搜档网
当前位置:搜档网 › Tecplot 矩形网格地形绘制方法

Tecplot 矩形网格地形绘制方法

Tecplot 矩形网格地形绘制方法
Tecplot 矩形网格地形绘制方法

Tecplot矩形网格地形绘制方法

1. 文件头说明

在数据文件的文件头中,可以使你的Tecplot文本框头显示一个题头,可定义为以“Title=”来开头,然后以双引号括住你的题头名;也可以为每一个变量重新定义一个名字,一般格式为“Variables=”来开头,然后以双引号括住你的每个变量名,引用的变量名之间应以空格符隔开,再分别对点的个数进行定义,例如:

TITLE = "Topo"

VARIABLES = "X", "Y", "Depth"

ZONE I =11, J =6, F = POINT

其中各点遍历的顺序可以是按行也可以是按列,其中I是先变化的维数,J是后变化的维数。

2. 数据结构

以一个均匀斜坡地形为例,X方向11个点,Y方向6个点,地形左高右低,高程相差0.1m。

2.1 按行

TITLE = "Topo"

VARIABLES = "X", "Y", "Depth"

ZONE I =11, J =6, F = POINT

0 0 -9

1 0 -9.1

2 0 -9.2

3 0 -9.3

4 0 -9.4

5 0 -9.5

6 0 -9.6

7 0 -9.7

8 0 -9.8

9 0 -9.9

10 0 -10

0 1 -9

1 1 -9.1

2 1 -9.2

3 1 -9.3

4 1 -9.4

5 1 -9.5

6 1 -9.6

7 1 -9.7

8 1 -9.8

9 1 -9.9

10 1 -10

0 2 -9

2 2 -9.2

3 2 -9.3

4 2 -9.4

5 2 -9.5

6 2 -9.6

7 2 -9.7

8 2 -9.8

9 2 -9.9

10 2 -10

0 3 -9

1 3 -9.1

2 3 -9.2

3 3 -9.3

4 3 -9.4

5 3 -9.5

6 3 -9.6

7 3 -9.7

8 3 -9.8

9 3 -9.9

10 3 -10

0 4 -9

1 4 -9.1

2 4 -9.2

3 4 -9.3

4 4 -9.4

5 4 -9.5

6 4 -9.6

7 4 -9.7

8 4 -9.8

9 4 -9.9

10 4 -10

0 5 -9

1 5 -9.1

2 5 -9.2

3 5 -9.3

4 5 -9.4

5 5 -9.5

6 5 -9.6

7 5 -9.7

8 5 -9.8

9 5 -9.9

10 5 -10

TITLE = "Topo"

VARIABLES = "X", "Y", "Depth" ZONE I =6,J =11,F = POINT

0 0 -9.

0 1 -9.

0 2 -9.

0 3 -9.

0 4 -9.

0 5 -9.

1 0 -9.1

1 1 -9.1

1 2 -9.1

1 3 -9.1

1 4 -9.1

1 5 -9.1

2 0 -9.2

2 1 -9.2

2 2 -9.2

2 3 -9.2

2 4 -9.2

2 5 -9.2

3 0 -9.3

3 1 -9.3

3 2 -9.3

3 3 -9.3

3 4 -9.3

3 5 -9.3

4 0 -9.4

4 1 -9.4

4 2 -9.4

4 3 -9.4

4 4 -9.4

4 5 -9.4

5 0 -9.5

5 1 -9.5

5 2 -9.5

5 3 -9.5

5 4 -9.5

5 5 -9.5

6 0 -9.6

6 1 -9.6

6 2 -9.6

6 3 -9.6

6 5 -9.6

7 0 -9.7

7 1 -9.7

7 2 -9.7

7 3 -9.7

7 4 -9.7

7 5 -9.7

8 0 -9.8

8 1 -9.8

8 2 -9.8

8 3 -9.8

8 4 -9.8

8 5 -9.8

9 0 -9.9

9 1 -9.9

9 2 -9.9

9 3 -9.9

9 4 -9.9

9 5 -9.9

10 0 -10.

10 1 -10.

10 2 -10.

10 3 -10.

10 4 -10.

10 5 -10.

3.图形绘制

将上述内容保存为.dat文件或.txt文件,用Tecplot打开文件,第一次打开会弹出Select Initial Plot对话框,Initial Plot选择2D cartesian,打开后可以在边框中关掉mesh选项而选中contour项,弹出Contour details对话框,点开More>>按钮,你可以对等高线的变量做一设置,再刷新一下屏幕,就可以观察到对应其变量参数的等高线的情况。本例2D图如图1所示。

对参数变量的设置需借助于域菜单,选择其下拉选项中的contour variables 即可以选择你所需要观察的某一参数变量的等高线情况了。同时你也可以对此图再做一些修饰,如水平线的数目,这一点可利用边框的工具栏选项来添画或删除某等高线,使某一区域内的等高线分布更密一些或稀疏一些,若给等高线图块填充颜色,可以使用Field菜单中的contour color选项来设定,再刷新一下,就可看见更换颜色后的图形了!

