搜档网
当前位置:搜档网 › 单晶硅制绒溶液使用时间与金字塔尺寸、反射率之间的关系研究

单晶硅制绒溶液使用时间与金字塔尺寸、反射率之间的关系研究

单晶硅制绒溶液使用时间与金字塔尺寸、反射率之间的关系研究
单晶硅制绒溶液使用时间与金字塔尺寸、反射率之间的关系研究

单晶硅制绒溶液使用时间与金字塔尺寸、反射率之间的关系研究

摘要:本文给出了单晶硅制绒基本机理,分析了在稳定的制绒工艺下,单晶硅制绒溶液使用时间对硅片表面金字塔尺寸、反射率的影响。通过对比实验,采用扫描电子显微镜(SEM)观察、D8积分式绒面反射仪、电子称与秒表来分析研究制绒溶液使用时间与实验硅片表面金字塔尺寸、反射率的关系,最终结论为制绒溶液在连续生产状态下,随着制绒溶液使用时间的延长,硅片表面金字塔尺寸变大,反射率提高。连续生产状态下,制绒溶液的最佳使用时间为8小时,极限使用时间为16小时。

关键词:单晶硅;金字塔尺寸;反射率;溶液使用时间.

单晶硅制绒通常使用无机碱性溶液来腐蚀单晶硅片[1]。在较高温度下,碱性溶液与硅会发生如下化学反应:Si+2OH-+H2O=SiO32-+2H2↑

由于单晶硅的特殊晶体结构,利用碱性溶液对单晶硅片的各向异性腐蚀特性,(100)晶面的单晶硅片经碱性溶液的各向异性腐蚀后最终在表面形成由(111)面组成的四方锥体,即为“金字塔”结构[2]。各向异性腐蚀是指硅的不同晶向具有不同的腐蚀速率[3]。晶体硅的(100)面与(111)面腐蚀速率之比称为各向异性因子[4]。在较低浓度的碱性溶液中单晶硅(100)面和(111)面腐蚀速率的差别较大,(100)面的腐蚀速率是(111)面的腐蚀速率的10倍以上,有的各向异性因子甚至高达(100)[5]。

制绒后硅片表面布满了金字塔结构,由陷光原理可得知,当光入射到一定角度的斜面,光会反射到另一角度的斜面,形成二次或者多次吸收,从而增加吸收率,最终提高光生电流密度[6]。

1 单晶硅制绒工艺步骤

工艺步骤:

(1)制绒

上料→超声清洗→纯水隔离→制绒→QDR→纯水清洗→HF酸处理→纯水清洗→下料;

(2)酸洗

上料→HF处理→纯水清洗→HCl处理→喷淋→漂洗→下料。

制绒、酸洗分开是为了避免在硅片表面形成酸雾。

2 制绒溶液使用时间与硅片表面金字塔尺寸、反射率间关系的确定

单晶硅生长技术的研究与发展

单晶硅生长技术的研究与发展 摘要:综述了单晶硅生长技术的研究现状。对改良热场技术、磁场直拉技术、真空高阻技术以及氧浓度的控制等技术进行了论述。 关键词:单晶硅;真空高阻;磁场;氧含量;氮掺杂 一、前言 影响国家未来在高新技术和能源领域实力的战略资源。作为一种功能材料,其性能应该是各向异性的,因此半导体硅大都应该制备成硅单晶,并加工成抛光片,方可制造IC器件,超过98%的电子元件都足使用硅单晶”引。生产单晶硅的原料主要包括:半导体单晶硅碎片,半导体单晶硅切割剩余的头尾料、边皮料等。目前,单晶硅的生长技术主要有直拉法(CZ)和悬浮区熔法(FZ)。在单晶硅的制备过程中还可根据需要进行掺杂,以控制材料的电阻率,掺杂元素一般为Ⅲ或V主族元素.生长制备后的单晶硅棒还需经过切片、打磨、腐蚀、抛光等工序深加工后方可制成用作半导体材料的单晶硅片。随着单晶硅生长及加工处理技术的进步,单晶硅正朝着大直径化(300ram以上)、低的杂质及缺陷含晕、更均匀的分布以及生产成本低、效率高的方向发展。 二、单晶硅的生长原理 在单晶硅生长过程中,随着熔场温度的下降,将发生由液态转变到固态的相变化。对于发生在等温、等压条件下的相变化,不同相之间的相对稳定性可由吉布斯自由能判定。AG可以视为结晶驱动力。 △G=△H—TAS (1) 在平衡的熔化温度瓦时,固液两相的自由能是相等的,即AG=0,因此 △G=AH一瓦X AS---O (2) 所以,AS=AH/T= (3) 其中,AH即为结晶潜热。将式(3)代入式(1)可得 (4) 由式(4)可以看出,由于AS是一个负值常数,所以△兀即过冷度)可被视为结晶的唯一驱动力。 以典型的CZ长晶法为例,加热器的作用在于提供系统热量,以使熔硅维持在高于熔点的温度。如果在液面浸入一品种,在品种与熔硅达到热平衡时,液面会靠着表面张力的支撑吸附在晶种下方。若此时将晶种往上提升,这些被吸附的液体也会跟着晶种往上运动,而形成过冷状态。这节过冷的液体由于过冷度产生的驱动力而结晶,并随着晶种方向长成单晶棒。在凝固结晶过程中,所释放出的潜热是一个间接的热量来源,潜热将借着传导作用而沿着晶棒传输。同时,晶棒表面也会借着热辐射与热对流将热量散失到外围,另外熔场表面也会将热量散失掉。于是,在一个固定的条件下,进入系统的热能将等于系统输出的热能陟。 三、硅单晶生长方法 1直拉(CZ)法 直拉法的生产过程简单来说就是利用旋转的籽晶从熔硅中提拉制备单晶硅。此法产量大、成本低,国内外大多数太阳能单晶硅片厂家多采用这种技术。目前,直拉法生产工艺的研究热点主要有:先进的热场构造、磁场直拉法以及对单晶硅中氧浓度的控制等方面。 (1)先进的热场构造 在现代下游IC产业对硅片品质依赖度日益增加的情况下,热场的设计要求越来越高。好的

多晶酸制绒原理

多晶酸制绒原理 多晶硅绒面制备方法 ?多晶硅表面由于存在多种晶向,不如(100)晶向的单晶硅那样能利用各向异性化学 腐蚀得到理想的绒面结构,因而对于多晶硅片,目前主要采用各向同性的酸腐方法来制备绒面。 ?主要方法:是利用硝酸和氢氟酸、去离子水来配制酸性腐蚀液。对于多晶硅片进行各 向同性腐蚀,在硅片表面形成蜂窝状的绒面结构,从而提高太阳电池的光电转换效率。 根据溶液对硅的各向同性腐蚀特性,在硅片表面进行织构化处理而形成绒面。 1.第一步:硅的氧化 硝酸和氢氟酸的混合液可以起到很好的腐蚀作用,硝酸的作用是使单质硅氧化为二氧化硅,其反应为: 3Si+4HNO3===3SiO2+2HO2+4NO 2.第二步:二氧化硅的溶解 ?二氧化硅生成以后,很快与氢氟酸反应 ?SiO2 + 4HF = SiF4 + 2H2O(四氟化硅是气体) ?SiF4 + 2HF = H2SiF6 ?总反应: ?SiO2 + 6HF = H2SiF6 + 2H2O ?终反应掉的硅以六氟硅酸的形式进入溶液并溶于水。 ?这样,二氧化硅被溶解之后,硅又重新露出来,一步、二步的反应不断重复,硅 片就可以被持续的腐蚀下去。 单晶绒面图片多晶绒面图片 错误!

