模型进行分析,采用状态空间模型法,构建差分方程。 11、 绘制相应的流程图以及因果关系图,在因果关系图当中找出因果反馈回路,并判断回路的性质,根据给出的方程,进一步仿真,提供仿真结果,并对结果进行分析。 11.1因果关系图 一阶正反馈回路:城市人口数、年增长人口数 一阶负反馈回路:年新增个体网点服务数、个体网点服务数、实际拥有服务网点数、千人均网点数、实际人均服务网点与期望差。

ADC性能仿真

1.用calculator把你的数字比特输出按不同权重做和,得到重建信号 2.对重建信号做dft,再做spectralPower,注意跑了多少点就做多少点的dft。最好是64,128,。。。但是cadence里跑一个tran很花时间,尤其是跑高精度的tran,所以你要在精度和仿真时间上做权衡 3.重建信号和延时的输入信号做差,你的tb上要有两个信号源,其中s1进adc,s2接电阻到地。s2是s1的延时版本,s1进adc后延时多少时间才输出,s2也同样延时多少时间 4.对差信号做sample得到每个采样点的量化误差,注意sample的起始时间是s1的延时时间 5.把4中得到的信号除以LSB,做abs,再做average,得到用LSB表示的平均量化误差。你可以用这个误差估计adc的性能,当然这个误差一定要小于0,5LSB 6.以上步骤中提到的函数在cadence里的calculator里都有,你去找找吧。不同版本的cadence 对dft的定义似乎有差别,你可以试试 终了时间=起始时间+63*时钟周期,终了时间=起始时间+64*时钟周期,结果会有不同。 至于INL和DNL,还有ENOB,我还没想出来,不过估计是用锯齿波做输入,再把输出重建为阶梯波形,当然要在时序上对齐 嘻嘻,先把期末考试应付过去,暑假里再想想 小的最近做了一个adc,现在在做动态特性的仿真,sfdr,thd都可以从频谱中直接计算,好象sndr,snr不能直接计算,看了一些matlab的代码,有些函数不是特别理解,但根据自己的理解在计算adc的动态特性,结果感觉也比较正常,下面说一下我的理解,请高人指点一下,看我的这种理解是否合理. 1.用cadence的计算器做dft,这里不乘以20db,得到一个频谱,通常的频谱是乘以20db的结果. 2.把1得到的频谱的每个点用计算器里面的一个列表功能全列出来,然后用csv后缀进行保存,并把保存的结果从服务器导到自己用的终端上,在windows下csv后缀的文件会被转为excel格式. 3.sndr的计算:在得到的excel里,把基波处的值设为0,对其他所有项求平方和,excel 提供这个函数,然后用基波处那个值的平方除以前面得到的平方和,得到的结果再取10log10,就得到了sndr,通过sndr就可算得enob. 4.snr的计算:和上面的第一个步骤相同,在得到的excel里面,把基波处的值设为0,同时把需要考虑的偕波值也设为0,剩下的可认为是量化噪声,然后把剩下的项求平方和,用基波处的值除以前面得到的平方和再乘以10log10就得到了snr. 5.thd的计算:把上一步那些需要考虑成谐波的量求平方和,设这个值为a,然后b=a+基波处值^2,thd=10log10(a/b). 这是我对这几个参数的计算方法,不知道是否有问题,请高人指点啊.