注:boundary是一个可选项。

二维地形图也可以用3D cartesian 打开,对于3D图形的绘制可借助与边框工具栏中的3D按钮,把一个二维图形转化成三维图形表示,本例转化并旋转坐标转后3D图如图2所示。

图1 2D地形图

图2 3D地形图

ICEM万能网格方法介绍

ICEM万能网格方法 众所周知,ICEM CFD以其强大的网格划分能力闻名于世,同其他类似网格划分软件一样,ICEM提供了结构网格和非结构网格划分功能。结构网格质量一般较高,有利于提高数值分析精度,但是对于过于复杂的几何体,其缺点也是显而易见的:需要耗费大量人力思考块的划分方式,且经常造成局部网格质量偏低的局面。而非结构网格因其快速、智能化划分方式获得了人们的青睐,但其网格形式一般呈四面体或三角形,不易于流动方向垂直,进而经常造成数值扩散。 那么有没有更好的网格划分方式,能够将结构网格和非结构网格的优点结合在一起,既能又快又好的生成网格、又提高计算精度呢?答案是肯定的。CFD资料专营店老板在研究所搞数值计算多年,对于网格划分更是非常熟悉,在这里总结了ICEM CFD中两种核心技术----六面体核心网格和混合网格技术的使用方法,这两种办法可以说适用于所有复杂几何体,是万能的!希望能够为因几何结构过于复杂、苦于无法做出较高质量结构网格、却又不想使用非结构网格的同仁们提供新的思路,帮你们打通网格难关! 一、六面体核心网格技术 ICEM CFD中有一种新技术,即六面体核心网格技术,其原理是首先生成四面体网格,然后通过先进算法,将大部分区域内的四面体网格破碎、整合成六面体网格,只有在几何非常复杂或者边缘地带才会保留四面体网格。这样生成的网格集合了四面体网格和六面体网格的优势,既节省时间;因为大部分区域是结构网格、完全可以与流

动方向垂直,因而能够保证计算精度。除此之外,六面体核心网格还能在四面体网格的基础上减少约60%-80%的网格数量,非常有利于充分利用计算机资源,加快计算时间。 效果如图所示: (图1)未使用六面体核心网格技术的网格截面 (图2)使用六面体核心网格技术后的网格截面

关于结构化网格和非结构网格的适用性问题

? 傲雪论坛 ? 『 Fluent 专版 』 打印话题 寄给朋友 作者 关于结构化网格和非结构网格的适用性问题 [精华] 翱翔蓝天 发帖: 22 积分: 0 雪币: 22 于 2005-07-23 22:58 有些前辈认为,数值计算中应采用结构化网格,如果非结构网格则计算结果将“惨不忍睹”。搞压气机计算的同行也认为,必须用结构化网格。然而, 对复杂的计算域,如果采用结构化网格必然造成网格质量的急剧下降,扭曲加大等问题。我觉得这时,不如采用非结构网格。诸位,请提出自己的意见 waterstone 我为人人,人人为我 发帖: 78 积分: 0 雪币: 78 于 2005-07-24 09:51 我是这样看的:非结构网格使用很方便,外型越复杂就越显示出其优越性;至于计算结果的精度,就要看 非结构网格在单元网格面、体积处理上方法是不是比结构网格要差。就fluent 软件,它是用体积积分法求 解雷诺平均方程的,在单元网格面、体积处理上方法好像是按非结构网格方法处理的。你就是按结构网格方法来生成网格,进入fluent 中,进行数值计算时都是按非结构网格来处理,所以在fluent 中,你用结构化网格方法生网格,和用非结构网格计算没多大区别!我说说我个人看法。 liuhuafei 于 2005-07-25 13:53

发帖: 872 积分: 6 雪币: 158 来自: 上海 waterstone wrote: 我是这样看的:非结构网格使用很方便,外型越复杂就越显示出其优越性;至于计算结果的 精度,就要看非结构网格在单元网格面、体积处理上方法是不是比结构网格要差。就fluent 软件,它是用体积积分法求解雷诺平均方程的,在单元网格面、体积处理上方法好像是按非 结构网格方法处理的。你就是按结构网格方法来生成网格,进入fluent 中,进行数值计算时都是按非结构网格来处理,所以在fluent 中,你用结构化网格方法生网格,和用非结构网格计算没多大区别!我说说我个人看法。 计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。 例如同样的2d 的10×10的正交网格,fluent 采用非结构化方式对网格编号,另一种软件按结构化网格处理,如果其它条件相同,二者的精度应该是一样的。 我们通常所说的非结构化网格,第一映象就是网格质量差,不正交的,编排无规律的网格的三角形网格或四面体网格,实际上一个二维区域的三角形网格,如果控制得好(如相邻控制 体中心的连线与公共边基本接近正交的话),其不结构化网格(网格正交性好)的精度是一致的 翱翔蓝天 发帖: 22 积分: 雪币: 22 于 2005-07-25 23:00 谢了,有收获,受益匪浅 edwardzhu 发帖: 60 积分: 1 于 2005-08-05 11:08 听楼上一席话,胜读一年书。