制绒生产过程控制 单晶硅制绒液体的组成和作用 ?制绒溶液主要是由碱性物质(NaOH、KOH、Na2CO3等)及添加剂(硅酸钠、酒精 或异丙醇)组成的混合溶液。 ?碱性物质发生电离或者水解出OH离子与硅发生反应,从而形成绒面。碱的适宜浓 度为5%以下。 ?酒精或异丙醇有三个作用:a、协助氢气泡从硅片表面脱附;b、减缓硅的腐蚀速度; c、调节各向异性因子。酒精或异丙醇的适宜浓度为5~10%。 4.2初抛液的要求 ?一般采用高浓度碱溶液(10% - 20%)在90℃条件腐蚀0.5 - 1min以达到去除损伤层的 效果,此时的腐蚀速率可达到4 - 6um/min 。初抛时间在达到去除损伤层的基础上尽量减短,以防硅片被腐蚀过薄。 ?另外为保证粗抛液浓度,需要定时补充一定量NaOH. 制绒液的要求: ?目前大多使用廉价的浓度约为1%-2%的氢氧化钠稀溶液来制备绒面,腐蚀温度为 77-85℃。制绒时间10-15min左右,根据原材料的特性来配液就可以做出质量较好的绒面。 ?为了获得均匀的绒面,还应在溶液中酌量添加异丙醇和专门的制绒添加剂作为络 合剂,以加快硅的腐蚀 理想单晶绒面控制要素 ? 1.科学合理的溶液配比浓度(NaOH浓度1%-2%) ? 2.适合的温度(77-85 ℃) ? 3.较短、合适制绒时间(600秒-900秒) ?为了维持生产良好的可从复性,并获得高的生产效率,要求我们比较透彻的了解 绒面的形成机理,控制对制绒过程影响较大的因素,在较短的时间内形成质量较好的金字塔容面. 影响制绒液稳定性的因素: 1、初配液NaOH浓度及异丙醇浓度 2、制绒槽内硅酸钠的累计量 3、制绒腐蚀的温度及制绒腐蚀时间的长短 4、中途NaOH和异丙醇的添加量 5、槽体密封程度、异丙醇的挥发程度 理想单晶绒面的要求 ?1、绒面外观应清秀,不能有白点、发花、水印等 ?2、金字塔大小均匀,单体尺寸在2~10чm之间 ?3、相邻金字塔之间没有空隙,即覆盖率达100%。 ?既可获得低的表面反射率,又有利于太阳能电池的后续制作. 多晶酸制绒生产过程控制 ?酸腐方法对设备的要求较高,目前我们使用的是史密德在线式酸式制绒机,多晶制绒 的生产工艺步骤如下:

单晶培养.单晶生长原理及其常规方法

单晶的培养 物质的结构决定物质的物理化学性质和性能,同时物理化学性质和性能是物质结构的反映。只有充分了解物质结构,才能深入认识和理解物质的性能,才能更好地改进化合物和材料的性质与功能,设计出性能良好的新化合物和新材料。单晶结构分析可以提供一个化合物在固态中所有原子的精确空间位置、原子的连接形式、分子构象、准确的键长和键角等数据,从而为化学、材料科学和生命科学等研究提供广泛而重要的信息。X射线晶体结构分析的过程,从单晶培养开始,到晶体的挑选与安置,继而使用衍射仪测量衍射数据,再利用各种结构分析与数据拟合方法,进行晶体结构解析与结构精修,最后得到各种晶体结构的几何数据与结构图形等结果。要获得比较理想的衍射数据,首先必须获得质量好的单晶。衍射实验所需要单晶的培养,需要采用合适的方法,以获得质量好、尺寸合适的晶体。晶体的生长和质量主要依赖于晶核形成和生长的速率。如果晶核形成速率大于生长速率,就会形成大量的微晶,并容易出现晶体团聚。相反,太快的生长速率会引起晶体出现缺陷。以下是几种常用的有效的方法和一些实用的建议。 1.溶液中晶体的生长 从溶液中将化合物结晶出来,是单晶体生长的最常用的形式。它是通过冷却或蒸发化合物的饱和溶液,让化合物从溶液中结晶出来。这时最好采取各种必要的措施,使其缓慢冷却或蒸发,以期获得比较完美的晶体。因为晶体的生长和质量主要依赖于晶核形成和生长的速率。如果晶核形成速率大于生长速率,就会形成大量的微晶,并容易出现晶体团聚。相反,太快的生长速率会引起晶体出现缺陷。在实验中,通常注意以下几个方面: ①为了减少晶核成长位置的数目,最好使用干净、光滑的玻璃杯等容器。 ②应在非震动环境中,较高温度下进行结晶,因为较高温度条件下结晶可以减少化合物与不必要溶剂共结晶的几率,同时,必须注意,尽量不要让溶剂完全挥发。因为溶剂完全挥发后,容易导致晶体相互团聚或者沾染杂质,不利于获得纯相、质量优良的晶体。 ③可以尝试不同的溶剂,但应尽量避免使用氯仿和四氯化碳等含有重原子并且通常会在晶体中形成无序结构的溶剂。 2.界面扩散法 如果化合物有两种反应物反应生成,而两种反应物可以分别溶于不同(尤其是不太互溶的)溶剂中,可以用溶液界面扩散法(liuuiddi恤sion)。将A溶液小心的加到B溶液上,化学反应将在这两种溶液的接触面开始,晶体就可能在溶液界面附近产生。通常溶液慢慢扩散进另一种溶液时,会在界面附近产生好的晶体。如果结晶速率太快,可以利用凝胶体等方法,进一步降低扩散速率,以求结晶完美。 3.蒸汽扩散法 蒸汽扩散法(vapordi恤sion)的操作也很简单。选择两种对目标化合物溶解度不同的溶剂A和B,且A和B有一定的互溶性。把要结晶的化合物溶解在盛于