浅谈运用波士顿矩阵分析李宁的战略选择

浅谈运用波士顿矩阵分析李宁的战略选择 吴雅云12 (中国地质大学(北京)(100083)) 【摘要】波士顿矩阵是分析企业市场战略广泛采用的分析工具,对各行业企业战略选择和定位都具有指导意义。李宁公司自创立以来一直都是中国体育事业的领跑者,在产品战略上采用的也是多品牌业务发展策略。文章运用波士顿矩阵对李宁企业的产品战略选择作一简述,并根据分析结果对李宁今后的战略选择提出可行性建议。 【关键词】波士顿矩阵李宁公司企业战略产品战略 中图分类号:文献标识码:A 文章编号 波士顿矩阵又称市场增长率-相对市场份额矩阵。本法将企业所有产品从销售增长率和市场占有率角度进行再组合。在坐标图上,以纵轴表示企业销售增长率,横轴表示市场占有率,各以10%和50%作为区分高、低的中点,将坐标图划分为四个象限,依次为“问号(?)”、“明星(★)”、“金牛(¥)”、“瘦狗(×)”。在使用中,企业可将产品按各自的销售增长率和市场占有率归入不同象限,使企业现有产品组合一目了然,同时便于对处于不同象限的产品作出不同的发展决策。其目的在于通过产品所处不同象限的划分,使企业采取不同决策,以保证其不断地淘汰无发展前景的产品,保持“问号”、“明星”、“金牛”产品的合理组合,实现产品及资源分配结构的良性循环。波士顿战略矩阵分析方法简单易行, 直观性强, 变化灵活, 在国外已被广泛应用于企业经营战略决策, 本文就运用波士顿矩阵对李宁企业的产品战略选择作一简述,并根据分析结果对李宁今后的战略选择提出可行性建议。 李宁公司自创立以来一直都是中国体育事业的领跑者,他拥有品牌营销、研发、设计、制造、经销及零售能力,产品主要包括自有李宁品牌之运动及 1吴雅云,(1990.7—),女,福建晋江人,中共预备党员,中国地质大学(北京)人文经管学院工商管理专业本科生。 2指导教师:陈黎琴,(1975.5—),女,中共党员,博士,讲师,硕士生导师,研究领域:组织行为,市场营销、广告学等。

实验课7 全差分运放的仿真方法

CMOS模拟集成电路 实验报告

实验课7 全差分运放的仿真方法 目标: 1、了解全差分运放的各项指标 2、掌握全差分运放各项指标的仿真方法,对全差分运放的各指标进行仿真,给出各指标的 仿真结果。 本次实验课使用的全差分运放 首先分析此电路图,全差分运算放大器是一种具有差分输入,差分输出结构的运算放大器。其相对于单端输出的放大器具有一些优势:因为当前的工艺尺寸在减少,所以供电的电源电压越来越小,所以在供电电压很小的情况下,单端输出很难理想工作,为了电路有很大的信号摆幅,采用类似上图的全差分运算放大器,其主要由主放大器和共模反馈环路组成。 1、开环增益的仿真 得到的仿真图为

1.开环增益:首先开环增益计算方法是低频工作时(<200Hz) ,运放开环放大倍数;通过仿真图截点可知增益为73.3db。 2.增益带宽积:随着频率的增大,A0会开始下降,A0下降至0dB 时的频率即为GBW,所以截取其对应增益为0的点即可得到其增益带宽积为1.03GB。 3.相位裕度:其计算方法为增益为0的时候对应的VP的纵坐标,如图即为-118,则其相位裕度为-118+180=62,而为保证运放工作的稳定性,当增益下降到0dB 时,相位的移动应小于180 度,一般取余量应大于60度,即相位的移动应小于120 度;所以得到的符合要求。 在做以上仿真的时候,关键步骤 在于设定VCMFB,为了得到大的增益,并且使相位裕度符合要求,一直在不停地改变VCMFB,最初只是0.93,0.94,0.95的变化,后来发现增益还是远远不能满足要求,只有精确到小数点后4为到5位才能得到大增益。 2.CMRR 的仿真 分析此题可得共模抑制比定义为差分增益和共模增益的比值,它反映了一个放大器对于共模信号和共模噪声的抑制能力。因此需要仿真共模增益和差分增益。可以利用两个放大器,一 个连成共模放大,一个连成差模放大,