结构和非结构网格

CFD网格的分类,如果按照构成形式分,可以分为结构化和非结构化 结构化:只能有六面体一种网格单元,六面体顾名思义,也就是有六个面,但这里要区分一下六 面体和长方体。长方体(也就是所有边都是两两正交的六面体)是最理想完美的六面体网格。但如 果边边不是正交,一般就说网格单元有扭曲(skewed). 但绝大多数情况下,是不可能得到完全没有 扭曲的六面体网格的。一般用skewness来评估网格的质量,sknewness=V/(a*b*c). 这里V是网格 的体积,a,b,c是六面体长,宽和斜边。sknewness越接近1,网格质量就越好。很明显对于长 方体,sknewness=1. 那些扭曲很厉害的网格,sknewness很小。一般说如果所有网格sknewness>0.1也就可以了。结构化网格是有分区的。简单说就是每一个六面体单元是有它的坐标的,这些坐标用,分区号码(B),I,J,K四个数字代表的。区和区之间有数据交换。比如一个单元,它的属性是B=1, I=2,J=3,K=4。其实整个结构化单元的概念就是CFD计算从物理空间到计算空间mapping的概念。I,J,K可以认为是空间x,y,z在结构化网格结构中的变量。 非机构化:可以是多种形状,四面体(也就三角的形状),六面体,棱形。对任何网格,都是希 望网格单元越规则越好,比如六面体希望是长方形,对于四面体,高质量的四面体网格就是正四 面体。sknewness的概念这里同样适用,sknewness越小,网格形状相比正方形或者正四面体就越 扭曲。越接近1就越好。 很明显非结构化网格也可以是六面体,但非结构化六面体网格没有什么B,IJK的概念,他们就是充 满整个空间。 对于复杂形状,结构化网格比较难以生成。主要是生成时候要建立拓扑,拓扑是个外来词,英语 是topology,所以不要试图从字面上来理解它的意思。其实拓扑就是指一种有点和线组成的结构。工人建房子,需要先搭房粱,立房柱子,然后再砌砖头。拓扑其实就是房子的结构。这么理解拓 扑比较容易些,以后认识多了,就能彻底通了。 生成结构化网格的软件gridgen,icem等等都是需要你去建立拓扑,也就是结构,然后软件好根据 你的机构来建立网格,或者砌砖头,呵呵。 非结构化网格的生成相对简单,四面体网格基本就是简单的填充。非结构化六面体网格生成还有 些复杂的。但仍然比结构化的建立拓扑简单多。比如 gambit的非结构化六面体网格是建立在从一 个面到另外一个面扫描(sweep)的基础上的。Numeca公司的hexpress的非结构化六面体网格是用 的一种吸附的方法。反正你还是要花点功夫。 另外一点就是,结构化网格可以直接应与于各种非结构化网格的CFD软件,比如你在gridgen里 面生成了一个结构化网格,用fluent读入就可以了。fluent是非结构化网格CFD软件,它会忽略 那些结构化网格的结构信息(也就是B,I,J,K),当成简单的非结构网格读入。非结构化六面体网格 就不能用在结构化网格的CFD求解器了. 结构化网格仍然是CFD工程师的首选。非结构化六面体网格也还凑合,四面体网格我就不喜欢了。数量多,计算慢,后处理难看。简单说,如果非结构化即快又好,结构化网格早就被淘汰了。总 结一下,

icem一些总结精编版

CFD 第一章ICEM 总工作流程 ICEM CFD 的一般工作流程包括以下几个步骤: 1、打开或创建一个工程 2、创建或处理几何 3、创建网格 4、检查或编辑网格 5、生成求解器的导入文件 6、结果后处理 1.1创建或处理几何体 1.1.1导入几何题 利用三维软件进行三维建模。 Solidworks—另存为.igs文件—打开geometry—Import Geometry 打开.igs-保存文件—打开icem,打开文件。创建时,geometry与icem连接即可。 三维建模软件创建的几何文件都可以直接导入ICEM中。 1.1.2创建几何体 通过geometry功能栏可以完成创建于编辑几何体的操作。 (1)点的创建与编辑 打开第一个按钮即打开点的控制面板,通过该面板可以进行各类点的创建与操作。 (2)曲线的创建 (3)面的创建 (4)bodyde的创建 在给模型化网格之前,应该先确定该模型的计算域。确保该body在几何实

体内部。 (5)线和面的修改 (6)Repair实体 通常容差设置应该是预计划分的最小网格尺度的1/10,或者需要捕捉最小几何实体的特征尺度。 红线表示模型满足容差。黄线表示面的缺失或者面与面之间的缝隙大于容差,通常需要修补。 1.2网格的创建 1、四面体 2、六面体 3、棱柱网格等 1.2.1划分非结构化网格 提供了强大的划分四面体网格的功能。能将几何模型自动划分非结构化网格,适用于复杂的模型,并能在截得基础上适应网格。但也存在缺陷。 1.2.1.1自动划分网格方法 1、Octree算法 2、快速Delaunay阵面推进算法 3、前沿推进算法 1.2.1.2网格类型 1、四面体/混合网格

结构化网格与非结构化网格

对于连续的物理系统的数学描述,如航天飞机周围的空气的流动,水坝的应力集中等等,通常是用偏微分方程来完成的。为了在计算机上实现对这些物理系统的行为或状态的模拟,连续的方程必须离散化,在方程的求解域上(时间和空间)仅仅需要有限个点,通过计算这些点上的未知变量既而得到整个区域上的物理量的分布。有限差分,有限体积和有限元等数值方法都是通过这种方法来实现的。这些数值方法的非常重要的一个部分就是实现对求解区域的网格剖分。 网格剖分技术已经有几十年的发展历史了。到目前为止,结构化网格技术发展得相对比较成熟,而非结构化网格技术由于起步较晚,实现比较困难等方面的原因,现在正在处于逐渐走向成熟的阶段。下面就简要介绍一些这方面的情况。 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。结构化网格生成技术有大量的文献资料[1,2,3,4]。结构化网格有很多优点: 1.它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。 2.网格生成的速度快。 3.网格生成的质量好 4.数据结构简单 5.对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际的模型更容易接近。 它的最典型的缺点是适用的范围比较窄。尤其随着近几年的计算机和数值方法的快速发展,人们对求解区域的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就显得力不从心了。 结构化网格的生成技术只要有: 代数网格生成方法。主要应用参数化和插值的方法,对处理简单的求解区域十分有效。PDE网格生成方法。主要用于空间曲面网格的生成。 1.2非结构化网格 同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。即与网格剖分区域内的不同内点相连的网格数目不同。从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。 非结构化网格技术从六十年代开始得到了发展,主要是弥补结构化网格不能够解决任意形状和任意连通区域的网格剖分的缺欠.到90年代时,非结构化网格的文献达到了它的高峰时期.由于非结构化网格的生成技术比较复杂,随着人们对求解区域的复杂性的不断提高,对非结构化网格生成技术的要求越来越高.从现在的文献调查的情况来看,非结构化网格生成技术中只有平面三角形的自动生成技术比较成熟(边界的恢复问题仍然是一个难题,现在正在广泛讨论),平面四边形网格的生成技术正在走向成熟。而空间任意曲面的三角形、四边形网格的生成,三维任意几何形状实体的四面体网格和六面体网格的生成技术还远远没有达到成熟。需要解决的问题还非常多。主要的困难是从二维到三维以后,待剖分网格的空间区非常复杂,除四面体单元以外,很难生成同一种类型的网格。需要各种网格形式之间的过度,如金字塔形,五面体形等等。 非结构化网格技术的分类,可以根据应用的领域分为应用于差分法的网格生成技术(常常成为grid generation technology)和应用于有限元方法中的网格生成技术(常常成为mesh generation technology),应用于差分计算领域的网格要除了要满足区域的几何形状要求以外,还要满足某些特殊的性质(如垂直正交,与流线平行正交等),因而从技术实现上来说就更困难一些。基于有限元方法的网格生成技术相对非常自由,对生成的网格只要满足一些形状