制绒参数对单晶硅太阳电池制绒效果的影响_池缘缘

收稿日期:2013-03-16. 基金项目:教育部新世纪优秀人才支持计划项目(No :NCET -11-1005);辽宁省自然科学基金项目(No :201102005);辽宁省教育厅一般项目 (No :L2012401);辽宁省百千万人才资助项目(No :2012921061);辽宁省高等学校优秀人才支持计划(No :LR201002). 作者简介:池缘缘(1990-),女,渤海大学硕士研究生, 主要从事新能源领域、太阳电池方面研究.通讯作者:lxd2211@sina.com. 制绒参数对单晶硅太阳电池制绒效果的影响 池缘缘,陆晓东*,周涛,董永超 (渤海大学新能源学院,辽宁锦州121013) 摘要:本文以金相显微镜(放大倍数分别为800?, 400?)为观测手段,研究了NaOH 溶液浓度、反应时间、温度和IPA 浓度等参数对单晶硅制绒效果的影响,通过金相显微镜显微图像的对比分析发现:当NaOH 溶液浓度大于2%条件时,温度小于75?时,单晶硅表面的绒面效果较差.当制绒液中NaOH 和IPA 的浓度分别为1.57%和5%,且制绒时间和制绒温度分别为25min 和80?时,制备的绒面结构均匀,金字塔的覆盖率约为100%,即可实现最优的制绒效果. 关键词:制绒;单晶硅太阳电池;表面织构 中图分类号:TM 914.4文献标志码:A 文章编号:1673-0569(2013)03-0362-05 0引言 在实用化的太阳电池中,晶硅电池一直占据太阳电池市场垄断地位.截至2010年〔1〕, 在全球光伏组件市场中,晶硅电池组件所占比例高达85-90%.据欧洲光伏工业协会EPIA 预测,至少到2020年,晶硅电池仍将是未来光伏市场的主流产品(其市场份额仍将占约50%左右),因此对光伏产业的发展而言,优化 现有的晶硅电池生产工艺仍具有十分重要的意义 〔2-3〕.由于绒面结构具有减小入射光的反射率和提高体内光场吸收效率的作用,所以其已成为晶硅太阳电池芯片生产过程中的最重要工序.目前,晶硅电池制绒多采用酸性或碱性溶液腐蚀的方法实现,酸性溶液主要用于多晶硅太阳电池的制绒过程中,而碱性溶液多用于单晶硅太阳电池的制绒过程中.仅就制绒过程而言,碱性溶液制绒过程具有反应过程控制方便、制绒效果良好(形成硅片表面均匀分布的金字塔结构)、反应过程不产生危害环境的有害气体(如NO x )等特点,所以更易于实现清洁高效电池的批量生产 . 图1理想的绒面结构 良好的单晶硅绒面应具有的特征为〔4〕:入射光在金字塔斜面的一次入射角约为54.74?, 在相邻金字塔斜面的二次入射角约为15.78?(如图1所示).相应的金字塔结构要求为:尺寸在1 3μm 之间、大小均 第34卷第4期 2013年12月渤海大学学报(自然科学版)Journal of Bohai University (Natural Science Edition )Vol.34,No.4Dec.2013DOI:10.13831/https://www.sodocs.net/doc/8c10881612.html,ki.issn.1673-0569.2013.04.005

硅片的清洗与制绒

硅片的清洗与制绒 The manuscript was revised on the evening of 2021

硅片的清洗与制绒 导语:硅片在经过一系列的加工程序之后需要进行清洗,清洗的目的是要消除吸附在硅片表面的各类污染物,并制做能够减少表面太阳光反射的绒面结构(制绒),且清洗的洁净程度直接影响着电池片的成品率和可靠率。制绒是制造晶硅电池的第一道工艺,又称“表面织构化”。有效的绒面结构使得入射光在硅片表面多次反射和折射,增加了光的吸收,降低了反射率,有助于提高电池的性能。 一.清洗 1.清洗的目的 经切片、研磨、倒角、抛光等多道工序加工成的硅片,其表面已吸附了各种杂质,如颗粒、金属粒子、硅粉粉尘及有机杂质,在进 行扩散前需要进行清洗,消除各类污染物,且清洗的洁净程度直接影响着电池片的成品率和可靠率。清洗主要是利用NaOH、HF、HCL等化学液对硅片进行腐蚀处理,完成如下的工艺: ①去除硅片表面的机械损伤层。 ②对硅片的表面进行凹凸面(金字塔绒面)处理,增加光在太阳电池片表面的折射次数,利于太阳电池片对光的吸收,以达到电池片 对太阳能价值的最大利用率。 ③清除表面硅酸钠、氧化物、油污以及金属离子杂质。

图1 金属杂质对电池性能的影响 2.清洗的原理 ①HF去除硅片表面氧化层。 ②HCl去除硅片表面金属杂质:盐酸具有酸和络合剂的双重作用,氯离子能与溶解片子表面可能沾污的杂质,铝、镁等活泼金属及其

它氧化物。但不能溶解铜、银、金等不活泼的金属以及二氧化硅等难溶物质。 3.安全提示 NaOH 、HCl 、HF 都是强腐蚀性的化学药品,其固体颗粒、溶液、蒸汽会伤害到人的皮肤、眼睛、呼吸道,所以操作人员要按照规定穿戴防护服、防护面具、防护眼镜、长袖胶皮手套。一旦有化学试剂伤害了员工的身体,马上用纯水冲洗30分钟,送医院就医。 二.制绒 1.制绒的目的和原理 目的:减少光的反射率,提高短路电流(Isc ),最终提高电池的光电转换效 率。 原理:①单晶硅:制绒是晶硅电池的第一道工艺,又称“表面织构化”。对于单 晶硅来说,制绒是利用碱对单晶硅表面的各向异性腐蚀,在硅表面形成无数 的四面方锥体。目前工业化生产中通常是根据单晶硅片的各项异性特点采用 碱与醇的混合溶液对<100>晶面进行腐蚀,从而在单晶硅片表面形成类似“金 字塔”状的绒面,如图2 所示。 ②多晶硅:利用硝酸的强氧化性和氢氟酸的络合性,对硅进行氧化和络合剥离,导致硅表面发生各向同性非均匀性腐蚀,从而形成类似“凹陷坑”状的绒面,如图3所示。