波士顿矩阵法运用于公立医院战略管理的探讨

波士顿矩阵法运用于公立医院战略管理的探讨 作者:林铭 来源:《中国卫生产业》2020年第20期 [摘要] 面对竞争日趋激烈的医疗市场,要想赢得优势,吸引更多的患者,公立医院应该转变传统的管理理念,将现代企业管理中的波士顿矩阵法引入到自身的管理方法之中。以大型公立医院C医院为例,通过阐述利用波士顿矩阵法对其部分科室进行分类,并实行不同的管理方法,分析了使用该法前后对C医院的不同效果,以及在使用中应注意的问题,同时也阐明了它的局限性,为公立医院引入此法进行战略管理提供参考与借鉴。 [关键词] 波士顿矩阵法;公立医院;战略管理 [中图分类号] R197 [文献标识码] A [文章编号] 1672-5654(2020)07(b)-0045-03 Discussion on the Application of Boston Matrix Method in the Strategic Management of Public Hospitals LIN Ming Finance Department, Second Affiliated Hospital of Bengbu Medical College, Bengbu,Anhui Province, 233040 China [Abstract] Facing the increasingly competitive medical market, in order to gain advantages and attract more patients, public hospitals should change their traditional management concepts and introduce the Boston matrix method in modern corporate management into their own management methods. Ttaking Hospital C of a large public hospital as an example, by explaining the use of the Boston matrix method to classify some of its departments and implementing different management methods, the different effects on Hospital C before and after using this method are analyzed, and the points that should be paid attention to in use. The problem also clarifies its limitations, and provides reference for public hospitals to introduce this method for strategic management. [Key words] Boston matrix method; Public hospitals; Strategic management 波士頓矩阵法(BCG法)是由战略管理咨询领域的先驱波士顿咨询公司提出的一种规划企业整体业务组合的方法,它把企业的业务按照一定标准划分成4种类型,从而形成不同的发展前景,以此来分析投资各种业务是否合理,方便于将企业有限的资源在各个业务之间合理分配,这种分析方法对生产、销售等策略的制定起到很强的方向指引作用,它是保证企业获得较

系统工程仿真实验报告

系统工程仿真实验报告 姓名:_蒋智颖_ 学号:_110061047_ 成绩:___________ 实验一:基于VENSIM的系统动力学仿真 一、实验目的 VENSIM是一个建模工具,可以建立动态系统的概念化的,文档化的仿真、分析和优化模型。PLE(个人学习版)是VENSIM的缩减版,主要用来简单化学习动态系统,提供了一种简单富有弹性的方法从常规的循环或储存过程和流程图建立模型。本实验就是运用VENSIM进行系统动力学仿真,进一步加深对系统动力学仿真的理解。 二、实验软件 VENSIM PLE 三、原理 1、在VENSIM中建立系统动力学流图; 2、写出相应的DYNAMO方程; 3、仿真出系统中水准变量随时间的响应趋势; 四、实验内容及要求 某城市国营和集体服务网点的规模可用SD来研究。现给出描述该问题的DYNAMO方程及其变量说明。 L S·K=S·J+DT*NS·JK N S=90 R NS·KL=SD·K*P·K/(LENGTH-TIME·K) A SD·K=SE-SP·K C SE=2 A SP·K=SR·K/P·K A SR·K=SX+S·K C SX=60 L P·K=P·J+DT*NP·JK N P=100 R NP·KL=I*P·K C I=0.02 其中:LENGTH为仿真终止时间、TIME为当前仿真时刻,均为仿真控制变量;S为个体服务网点数(个)、NS为年新增个体服务网点数(个/年)、SD为实际千人均服务网点与期望差(个/千人)、SE为期望的千人均网点数、SP为的千人均网点数(个/千人)、SX为非个体服务网点数(个)、SR为该城市实际拥有的服务网点数(个)、P为城市人口数(千人)、NP为年新

汽车性能仿真计算实验实验报告

实验一汽车动力性仿真计算 实验目的 1.掌握汽车动力性评价指标和评价方法 2.学会使用matlab 对汽车动力性指标进行计算 实验内容 1.学习汽车动力性理论 2.编写计算程序 3.绘制汽车动力性图形 实验设备 硬件环境:汽车虚拟仿真实验室 软件环境:matlab2016a 及以上版本 实验步骤 1.学习汽车动力性理论 2.编写计算程序 3.绘制汽车动力性图形 实验报告 1. 运用matlab 解决《汽车理论》第一章习题1.3 1)绘制汽车驱动力与行驶阻力平衡图 汽车驱动力Ft= r i i T t o g tq η 行驶阻力F f +F w +F i +F j =G ?f + 2D 21.12 A C a u +G ?i+dt du m δ 发动机转速与汽车行驶速度之间的关系式为:0 g i n r 0.377 ua i ?= 由本题的已知条件,即可求得汽车驱动力和行驶阻力与车速的关系,编程即可得到汽车驱动力与行驶阻力平衡图。 2)求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率 ①由1)得驱动力与行驶阻力平衡图,汽车的最高车速出现在5档时汽车的驱动力曲线与行驶阻力曲线的交点处,Ua max =99.08m/s 2。 ②汽车的爬坡能力,指汽车在良好路面上克服w f F F +后的余力全部用来(等速)克服坡度阻力时能爬上的坡度, 此时 0=dt du ,因此有() w f t i F F F F +-=,可得到汽车爬坡度与车速的关系式:( )??? ? ? ?+-=G F F F i w f t arcsin tan ; 而汽