Fluent 结构化网格与非结构化网格

简单地说:结构化网格只包含四边形或者六面体,非结构化网格是三角形和四面体。 结构网格再拓扑结构上相当于矩形域内的均匀网格,器节点定义在每一层的网格线上,且每一层上节点数都是相等的,这样使复杂外形的贴体网格生成比较困难。非结构网格没有规则的拓扑结构,也没有层的概念,网格节点的分布是随意的,因此具有灵活性。不过非结构网格计算的时候需要较大的内存。 在计算流体动力学中,按照一定规律分布于流场中的离散点的集合叫网格(Grid),分布这些网格节点的过程叫网格生成(Grid Generation)。网格生成对CFD至关重要,直接关系到CFD计算问题的成败。 非结构三角形网格方法 复杂外形网格生成的第二方向是最近应用比较广泛的非结构三角形网格方法,它利用三角形(二维)或四面体(三维)在定义复杂外形时的灵活性,以Delaunay法或推进波阵面法为基础,全部采用三角形(四面体)来填充二维(三维)空间,它消除了结构网格中节点的结构性限制,节点和单元的分可控性好,因而能较好地处理边界,适用于模拟真实复杂外型。非结构网格生成方法在其生成过程中采用一定的准则进行优化判断,因而能生成高质量的网格,很容易控制网格的大小和节点的密度,它采用随机的数据结构有利于进行网格自适应。一旦在边界上指定网格的分布,在边界之间可以自动生成网格,无需分块或用户的干预,而且不需要在子域之间传递信息。因而,近年来非结构网格方法受到了高度的重视,有了很大发展。 非结构网格方法的一个不利之处就是不能很好地处理粘性问题,在附面层内只采用三角形或四面体网格,其网格数量将极其巨大。现在比较好的方法就是采用混合网格技术,即先贴体生成能用于粘性计算的四边型或三棱柱网格,然后以此为物面边界,生成三角形非结构网格,但是生成复杂外型的四边形或三棱柱网格难度很大。 非结构网格方法的另一个不利之处就是对于相同的物理空间,网格填充效率不高,在满足同样流场计算条件的情况下,它产生的网格数量要比结构网格的数量大得多(一个长方体要划分为5个四面体)。随机的数据结构也增加了流场参数交换的时间,因此此方法要求较大的计算机内存,计算时间长。在物面附近,非结构网格方法,特别是对于复杂外形如凹槽、细缝等处比较难以处理。 非结构网格与结构网格一样都属于贴体网格,模型表面网格的好坏直接关系到空间网格的质量,因而它们的模型表面网格必须同时与网格拓扑结构和当地的几何外形特性相适应,为了更好地适应其中一方面,有时不得不在另一方面作出让步,因而往往顾此失彼。因此,在生成非结构网格和结构网格时,处理模型表面又成为一个关键而费时的工作。 计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。个人感觉采用结构化网格还是非结构化网格,主要看解决什么问题,如果是无粘欧拉方程的话,只要合理布局,结构和非结构都能得到较为理想的结果。但如果涉及到粘性影响的话,尤其在壁面处,结构网格有一定优势,并且其对外形适应性差的缺点,也可以通过多块拼接网格解决。事实上,目前有的非结构网格软件,也开始借鉴结构网格的优点,在壁面处进行了类似结构网格的处理,如cfx的壁面加密功能。 一般来说,网格节点走向(这里假设计算过程中物理量定义在网格节点上)贴近流动方向,那么计算的结果就要好一些。对于不是非常复杂的流动。例如气体的喷管流动,使用四边形(二维)网格就比较三角形网格要好。不过即便是四边形网格,fluent也是按照无结构网格进行处理的。 非结构和结构网格的计算结果如何取决于算法,除非网格实在惨不忍睹。我觉得现在已发展到了基于结构网格与非结构网格上的计算,各自的优势相差越来越不是很明显了。