单晶硅片制作工艺流程

单晶硅电磁片生产工艺流程 ?1、硅片切割,材料准备: ?工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1Ω.cm的p型(掺硼)。 ?2、去除损伤层: ?硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,首先表面的质量较差,另外这些表面缺陷会在电池制造过程中导致碎片增多。因此要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um。 ? ? 3、制绒: ?制绒,就是把相对光滑的原材料硅片的表面通过酸或碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80度,浓度约1~2%,腐蚀时间约15分钟。对于多晶来说,一般采用酸法腐蚀。 ? 4、扩散制结:

?扩散的目的在于形成PN结。普遍采用磷做n型掺杂。由于固态扩散需要很高的温度,因此在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。 ? 5、边缘刻蚀、清洗: ?扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。 目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。 扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。 ? 6、沉积减反射层: ?沉积减反射层的目的在于减少表面反射,增加折射率。广泛使用PECVD淀积SiN ,由于PECVD淀积SiN时,不光是生长SiN 作为减反射膜,同时生成了大量的原子氢,这些氢原子能对多晶硅片具有表面钝化和体钝化的双重作用,可用于大批量生产。 ? 7、丝网印刷上下电极: ?电极的制备是太阳电池制备过程中一个至关重要的步骤,它不仅决定了发射区的结构,而且也决定了电池的串联电阻和电

制绒添加剂专利初稿

一种单晶硅制绒添加剂的制备 发明名称 一种单晶硅制绒添加剂的制备 摘要 本发明为一种单晶硅片制绒添加剂,应用于光伏太阳能电池的生产制备。本发明制绒添加剂的组成物质为:去离子水、绒面刻蚀剂、络合剂、绒面缓冲剂澄清处理糖蜜、表面活性剂组成及少量消泡组成。把所有组成成分有效混合后经过长时间加热回流、冷却及过滤之后制得单晶硅太阳能电池制绒催化剂。使用本发明制绒添加剂按照制绒液需用量的0.5%~1.2%添加到碱性制绒液中制绒时,能得到均匀的金字塔状绒面,降低硅片表面的反射率,从而提高了电池的光电转换效率,本发明制得的制绒添加剂在制绒时工艺操作简单,制绒后的效果好且稳定,而且使用周期和存放时间长,有效降低了硅电池基片的制绒生产成本。 权利要求书 1、一种单晶硅制绒添加剂的制备及其用法,其特征在于:该单晶硅制绒添加剂 由去离子水、绒面刻蚀剂、络合剂、澄清处理后的糖蜜、表面活性剂及消泡剂组成。在高纯水中绒面刻蚀剂的含量为3%~5%,络合剂在溶液中的含量为10%~22%,澄清处理糖蜜的含量为8%~15%,表面活性剂的浓度为1%~8%,消泡剂的含量为0.8%~3%。其中络合剂主要有氨三乙酸钠(N TA) ,糖蜜主要为甜菜糖蜜,氟表面活性剂主要为全氟聚乙烯醚等。 2、一种单晶硅制绒添加剂的制备及其用法,其特征在于该类添加剂的组成物质 有效混合之后在温度为75℃~85℃的容器中加热回流8h~12h,经冷却后高效过滤而制得。 3、根据权利要求1所述的一种单晶硅制绒添加剂的制备,其特征在于:所述的 去离子水为电导率小于电阻率大于12.5M. 的高纯水。 4、根据权利要求1所述的一种单晶硅制绒添加剂的制备,其特征在于:所述的 绒面刻蚀剂主要为氢氧化钠或该物质与碳酸氢钠的混合物。 5、根据权利要求1所述的一种单晶硅制绒添加剂的制备,其特征在于:所述的 络合剂主要有氨三乙酸钠(N TA) 、乙二胺四乙酸盐( EDTA)、庚糖酸盐、聚丙烯酸( PAA)、聚羟基丙烯酸的一种或者多种物质的混合物。 6、根据权利要求1所述的一种单晶硅制绒添加剂的制备,其特征在于:所述的 缓冲剂包括大豆、甜菜、澄清处理后的糖蜜中的一种或者两种混合物。 7、根据权利要求1所述的一种单晶硅制绒添加剂的制备,其特征在于:所述的 表面活性剂由烷基酚聚氧乙烯醚、脂肪醇聚氧乙烯醚、丙二醇嵌段聚醚,氟表面活性剂(全氟烷基季胺碘化物)的一种或多种混合组成。 8、根据权利要求1所述的一种单晶硅制绒添加剂的制备,其特征在于:所述的 消泡剂由聚二甲基硅氧烷、聚醚改性硅、聚硅氧烷消泡剂的一种或者多种混合组成。 9、根据权利要求1至7所述的一种单晶硅制绒添加剂的制备,其特征在于:所 述添加剂的最优配方组分浓度为: 绒面刻蚀剂:3.7%~4.2% 络合剂:13%~18%

硅片表面制绒

制绒 目录 简介 1分类单晶制绒 1多晶酸制绒 制绒目的和作用 展开 编辑本段简介 制绒,光伏行业术语,处理硅片的一种工艺方法,硅太阳能电池片生产的首道工序。 编辑本段分类 按硅原料分类状况可分为单晶制绒与多晶制绒;按腐蚀液的酸碱性可分为酸制绒与碱制绒。 单晶制绒 原理单晶硅片在一定浓度范围的碱溶液中被腐蚀时是各向异性的,不同晶向上的腐蚀速率不一样。利用这一原理,将特定晶向的单晶硅片放入碱溶液中腐蚀,即可在硅片表面产生出许多细小的金字塔状外观,这一过程称为单晶碱制绒。 多晶酸制绒 原理常规条件下,硅与单纯的HF、HNO3(硅表面会被钝化,二氧化硅与HNO3不反应)认为是不反应的。但在两种混合酸的体系中,硅则可以与溶液进行持续的反应,主要反应原理及步骤如下: 1.硅的氧化硝酸/亚硝酸(HNO2)将硅氧化成二氧化硅(主要是亚硝酸将硅氧化)Si+4HNO3=SiO2+4NO2+2H2O (慢反应) Si+2HNO3=SiO2+2NO+2H2O (慢反应) 二氧化氮、一氧化氮与水反应,生成亚硝酸,亚硝酸很快地将硅氧化成二氧化硅2NO2+H2O=HNO2+HNO3 (快反应) Si+4HNO2=SiO2+4NO+2H2O (快反应)(第一步的主反应)4HNO3+NO+H2O=6HNO2(快反应) 只要有少量的二氧化氮生成,就会和水反应变成亚硝酸,只要少量的一氧化氮生成,就会和硝酸、水反应很快地生成亚硝酸,亚硝酸会很快的将硅氧化,生成一氧化氮,一氧化氮又与硝酸、水反应。。。这样一系列化学反应最终的结果是造成硅的表面被快速氧化,硝酸被还原成氮氧化物。 2.二氧化硅的溶解二氧化硅生成以后,很快与氢