车最大爬坡度为Ⅰ档时的最大爬坡度。利用MATLAB 计算可得,352.0max =i 。 ③如是前轮驱动,1?C = q b hg q L L -;相应的附着率1?C 为1.20,不合理,舍去。 如是后轮驱动,2?C =q a hg q L L +;相应的附着率2?C 为0.50。 3)绘制汽车行驶加速度倒数曲线,求加速时间 利用MATLAB 画出汽车的行驶加速度图和汽车的加速度倒数曲线图: 忽略原地起步时的离合器打滑过程,假设在初时刻时,汽车已具有Ⅱ档的最低车速。由于各档加速度曲线不相交(如图三所示),即各低档位加速行驶至发动机转速达到最到转速时换入高档位;并且忽略换档过程所经历的时间。结果用MATLAB 画出汽车加速时间曲线如图五所示。如图所示,汽车用Ⅱ档起步加速行驶至70km/h 的加速时间约为26.0s 。 max i

哈工大工程系统建模与仿真实验报告

研究生学位课 《工程系统建模与仿真》实验报告 ( 2017 年秋季学期) 姓名 学号 班级研一 专业机械电子 报告提交日期 工业大学

报告要求 1.实验报告统一用该模板撰写: (1)实验名称 (2)同组成员(必须写) (3)实验器材 (4)实验原理 (5)实验过程 (6)实验结果及分析 2.正文格式:小四号字体,行距单倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档请发送至: xxx@126.。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、 实验名称 TH -I 型智能转动惯量实验 二、 同组成员(必须写) 17S 三、 实验器材(简单列出) 1. 扭摆及几种有规则的待测转动惯量的物体 2. 转动惯量测试仪 3. 数字式电子台秤 4. 游标卡尺 四、 实验原理(简洁) 将物体在水平面转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。 根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 M =-K θ (1) 式中,K 为弹簧的扭转常数,根据转动定律 M =I β 式中,I 为物体绕转轴的转动惯量,β为 角加速度,由上式得 M I β= (2) 令2I K ω= ,忽略轴承的磨擦阻力矩,由式(1)、(2)得 222d K dt I θβθωθ==-=- 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比, 且方向相反。此方程的解为: cos()A t θωφ=+ 式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动周期为 22T π ω = =(3) 由式(3)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。 五、 实验过程(简洁) 1. 用游标卡尺测出实心塑料圆柱体的外径D 1、空心金属圆筒的、外径D 、 D 外、木球直径D 直、金属细杆长度L ;用数字式电子秤测出各物体质量m (各测量3次求平均值)。

航空发动机性能仿真设计

航空发动机性能仿真 1、概述 发动机是飞行器的心脏,其性能对飞行器的发展有着至关重要的影响。传统的发动机总体设计,主要通过对原准机的研究和改进,并在详细设计中对各种部件性能试验和地面台架试车、高空模拟试验、飞行试验等整机试验来预测其性能,研制周期较长。 随着飞行器研制速度加快,传统设计模式已不能满足快速设计验证的要求。自上世纪80年代中后期,欧美航空行业开始推行数字化研发体系,分别推出NPSS和VIVACE计划,旨在通过建立航空发动机协同开发平台,来减少发动机的研发周期和成本。PROOSIS是2007年结束的VIVACE计划的重要成果之一。它是一款面向对象的飞行器动力系统性能仿真软件,具有完善的动力系统零部件模型库,可用于各类航空发动机系统的建模仿真分析。