结构化网格和非结构化网格特点

关于网格的经典文献你可以参看thomphson的Numecrial grid generation那本书,讲的有pde 和参数化代数方法.书后附有算例和代码. NURBS参数化曲线和曲面在自由曲线和曲面的cad造型广泛应用,也见到国内外的文献提到用这种方法生成网格,国内可能还没用这种方法来生成网格的实例. 如果网格生成算法感兴趣,可以看看。 关于结构和非结构网格,各有应用场合。个人比较喜欢结构网格。通过观察IDEAS中结构网格生成的步骤及要求,我觉得对于复杂的几何体,生成结构网格也是可以的,前提是采用适当的partition方法,将几何体分解成规则的基本几何体。而分解几何体是几何建模的任务。 个人感觉:生成网格的软件名目繁多,但是网格生成基本原理和算法可以归成下列所述的类别。 主要差别可能在于辅助的几何建模方法不同。网格生成应当辅以几何建模,只有与几何建模结合,才可以对复杂几何体生成高质量的网格。 网格生成的另外一个要素就是物体的参数化表示技术,当采用适当的参数化表示实体表面时,同样的网格生成技术有时候可以得到非常好的网格。NURBS是我所知道的CDA/CAM中应用较为广泛的构造复杂曲面的参数化表示技术。 不知道哪位朋友可以提供一些关于网格生成基本算法的源代码。 对于连续的物理系统的数学描述,如航天飞机周围的空气的流动,水坝的应力集中等 等,通常是用偏微分方程来完成的。为了在计算机上实现对这些物理系统的行为或状态的模拟,连续的方程必须离散化,在方程的求解域上(时间和空间)仅仅需要有限个点,通过 计算这些点上的未知变量既而得到整个区域上的物理量的分布。有限差分,有限体积和有 限元等数值方法都是通过这种方法来实现的。这些数值方法的非常重要的一个部分就是实 现对求解区域的网格剖分。 网格剖分技术已经有几十年的发展历史了。到目前为止,结构化网格技术发展得相对 比较成熟,而非结构化网格技术由于起步较晚,实现比较困难等方面的原因,现在正在处 于逐渐走向成熟的阶段。下面就简要介绍一些这方面的情况。 1.1结构化网格 从严格意义上讲,结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。 结构化网格生成技术有大量的文献资料[1,2,3,4]。结构化网格有很多优点: 1.它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。 2.网格生成的速度快。 3.网格生成的质量好 4.数据结构简单 5.对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域光滑,与实际 的模型更容易接近。 它的最典型的缺点是适用的范围比较窄。尤其随着近几年的计算机和数值方法的快速 发展,人们对求解区域的复杂性的要求越来越高,在这种情况下,结构化网格生成技术就 显得力不从心了。 结构化网格的生成技术只要有:代数网格生成方法。主要应用参数化和插值的方法,对处理简单的求解区域十分有效。

结构化网格和非结构化网格

结构化网格只包含四边形或者六面体,非结构化网格是三角形和四面体。 结构网格在拓扑结构上相当于矩形域内的均匀网格,器节点定义在每一层的网格线上,且每一层上节点数都是相等的,这样使复杂外形的贴体网格生成比较困难。非结构网格没有规则的拓扑结构,也没有层的概念,网格节点的分布是随意的,因此具有灵活性。不过非结构网格计算的时候需要较大的内存。 非结构网格不利之处就是不能很好地处理粘性问题,在附面层内只采用三角形或四面体网格,其网格数量将极其巨大。现在比较好的方法就是采用混合网格技术,即先贴体生成能用于粘性计算的四边型或三棱柱网格,然后以此为物面边界,生成三角形非结构网格,但是生成复杂外型的四边形或三棱柱网格难度很大。在物面附近,非结构网格方法,特别是对于复杂外形如凹槽、细缝等处难以处理。 到空间网格的质量, 几何外形特性相适应,为了更好地适应其中一方面,有时不得不在另一方面做出让步,因而往往顾此失彼。 计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。采用结构化网格还是非结构化网格,主要看解决什么问题,如果是无粘欧拉方程的话,只要合理布局,结构和非结构都能得到较为理想的结果。但如果涉及到粘性影响的话,尤其在壁面处,结构网格有一定优势,并且其对外形适应性差的缺点,也可以通过多块拼接网格解决。目前有的非结构网格软件,也开始借鉴结构网格,如cfx的壁面加密功能。 网格节点走向(这里假设计算过程中物理量定义在网格节点上)贴近流动方向,那么计算的结果就要好一些。对于不是非常复杂的流动。例如气体的喷管流动,使用四边形(二维)网格就比三角形网格要好。不过即便是四边形网格,fluent 也是按照无结构网格进行处理的。主要是看流向是否与网格平行如果是平行的则计算中不容易出现假扩散,计算的结果就好,但是成角度的时候计算的结果搞不好就有扩散现象,所以不在于结构和非结构。 非结构和结构网格的计算结果如何取决于算法。GRIDGEN在结构网格方面有着强大的生命力,很多非常复杂的几何形状用它没问题;基于非结构网格方面的计算格式得到的结果的准确度也不次于基于结构网格的结果了。

COMSOL3.5重要案例——网格的扫掠

案例—薄层扩散 本例说明如何使用一致边界条件将两个分离的几何结构连接成一个3D的薄层扩散模型,它还说明了使用不同类型的网格单元,对于这种薄层结构,使用砖形和棱柱形单元极大地减少了自由度(DOF)的数量。要了解更多的关于网格单元和网格剖分选项,请参考 COMSOL Multiphysics用户指南的“网格剖分”。 本例中通过使用砖形和棱柱网格,而不是使用非结构化四面体网格,可以极大地减少自由度数(DOF),从而节省计算时间。使用这种方法,本例中的DOF只有2300左右。而使用缺省的四面体网格则需要大约18,000左右的DOF。 模型处理的是一个单物质扩散,因变量是浓度 c 。除了入口和出口,其他所有边界均为绝缘边界。入口浓度为 c 0 ,出口(底面)是向外通量? r surf c/c 0 (COMSOL Multiphysics定义向内通量为正),其中r surf 是表面反应速率。在底板上考虑采用一个有效扩散系数来处理多孔性。Table 15-2列出了模型采用的所有材料属性。 上下两个部分界面上的条件为两侧的浓度 c 相等。 模型库路径: COMSOL_Multiphysics/Diffusion/thin_layer_diffusion