单晶硅生长炉原理

单晶硅生长炉原理 单晶硅生长炉原理 首先,把高纯度的多晶硅原料放入高纯石英坩埚,通过石墨加热器产生的高温将其熔化;然后,对熔化的硅液稍做降温,使之产生一定的过冷度,再用一根固定在籽晶轴上的硅单晶体(称作籽晶)插入熔体表面,待籽晶与熔体熔和后,慢慢向上拉籽晶,晶体便会在籽晶下端生长;接着,控制籽晶生长出一段长为100m 单晶硅生长炉 m左右、直径为3~5mm的细颈,用于消除高温溶液对籽晶的强烈热冲击而产生的原子排列的位错,这个过程就是引晶;随后,放大晶体直径到工艺要求的大小,一般为75~300mm,这个过程称为放肩;接着,突然提高拉速进行转肩操作,使肩部近似直角;然后,进入等径工艺,通过控制热场温度和晶体提升速度,生长出一定直径规格大小的单晶柱体;最后,待大部分硅溶液都已经完成结晶时,再将晶体逐渐缩小而形成一个尾形锥体,称为收尾工艺;这样一个单晶拉制过程就基本完成,进行一定的保温冷却后就可以取出。 直拉法,也叫切克劳斯基(J.Czochralski)方法。此法早在1917年由切克劳斯基建立的一种晶体生长方法,用直拉法生长单晶的设备和工艺比较简单,容易实现自动控制,生产效率高,易于制备大直径单晶,容易控制单晶中杂质浓度,可以制备低电阻率单晶。据统计,世界上硅单晶的产量中70%~80%是用直拉法生产的。 单晶硅生长炉现状 目前国内外晶体生长设备的现状如下: 美国KAYEX公司 国外以美国KAYEX公司为代表,生产全自动硅单晶体生长炉。KAYEX公司是目前世界上最大,最先进的硅单晶体生长炉制造商之一。KAYEX的产品早在80年代初就进入中国市场,已成为中国半导体行业使用最多的品牌。该公司生长的硅晶体生长炉从抽真空-检漏-熔料-引晶-放肩-等径-收尾到关机的全过程由计算机实行全自动控制。晶体产品的完整性与均匀性好,直径偏差在单晶全长内仅±1mm。主要产品有CG3000、CG6000、KAYEX100PV、KAYEX120PV、KEYEX150,Vision300型,投料量分别为30kg、60kg、100kg、120kg、150kg、300kg。

单晶硅制绒溶液使用时间与金字塔尺寸、反射率之间的关系研究

单晶硅制绒溶液使用时间与金字塔尺寸、反射率之间的关系研究 摘要:本文给出了单晶硅制绒基本机理,分析了在稳定的制绒工艺下,单晶硅制绒溶液使用时间对硅片表面金字塔尺寸、反射率的影响。通过对比实验,采用扫描电子显微镜(SEM)观察、D8积分式绒面反射仪、电子称与秒表来分析研究制绒溶液使用时间与实验硅片表面金字塔尺寸、反射率的关系,最终结论为制绒溶液在连续生产状态下,随着制绒溶液使用时间的延长,硅片表面金字塔尺寸变大,反射率提高。连续生产状态下,制绒溶液的最佳使用时间为8小时,极限使用时间为16小时。 关键词:单晶硅;金字塔尺寸;反射率;溶液使用时间. 单晶硅制绒通常使用无机碱性溶液来腐蚀单晶硅片[1]。在较高温度下,碱性溶液与硅会发生如下化学反应:Si+2OH-+H2O=SiO32-+2H2↑ 由于单晶硅的特殊晶体结构,利用碱性溶液对单晶硅片的各向异性腐蚀特性,(100)晶面的单晶硅片经碱性溶液的各向异性腐蚀后最终在表面形成由(111)面组成的四方锥体,即为“金字塔”结构[2]。各向异性腐蚀是指硅的不同晶向具有不同的腐蚀速率[3]。晶体硅的(100)面与(111)面腐蚀速率之比称为各向异性因子[4]。在较低浓度的碱性溶液中单晶硅(100)面和(111)面腐蚀速率的差别较大,(100)面的腐蚀速率是(111)面的腐蚀速率的10倍以上,有的各向异性因子甚至高达(100)[5]。 制绒后硅片表面布满了金字塔结构,由陷光原理可得知,当光入射到一定角度的斜面,光会反射到另一角度的斜面,形成二次或者多次吸收,从而增加吸收率,最终提高光生电流密度[6]。 1 单晶硅制绒工艺步骤 工艺步骤: (1)制绒 上料→超声清洗→纯水隔离→制绒→QDR→纯水清洗→HF酸处理→纯水清洗→下料; (2)酸洗 上料→HF处理→纯水清洗→HCl处理→喷淋→漂洗→下料。 制绒、酸洗分开是为了避免在硅片表面形成酸雾。 2 制绒溶液使用时间与硅片表面金字塔尺寸、反射率间关系的确定