2、PROOSIS的优点 丰富、开放并支持自定义的多学科模型库 PROOSIS包含多个领域的组件库,各组件的源代码完全开放,用户不仅可以修改这些代码,也可以自定义特殊组件;因此,用户既可以应用软件自带的组件构建发动机系统,也可以通过继承或重新定义的方式创建特殊的组件来构建发动机系统。

完美的多学科耦合分析 可以在同一个模型中综合分析控制、机械、电气、液压等耦合状况;从而使得用户可以将发动机的热力循环过程、控制系统、燃油和冷却系统的液力过程、电气系统等综合在同一个模型中进行综合分析,并能够将发动机模型嵌入到飞控模型中分析其性能对整个飞机的影响。 无需因果逻辑的面向对象编程语言EL 各变量之间不是赋值格式的关系,而是函数关系,模型的通用性、复用性都更好;模型可以实现信息隐藏、封装、单重继承或多重继承等;因此,同一个发动机模型,可以根据已知参数的不同,进行不同的分析。

集成运放组成的基本运算电路实验报告

实验报告课程名称:电路与电子技术实验指导老师: 成绩: 实验名称:集成运放组成的基本运算电路实验实验类型:同组学生:一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.研究集成运放组成的比例、加法和积分等基本运算电路的功能; 2.掌握集成运算放大电路的三种输入方式。 3.了解集成运算放大器在实际应用时应考虑的一些问题; 4.理解在放大电路中引入负反馈的方法和负反馈对放大电路各项性能指标的影响; 5.学会用集成运算放大器实现波形变换 二、实验容和原理 1.实现两个信号的反相加法运算 2.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 3.实现单一信号同相比例运算(选做) 4.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值,测量闭环传输特性:Vo = f (Vs) 5.实现两个信号的减法(差分)运算 6.输入正弦波,示波器观察输入和输出波形,毫伏表测量有效值 7.实现积分运算(选做) 8.设置输出初态电压等于零;输入接固定直流电压,断开K2,进入积分;用示波器观察输出变化(如何设轴,Y轴和触发方式) 9.波形转换—方波转换成三角波 10.设:Tp为方波半个周期时间;τ=R2C 11.在T p<<τ、T p ≈τ、T p>>τ三种情况下加入方波信号,用示波器观察输出和输入波形,记录线性 三、主要仪器设备 1.集成运算电路实验板;通用运算放大器μA741、电阻电容等元器件; 2.MS8200G型数字多用表;XJ4318型双踪示波器;XJ1631数字函数信号发生器;DF2172B型交流电压表; 型可调式直流稳压稳流电源。

《工程系统建模》实验报告.

《工程系统建模与仿真》实验报告 姓名XXXXXXX 学号XXXXXXX 班级XXXXXXX 专业XXXXXXX 报告提交日期XXXXXXX

实验一 扭摆法测定物体的转动惯量 一、 实验名称 扭摆法测定物体的转动惯量 二、 同组成员 学号 姓名 XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX 三、 实验器材 1) 转动惯量测试仪 2) 数字式电子台秤 3) 游标卡尺 4) 扭摆及几种有规则的待测转动惯量的物体:金属载物圆盘、塑料圆柱体、 木球、验证转动惯量平行轴定理用的金属细杆,杆上有两块可以自由移动的金属滑块。 四、 实验原理 转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。本实验使物体作扭转摆动,由于摆动周期及其它参数的测定计算出物体的转动惯量。 扭摆的构造如图 1-1所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。在轴的上方可以装上各种待测物体。垂直轴与支座间装有轴承,以降低摩擦力矩。3为水平仪,用来调整系统平衡。 将物体在水平面内转过一定角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作周期往返扭转运动。 根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正 比,即:M=-Kθ (1) 上式中,K 为弹簧的扭转常数。 由转动定律M =Iβ得:β=M /I (2) 令ω2=K /I ,忽略轴承的摩擦阻力矩,由式(1)、(2)得: 2 22 d K dt I θβθωθ= =-=- 图 1-1 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比, 且方向相反。此方程的解为:θ=Acos (ωt +?)。 式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期

相关主题