8画一个圆心位于(3e-6, 3e-6),半径为2e-6的圆C1,点击绘图工具条上的椭圆/圆 (以圆心)按钮,然后使用鼠标右键在绘图区中画出这个圆。

3点击确定,将上述四边形网格向 z 方向拉伸-0.4微米,从而创建一个新的3D几何的砖形网格,Geom3 (3D)。

5点击确定,将三角形网格向 z 轴方向拉伸0.2 μ m,从而在一个新的3D几何Geom4 (3D)中建立了一个棱柱网格。

基于四面体控制网格的模型变形算法 (1)

第20卷第9期2008年9月 计算机辅助设计与图形学学报 JO U RN A L O F COM PU T ER AID ED D ESIG N &COM P U T ER G RA PH ICS Vo l.20,N o.9 Sep.,2008 收稿日期:2008-07-15.基金项目:国家 九七三 重点基础研究发展规划项目(2002CB312101,2006CB303102);国家自然科学基金(60603078);新世纪优秀人才项目(NCET 06 0516).赵 勇,男,1982年生,博士研究生,主要研究方向为数字几何处理.刘新国,男,1972年生,博士,教授,博士生导师,主要研究方向为数字几何处理、真实感绘制、虚拟现实等.彭群生,男,1947年生,博士,教授,博士生导师,CC F 高级会员,主要研究方向为真实感图形、虚拟现实、科学计算可视化等. 基于四面体控制网格的模型变形算法 赵 勇 刘新国 彭群生 (浙江大学CAD &CG 国家重点实验室 杭州 310058)(z haoyong@cad.z https://www.sodocs.net/doc/8514747029.html,) 摘要 提出一种鲁棒的保体积保表面细节的模型变形算法.首先将输入模型嵌入到一个稀疏的四面体控制网格 中,并且通过一种改进的重心坐标来建立两者的对应关系;然后通过用户的交互,对控制网格建立一个二次非线性能量函数对其进行变形,而输入模型的变形结果则可以通过插值来直接获得.由于能量函数的优化是在控制网格上进行的,从而大大提高了算法的效率.与此同时,提出一种新的能量!!!Laplacian 能量,可以使四面体控制网格进行尽量刚性的变形,从而有效地防止了大尺度编辑过程中模型形状的退化现象.文中算法还具有通用性,可支持多种模型的表示方式,如三角网格模型、点模型等.实验结果表明,该算法可以有效地保持输入模型的几何细节、防止明显的体积变化,得到了令人满意的结果. 关键词 模型编辑;四面体控制网格;刚性变形;L aplacian 能量;通用性中图法分类号 T P391 Shape Deformation Based on Tetrahedral Control Mesh Zhao Yong Liu Xing uo Peng Qunsheng (S tate K ey L abor atory of CA D &CG ,Zh ej iang Univ ersity ,H ang z hou 310058) Abstract A robust shape deformation algo rithm w ith the feature o f both vo lum e and surface detail preserv ing is presented.Fir st,the input m odel is embedded into a coarse tetr ahedral co ntro l mesh,and the m odified bar ycentr ic coordinates are employ ed to establish their relationship.Then acco rding to user s editing,the contro l mesh is defor med by solving a quadric no nlinear ener gy m inimization pro blem,and the deform ation is passed to the embedded m odel by interpolatio n.As the optimization pro cess is applied to the control mesh composed of sparse vertices,the efficiency is g reatly improved.Meantime,w e incor porate a new energ y,called Laplacian energ y,into the energy equatio n to m ake the tetrahedral contro l m esh deform as rigidly as possible,thus avoiding shape degenerations even under ex treme editing.Our algor ithm acco mmodates various shape repr esentations,such as triangular meshes,point clouds etc.Experiments demonstrate that the Laplacian energy is very effective in preserv ing geom etric details and pr eventing unreasonable volume changes. Key words shape editing;tetrahedral contr ol m esh;r ig id defor matio n;Laplacian energ y;generality 近年来,随着三维数据采集技术的不断发展,三维数字几何模型已经在数字娱乐、工业设计、医学辅 助诊断、文物保护等很多领域得到了广泛的应用.数字几何处理作为计算机图形学的一个重要分支也得