单晶生长原理

直拉法:直拉法即切克老斯基法(Czochralski: Cz), 直拉法是半导体单晶生长用的最多的一种晶体生长技术。 直拉法单晶硅工艺过程 -引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持略高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体; -缩颈:生长一定长度的缩小的细长颈的晶体,以防止籽晶中的位错延伸到晶体中; -放肩:将晶体控制到所需直径;-等径生长:根据熔体和单晶炉情况,控制晶体等径生长到所需长度;-收尾:直径逐渐缩小,离开熔体; -降温:降底温度,取出晶体,待后续加工 直拉法-几个基本问题 最大生长速度 晶体生长最大速度与晶体中的纵向温度梯度、晶体的热导率、晶体密度等有关。提高晶体中的温度梯度,可以提高晶体生长速度;但温度梯度太大,将在晶体中产生较大的热应力,会导致位错等晶体缺陷的形成,甚至会使晶体产生裂纹。为了降低位错密度,晶体实际生长速度往往低于最大生长速度。 熔体中的对流 相互相反旋转的晶体(顺时针)和坩埚所产生的强制对流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。所生长的晶体的直径越大(坩锅越大),对流就越强烈,会造成熔体中温度波动和晶体局部回熔,从而导致晶体中的杂质分布不均匀等。实际生产中,晶体的转动速度一般比坩锅快1-3倍,晶体和坩锅彼此的相互反向运动导致熔体中心区与外围区发生相对运动,有利于在固液界面下方形成一个相对稳定的区域,有利于晶体稳定生长。 生长界面形状(固液界面) 固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。在引晶、放肩阶段,固液界面凸向熔体,单晶等径生长后,界面先变平后再凹向熔体。通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状。 生长过程中各阶段生长条件的差异 直拉法的引晶阶段的熔体高度最高,裸露坩埚壁的高度最小,在晶体生长过程直到收尾阶段,裸露坩埚壁的高度不断增大,这样造成生长条件不断变化(熔体的对流、热传输、固液界面形状等),即整个晶锭从头到尾经历不同的热历史:头部受热时间最长,尾部最短,这样会造成晶体轴向、径向杂质分布不均匀。 直拉法-技术改进: 一,磁控直拉技术 1,在直拉法中,氧含量及其分布是非常重要而又难于控制的参数,主要是熔体中的热对流加剧了熔融硅与石英坩锅的作用,即坩锅中的O2, 、B、Al等杂质易于进入熔体和晶体。热对流还会引起熔体中的温度波动,导致晶体中形成杂质条纹和旋涡缺陷。 2,半导体熔体都是良导体,对熔体施加磁场,熔体会受到与其运动方向相反的洛伦兹力作用,可以阻碍熔体中的对流,这相当于增大了熔体中的粘滞性。在生产中通常采用水平磁场、垂直磁场等技术。 3,磁控直拉技术与直拉法相比所具有的优点在于: 减少了熔体中的温度波度。一般直拉法中固液界面附近熔体中的温度波动达10 C以上,而施加0.2 T 的磁场,其温度波动小于 1 ℃。这样可明显提高晶体中杂质分布的均匀性,晶体的径向电阻分布均匀性也可以得到提高;降低了单晶中的缺陷密度;减少了杂质的进入,提高了晶体的纯度。这是由于在磁场作用下,熔融硅与坩锅的作用减弱,使坩锅中的杂质较少进入熔体和晶体。将磁场强度与晶体转动、坩锅转动等工艺参数结合起来,可有效控制晶体中氧浓度的变化;由于磁粘滞性,使扩散层厚度增大,可提高杂

CZ法单晶生长原理及工艺流程

CZ生长原理及工艺流程 CZ法的基本原理,多晶体硅料经加热熔化,待温度合适后,经过将籽晶浸入、熔接、引晶、放肩、转肩、等径、收尾等步骤,完成一根单晶锭的拉制。炉内的传热、传质、流体力学、化学反应等过程都直接影响到单晶的生长与生长成的单晶的质量,拉晶过程中可直接控制的参数有温度场、籽晶的晶向、坩埚和生长成的单晶的旋转与升降速率,炉内保护气体的种类、流向、流速、压力等。 CZ法生长的具体工艺过程包括装料与熔料、熔接、细颈、放肩、转肩、等径生长和收尾这样几个阶段。 1.装料、熔料 装料、熔料阶段是CZ生长过程的第一个阶段,这一阶段看起来似乎很简单,但是这一阶段操作正确与否往往关系到生长过程的成败。大多数造成重大损失的事故(如坩埚破裂)都发生在或起源于这一·阶段。 2.籽晶与熔硅的熔接 当硅料全部熔化后,调整加热功率以控制熔体的温度。一般情况下,有两个传感器分别监测熔体表面和加热器保温罩石墨圆筒的温度,在热场和拉晶工艺改变不大的情况下,上一炉的温度读数可作为参考来设定引晶温度。按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。硅料全部熔化后熔体必须有一定的稳定时间达到熔体温度和熔体的流动的稳定。装料量越大,则所需时间越长。待熔体稳定后,降下籽晶至离液面3~5mm距离,使粒晶预热,以减少籽经与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。在熔接过程中要注意观察所发生的现象来判断熔硅表面的温度是否合适,在合适的温度下,熔接后在界面处会逐渐产生由固液气三相交接处的弯月面所导致的光环(通常称为“光圈”),并逐渐由光环的一部分变成完整的圆形光环,温度过高会使籽晶熔断,温度过低,将不会出现弯月面光环,甚至长出多晶。熟练的操作人员,能根据弯月面光环的宽度及明亮程度来判断熔体的温度是否合适。 3.引细颈 虽然籽晶都是采用无位错硅单晶制备的[16~19],但是当籽晶插入熔体时,由于受到籽晶与熔硅的温度差所造成的热应力和表面张力的作用会产生位错。因此,在熔接之后应用引细颈工艺,即Dash技术,可以使位错消失,建立起无位错生长状态。 Dash的无位错生长技术的原理见7.2节。金刚石结构的硅单晶中位错的滑移面为{111}面。当以[l00]、[lll]和[ll0]晶向生长时,滑移面与生长轴的最小夹角分别为36.16°、l9.28°和0°。位错沿滑移面延伸和产生滑移,因此位错要延伸、滑移至晶体表面而消失,以[100]晶向生长最容易,以[111]晶向生长次之, 以[ll0]晶向生长情形若只存在延伸效应则位错会贯穿整根晶体。细颈工艺通

硅片的清洗与制绒

硅片的清洗与制绒 导语:硅片在经过一系列的加工程序之后需要进行清洗,清洗的目的是要消除吸附在硅片表面的各类污染物,并制做能够减少表面太阳光反射的绒面结构(制绒),且清洗的洁净程度直接影响着电池片的成品率和可靠率。制绒是制造晶硅电池的第一道工艺,又称“表面织构化”。有效的绒面结构使得入射光在硅片表面多次反射和折射,增加了光的吸收,降低了反射率,有助于提高电池的性能。 一.清洗 1.清洗的目的 经切片、研磨、倒角、抛光等多道工序加工成的硅片,其表面已吸附了各种杂质,如颗粒、金属粒子、硅粉粉尘及有机杂质,在进行扩散前需要进行清洗,消除各类污染物,且清洗的洁净程度直接影响着电池片的成品率和可靠率。清洗主要是利用NaOH、HF、HCL等化学液对硅片进行腐蚀处理,完成如下的工艺: ①去除硅片表面的机械损伤层。 ②对硅片的表面进行凹凸面(金字塔绒面)处理,增加光在太阳电池片表面的折射次数,利于太阳电池片对光的吸收,以达到电池片对太阳能价值的最大利用率。 ③清除表面硅酸钠、氧化物、油污以及金属离子杂质。