Fluent结构化网格与非结构化网格

Fluent结构化网格与非结构化网格简单地说:结构化网格只包含四边形或者六面体,非结构化网格是三角形和四面体。 结构网格再拓扑结构上相当于矩形域内的均匀网格,器节点定义在每一层的网格线上,且每一层上节点数都是相等的,这样使复杂外形的贴体网格生成比较困难。非结构网格没有规则的拓扑结构,也没有层的概念,网格节点的分布是随意的,因此具有灵活性。不过非结构网格计算的时候需要较大的内存。 在计算流体动力学中,按照一定规律分布于流场中的离散点的集合叫网格(Grid),分布这些网格节点的过程叫网格生成(Grid Generation)。网格生成对CFD至关重要,直接关系到CFD计算问题的成败。 非结构三角形网格方法 复杂外形网格生成的第二方向是最近应用比较广泛的非结构三角形网格方法,它利用三角形(二维)或四面体(三维)在定义复杂外形时的灵活性,以Delaunay法或推进波阵面法为基础,全部采用三角形(四面体)来填充二维(三维)空间,它消除了结构网格中节点的结构性限制,节点和单元的分可控性好,因而能较好地处理边界,适用于模拟真实复杂外型。非结构网格生成方法在其生成过程中采用一定的准则进行优化判断,因而能生成高质量的网格,很容易控制网格的大小和节点的密度,它采用随机的数据结构有利于进行网格自适应。一旦在边界上指定网格的分布,在边界之间可以自动生成网格,无需分块或用户的干预,而且不需要在子域之间传递信息。因而,近年来非结构网格方法受到了高度的重视,有了很大发展。 非结构网格方法的一个不利之处就是不能很好地处理粘性问题,在附面层内只采用三角形或四面体网格,其网格数量将极其巨大。现在比较好的方法就是采用混合网格技术,即先贴体生成能用于粘性计算的四边型或三棱柱网格,然后以此为物

ICEM中复杂模型生成四面体边界层网格注意事项

1、Maximum mesh Expansion Factor=36.5! 其不合理会对结果产生什么样的影响?它的值过大,是由于Icem中的哪个或哪些参数对应引起的? 解答: 1)几个参数的含义: Minimum Orthogonality Angle [degrees] =67.9 OK Maximum Aspect Ratio =5.0 OK Maximum Mesh Expansion Factor =36.5! ●Minimum Orthogonality Angle:最小的网格正交角度,一般要求大于10度小于170度。 ●Aspect Ratio= Largest ratio of maximum to minimum integration point surface areas for all elements adjacent to a node。盘面比(有人也将之翻译成长宽比),一个节点相邻的最大积分面与最小积分面面积之比,一般要求小于100,对于双精度的求解可以达到1000。 ●Mesh Expansion Factor =Ratio of largest to smallest sector volumes for each control volume。最大与最小控制体积之间的比值,一般要求小于20。 2)与计算结果之间的相互关系: ●如果收敛情况良好,Mesh Expansion Factor过大也是可以接受的; ●如果你的电脑可以处理数量大的网格,你可以尝试优化调整你的网格,尤其是选取一个好的网格尺寸变化比率,合适的调整会让上述三项都满足指标。 ●对于非结构化网格,你可以设置不同线、面网格尺寸,那么你就会得到非常好的网格质量了。 3)它的值过大,是由于Icem中的哪个参数对应引起的?

网格和单元的基本概念

网格和单元的基本概念

前记:首先说明,和一般的有限元或者计算力学的教材不一样,本人也不打算去抄袭别人的著作,下面的连载是一个阶段的学习或者专业感悟集大成,可以说深入浅出,也可以说浅薄之极——如果你认为浅薄,很好,说明我理解透了,也祝贺你理解透了!好了,废话少说,书归正传。 无论是CSD(计算结构力学)、CTD(计算热力学)还是CFD(计算流体动力学)——我们统一称之为工程物理数值计算技术。支撑这个体系的4大要素就是:材料本构、网格、边界和荷载(荷载问题可以理解为数学物理方程的初值问题),当然,如果把求解技术也看作一个要素,则也可以称之为5大要素。网格是一门复杂的边缘学科,是几何拓补学和力学的杂交问题,也是支撑数值计算的前提保证。本番连载不做任何网格理论的探讨(网格理论是纯粹的数学理论),仅限于尽量简单化的应用技术揭秘。 网格出现的思想源于离散化求解思想,离散化把连续求解域离散为若干有限的子区域,分别求解各个子区域的物理变量,各个子区域相邻连续与协调,从而达到整个变量场的协调与连续。离散网格仅仅是物理量的一个“表征符号”,网格是有形的,但被离散对象既可以是有形的(各类固体),也可以是无形的(热传导、气体),最关键的核心在于网格背后隐藏的数学物理列式,因此,简单点说,看得见的网格离散是形式,而看不见的物理量离散才是本质核心。 对计算结构力学问题,网格剖分主要包含几个内容:杆系单元剖分(梁、杆、索、弹簧等)、二维板壳剖分(曲面或者平面单元)、三维实体剖分(非结构化全六面体网格、四面体网格、金字塔网格、结构化六面体网格、混合网格等),计算热力学和计算流体动力学的网格绝大部分是三维问题。对于CAE工程师而言,任何复杂问题域最终均直接表现为网格的堆砌,工程师的任务等同于上帝造人的过程,网格是一个机体,承载着灵魂(材料本构、网格、边界和荷载),求解技术则是一个思维过程。 网格基本要素是由最基本的节点(node)、单元线(edge)、单元面(face)、单元体(body)构成,实质上,线、面、体只不过是为了让网格看起来更加直观,在分析求解过程中,线、面、体本质上并没有起多大的作用,数值离散的落脚点在节点(node)上,所有的物理变量均转化为节点变量实现连续和传递。在所有的CAE环境下,网格的基本要素均可以直接构成,但对于复杂问题而言,这是一个在操作上很难实现的事情,因此,基于几何要素的网格划分技术成为现代网格剖分应用的支点,和网格基本要素完全相同,对应的几何要素分别称之为点(point)、线(curve)、面(surface)和实体(solid)。 数值离散求解器是不能识别几何元素的,要对其添加“饲料”,工程师必须对几何元素进行“精加工”,因此,从这个意义上来说,网格剖分的本质就是把几何要素转换为若干离散的元素组,这些元素组堆砌成形态上近似逼近原有几何域的简单网格集合体。因此,这里说明了一个网格“加工”质量的基本判别标准——和几何元素的拟合逼近程度,理论上,越逼近几何元素的网格质量越好,当然,几何逼近只是一个基本的判别标准,网格质量判别有一系列复杂的标准,后文详细阐述。 本篇将专门解释几个基本概念:点网格;一维线网格;二维三角形面网格、二维四边形面网格;三维四面体网格(tetrahedra)、三维金字塔单元(pyramid)、五面体单元(prism)、三维六面体单元(hexahedra);结构化网格(structural grid)、非结构化网格(nonstructural grid)、混合网格(blend grid)。需要专门说明的是,网格(grid &