图1 金属杂质对电池性能的影响2.清洗的原理 ①HF去除硅片表面氧化层。

②HCl去除硅片表面金属杂质:盐酸具有酸和络合剂的双重作用,氯离子能与溶解片子表面可能沾污的杂质,铝、镁等活泼金属及其它氧化物。但不能溶解铜、银、金等不活泼的金属以及二氧化硅等难溶物质。 3.安全提示 NaOH、HCl、HF都是强腐蚀性的化学药品,其固体颗粒、溶液、蒸汽会伤害到人的皮肤、眼睛、呼吸道,所以操作人员要按照规定穿戴防护服、防护面具、防护眼镜、长袖胶皮手套。一旦有化学试剂伤害了员工的身体,马上用纯水冲洗30分钟,送医院就医。 二.制绒 1.制绒的目的和原理 目的:减少光的反射率,提高短路电流(Isc),最终提高电池的光电转换效 率。 原理:①单晶硅:制绒是晶硅电池的第一道工艺,又称“表面织构化”。对于单晶硅来说,制绒是利用碱对单晶硅表面的各向异性腐蚀,在硅表面形成无数的四面方锥体。目前工业化生产中通常是根据单晶硅片的各项异性特点采用碱与醇的混合溶液对<100>晶面进行腐蚀,从而在单晶硅片表面形成类似“金字塔” 状的绒面, 如图2所示。②多晶硅:利用硝酸的强氧化性和氢氟酸的络合性,对硅进行氧化和络合剥离,导致硅表面发生各向同性非均匀性腐蚀,从而形成类似“凹陷坑”状的绒面,如图3所示。

单晶硅制绒

单晶硅制绒 —(碱各向异性腐蚀) ㈠、目的和原理 形成表面金字塔结构,降低反射,增加光的吸收。 利用氢氧化钠对单晶硅各向异性腐蚀及不同浓度下的各向异性因子(AF):粗抛光去除硅片在多线切割锯切片时产生的表面损伤层,细抛光实现表面较低反射率表面织构。 --在100面上的腐蚀速率R100与111面上的腐蚀速率R111的比值R100:R111在一定的弱碱溶液中可以达到500。 制绒方法:弱碱溶液在一定的温度、时间下与硅片反应形成绒面。 ↑+++223222H SiO Na O H NaOH Si 加热 解释 ①现有单晶硅片是由长方体晶锭在多线切割锯切成一片片单晶硅方片。由于切片是钢丝在金刚砂溶液作用下多次往返削切成硅片,金刚砂硬度很高,会在硅片表面带来一定的机械损伤。如果损伤不去除,会影响太阳电池的填充因子。 ②氢氧化钠俗称烧碱,是国民经济生产中大量应用的化工产品。由电解食盐水而得,价格比较便宜,每500克6元。化学反应方程式为: ↑+↑+=+222222H Cl NaOH O H NaCl 电解 分析纯氢氧化锂、氢氧化钾也可以与硅起反应,但价格较贵。如氢氧化锂每500克23元,用于镉-镍电池电解液中。

③碱性腐蚀优点是反应生成物无毒,不污染环境。不像HF-HNO 3酸性系统会生成有毒的NO x 气体污染大气。另外,碱性系统与硅反应,基本处于受控状态。有利于大面积硅片的腐蚀,可以保证一定的平行度。 ㈡、工艺步骤 制绒液配比(老数据) 制绒过程:1、用去离子水清洗 2、制绒 3、检测4、清洗 1. 本工艺步骤由施博士制定,是可行的具有指导意义的两步法碱腐蚀工艺。第一步粗抛光去掉硅片的损伤层;第二步细抛光,表面产生出部分反射率较低的织构表面,如果含有[100]晶向的晶粒,就可以长出金字塔体状的绒面;第五步是通过盐酸中和残余的氢氧化钠,化学反应方程式为:O H NaCl NaOH HCl 2+=+;第七步氢氟酸络合掉硅片表面的二氧化硅层,化学反应方程式为:O H SiF H HF SiO 26222][6+=+。 2. 就粗抛实验如下,投入50片硅片: 1. 在20%NaOH 溶液中,温度为80℃,反应了10分钟,硅片厚度平均去掉了32μm 。 2. 在15%NaOH 溶液中,温度为80℃,反应了10分钟,硅片厚度平均去掉了25μm

单晶硅制绒

威谱检测技术 国内首创,行业第一,单晶硅制绒液成分分析权威检测机构------微谱检微谱检测是国内最专业的未知物剖析技术服务机构,拥有最权威的图谱解析数据库,掌握最顶尖的未知物剖析技术,建设了国内一流的分析测试实验室。首创未知物剖析,成分分析,配方分析等检测技术,是未知物剖析技术领域的第一品牌! 上海微谱化工检测技术有限公司,是一家专业从事材料分析检测技术服务的机构,面向社会各业提供各类材料样品剖析、配方分析、化工品检验检测、单晶硅纯度检测及相关油品测试服务。 本公司由高校科研院所教授博士领衔、多个专业领域专家所组成的技术团队具有长期从事材料分析测试的经验,技术水平和能力属国内一流。通过综合性的分离和检测手段对未知物进行定性鉴定与定量分析,为科研及生产中调整配方、新产品研发、改进生产工艺提供科学依据。 微谱检测与同济大学联合建立微谱实验室,完全按照CNAS国家认可委的要求建设,通过CMA国家计量认证,并依据CNAS-CL01:2006、CNAS-CL10和《实验室资质认定评审准则》进行管理,微谱实验室出具的检测数据均能溯源到中国国家计量基准。 微谱检测的分析技术服务遍布化工行业,从原材料鉴定、化工产品配方分析,到产品生产中的工业问题诊断、产品应用环节的失效分析、产品可靠性测试,微谱检测都可以提供最专业的分析技术服务。 微谱检测深耕于未知物剖析技术领域内的创新,以振兴民族化工材料产业为己任!

微谱检测可以提供塑料制品,橡胶制品,涂料,胶粘剂,金属加工助剂,清洗剂,切削液,油墨,各种添加剂,塑料,橡胶加工改性助剂,水泥助磨剂,助焊剂,纺织助剂,表面活性剂,化肥,农药,化妆品,建筑用化学品等产品的成分分析,配方分析,工艺诊断服务。 微谱检测-中国最大的未知物剖析技术服务机构,首创单晶硅制绒液成分分析,配方分析等检测技术,已经成为行业第一品牌! 在晶体硅太阳电池表面制作绒面是一种有效而重要的技术。目前在大规模单晶硅太阳电池生产中,化学湿法腐蚀因它的经济廉价仍占据主导地位。一般采用碱溶液在单晶硅表面的各向异性腐蚀制备“金字塔”绒面,使得入射光在硅片表面多次反射,增加入射光吸收,减少反射。 碱制绒在大规模单晶硅太阳电池生产中得到了广泛应用,而氢氧化钠-硅酸钠-异丙醇制绒液的浓度是影响绒面质量、溶液寿命的关键因素之一,其主要成分的浓度分析是制绒工艺的重点和难点。 本中心可以根据样品分析还原配方,拥有大批长期从事单晶硅制绒液成分分析,工艺诊断的教授和专家学者,可以帮助企业极大地缩短研发周期,降低技术成本。 微谱检测-中国最大的未知物剖析技术服务机构,国内首创,行业第一!! 本公司提供分析,测试,检验,化验,检测服务,可根据客户要求定性定量。可分析测试的样品包括: 1、各种未知物:未知固体,未知粉末,未知液体等 2、有机溶剂:混合溶剂的成分分析,分离,定性定量;纯溶剂的性能检测, 电子、纺织、印刷行业用溶剂,油漆稀释剂,天那水,脱漆剂。

单晶硅生长原理及工艺_刘立新

单晶硅生长原理及工艺 摘要:介绍了直拉法生长单晶硅的基本原理及工艺条件。通过控制不同的工艺参数(晶体转速:2.5、10、20rpm ;坩埚转速: 5、 150×1000mm 优质单晶硅棒。分别对这三种单晶硅样品进行 了电阻率、氧含量、碳含量、少子寿命测试,结果表明,当晶体转速为10rpm ,坩埚转速为 07 ),男,助理研究员,E-mail :lxliu2007@https://www.sodocs.net/doc/8c10881612.html, 。 刘立新1,罗平1,李春1,林海1,张学建1,2,张莹1 (1.长春理工大学 材料科学与工程学院,长春 130022;2.吉林建筑工程学院,长春 130021) Growth Principle and Technique of Single Crystal Silicon LIU Lixin 1,LUO Ping 1,LI Chun 1,LIN Hai 1,ZHANG Xuejian 1,2 ,ZHANG Ying 1 (1.Changchun University of Science and Technology ,Changchun 130022;2.Jilin Architectural and civil Engineering institute ,Changchun 130021) Abstract :This paper introduces the basic principle and process conditions of single crystal silicon growth by Cz method.Through controlling different process parameters (crystal rotation speed:2.5,10,20rpm;crucible rotation speed:-1.25,-5,-10),three high quality single crystal silicon rods with the size of é? ??ì?2a?÷?¢?ˉ3éμ??·?¢ì????üμ?3?μè [1] 。此外,硅 没有毒性,且它的原材料石英(SiO 2)构成了大约60%的地壳成分,其原料供给可得到充分保障。硅材料的优点及用途决定了它是目前最重要、产量最大、发展最快、用途最广泛的一种半导体材料[2]。 到目前为止,太阳能光电工业基本上是建立在 硅材料基础之上的,世界上绝大部分的太阳能光电器件是用单晶硅制造的。其中单晶硅太阳能电池是 最早被研究和应用的,至今它仍是太阳能电池的最 主要材料之一。单晶硅完整性好、纯度高、资源丰富、技术成熟、工作效率稳定、光电转换效率高、使用寿命长,是制备太阳能电池的理想材料。因此备受世界各国研究者的重视和青睐,其市场占有率为太阳能电池总份额中的40%左右[3]。 随着对单晶硅太阳能电池需求的不断增加,单晶硅市场竞争日趋激烈,要在这单晶硅市场上占据重要地位,应在以下两个方面实现突破,一是不断降低成本。为此,必须扩大晶体直径,加大投料量,并且提高拉速。二是提高光电转换效率。为此,要在晶体生长工艺上搞突破,减低硅中氧碳含 第32卷第4期2009年12月 长春理工大学学报(自然科学版) Journal of Changchun University of Science and Technology (Natural Science Edition )Vol.32No.4 Dec.2009

集成电路制造技术原理与工艺[王蔚][习题答案(第1单元)

第一单元 习题 1. 以直拉法拉制掺硼硅锭,切割后获硅片,在晶锭顶端切下的硅片,硼浓度为3×1015atoms/cm 3。当熔料的90%已拉出,剩下10%开始生长时,所对应的晶锭上的该位置处切下的硅片,硼浓度是多少? 已知:C 0B =3×1015atoms/cm 3;k B =0.35;由l s C C k =得: 硅熔料中硼的初始浓度为: C 0l = C 0B / k B =3×1015 /0.35≈8.57×1015 atoms/cm 3; 由10)1(--=k s X kC C 得: 剩下10%熔料时,此处晶锭的硼浓度为: C 90%B = k B C 0l ×0.1 kB-1= 0.35×8.57×1015×0.10.35-1=1.34×1016 2. 硅熔料含0.1%原子百分比的磷,假定溶液总是均匀的,计算当晶体拉出10%,50%,90%时的掺杂浓度。 已知:硅晶体原子密度为:5×1022 atoms/cm 3, 含0.1%原子百分比的磷, 熔料中磷浓度为: C 0p =5×1022 ×0.1%=5×1019atoms/cm 3;k p =0.8 由10)1(--=k s X kC C 计算得: C 10%p = k P C 0p ×0.9 kp-1=0.8×5×1019×0.9-0.2=4.09×1019 atoms/cm 3 C 50%p =0.8×5×1019×0.5-0.2=4.59×1019 atoms/cm 3 C 90%p =0.8×5×1019×0.1-0.2=6.34×1019 atoms/cm 3 3. 比较硅单晶锭CZ 、MCZ 和FZ 三种生长方法的优缺点? 答: CZ 法工艺成熟可拉制大直径硅锭,但受坩锅熔融带来的O 等杂质浓度高,存在一定杂质分布,因此,相对于MCZ 和FZ 法,生长的硅锭质量不高。当前仍是生产大直径硅锭的主要方法。 MCZ 法是在CZ 技术基础上发展起来的,生长的单晶硅质量更好,能得到均匀、低氧的大直径硅锭。但MCZ 设备较CZ 设备复杂得多,造价也高得多,强磁场的存在使得生产成本也大幅提高。MCZ 法在生产高品质大直径硅锭上已成为主要方法。 FZ 法与CZ 、MCZ 法相比,去掉了坩埚,因此没有坩埚带来的污染,能拉制出更高纯度、无氧的高阻硅,是制备高纯度,高品质硅锭,及硅锭提存的方法。但因存在熔融区因此拉制硅锭的直径受限。FZ 法硅锭的直径比CZ 、MCZ 法小得多。 4. 直拉硅单晶,晶锭生长过程中掺杂,需要考虑哪些因素会对硅锭杂质浓度及均匀性带来影响? 答: 直拉法生长单晶时,通常采用液相掺杂方法,对硅锭杂质浓度及均匀性带来影响的因素主要有:杂质分凝效应,杂质蒸发现象,所拉制晶锭的直径,坩锅内的温度及其分布。 5. 磁控直拉设备本质上是模仿空间微重力环境来制备单晶硅。为什么在空间微重力实验室能生长出优质单晶。 答: 直拉生长单晶硅时,坩埚内熔体温度呈一定分布。熔体表面中心处温度最低,坩埚壁面

相关主题