结构化网格和非结构网格的适用性问题

关于结构化网格和非结构网格的适用性问题 有些前辈认为,数值计算中应采用结构化网格,如果非结构网格则计算结果将“惨不忍睹”。搞压气机计算的同行也认为,必须用结构化网格。然而,对复杂的计算域,如果采用结构化网格必然造成网格质量的急剧下降,扭曲加大等问题,这时是不是应该采用非结构网格?对此问题的看法是: 1、非结构网格使用很方便,外型越复杂就越显示出其优越性;至于计算结果的精度,就要看非结构网格在单元网格面、体积处理上方法是不是比结构网格要差。就fluent软件而言,它是用体积积分法求解雷诺平均方程的,在单元网格面、体积处理上方法好像是按非结构网格方法处理的。你就是按结构网格方法来生成网格,进入fluent中,进行数值计算时都是按非结构网格来处理,所以在fluent中,你用结构化网格方法生网格,和用非结构网格计算没多大区别!以上仅代表个人看法。 2、计算精度,主要在于网格的质量(正交性,长宽比等),并不决定于拓扑(是结构化还是非结构化)。例如同样的2d的10×10的正交网格,fluent 采用非结构化方式对网格编号,另一种软件按结构化网格处理,如果其它条件相同,二者的精度应该是一样的。 3、我们通常所说的非结构化网格,第一映象就是网格质量差,不正交的,编排无规律的网格的三角形网格或四面体网格,实际上一个二维区域的三角形网格,如果控制得好(如相邻控制体中心的连线与公共边基本接近正交的话),其与结构化网格(网格正交性好)的精度是一致的。 4、我个人感觉采用结构化网格还是非结构化网格,主要看解决什么问题,如果是无粘欧拉方程的话,只要合理布局,结构和非结构都能得到较为理想的结果。但如果涉及到粘性影响的话,尤其在壁面处,结构网格有一定优势,并且其对外形适应性差的缺点,也可以通过多块拼接网格解决。事实上,目前有的非结构网格软件,也开始借鉴结构网格的优点,在壁面处进行了类似结构网格的处理,如cfx的壁面加密功能。 5、一般来说,网格节点走向(这里假设计算过程中物理量定义在网格节点上)贴近流动方向,那么计算的结果就要好一些。对于不是非常复杂的流动。例如气体的喷管流动,使用四边形(二维)网格就比较三角形网格要好。不过即便是四边形网格,fluent也是按照无结构网格进行处理的。 6、我觉得现在已发展到了基于结构网格与非结构网格上的计算,各自的优势相差越来越不是很明显了,各自己在不断的完善: (1)GRIDGEN在结构网格方面有着强大的生命力,很多非常复杂的几何形状用它没问题。 (2)基于非结构网格方面的计算格式得到的结果的准确度也不次于基于结构网格的结果了。

门主ICEM非结构网格1四面体网格

四面体网格生成一般流程 1、建立body 2、Global Mesh Setup(全局网格设定) ●全局网格尺寸 ●体网格尺寸:设定体网格类型及生成方法 3、Mesh Size for Parts(Part网格尺寸设定) 4、Surface Mesh Setup(面网格尺寸设定) 5、Curve Mesh Parameters(曲线网格参数设定) 6、Create Mesh Density(设定网格加密区) 7、Compute Mesh(计算生成网格) 8、Smooth Mesh Globally(网格光顺) 9、检查网格质量

示例1、运动体倾斜入水 几何模型如下图所示 步骤1 建立body 选择介于运动体与大圆柱之间屏幕的任意两个位置,单击中键确定。 (说明:在想要生成非结构网格的计算域建立Body,ICEM会根据这个点搜索包围它的最小闭合区域作为一个计算域。) 步骤2 定义全局网格尺寸 本例中定义为32 (说明: 1、最大网格尺寸最好取值为2的指数幂(帮助文 档建议) 2、实际网格生成的最大尺寸等于Scale factor与 Max element的乘积)

步骤3 定义网格类型及生成方法 选择网格类型Tetra/Mixed,生成方法为 Robust(Octree)。 (说明: 1、Tetra/Mixed默认情况下生成四面体网格,通过 设定可以创建三棱柱边界层网格(Prism),也可 以生成以六面体为主的体网格(Hexcore) 2、Robust(Octree)方法使用八叉树方法生成四面 体网格,是一种自上而下的网格生成方法,即 先生成体网格,后生成面网格。一般保持默认。) 步骤4 定义Part网格尺寸 本例中将弹体表面分别定义为三个part,最大网格尺寸分别定义为2、2、1。 (说明;由于本例中Part所定义的内容即为面,所以省略下一步的“表面网格设定”) 步骤 ..5 .建立加密区 ..... 本例中运动体尾部和头部X方向坐标分别为160、200,半径为4,要对运动体周围进行加密。 1、创建点(140,0,0)、(220,0,0) 2、单击图示Create Mesh Density按钮,在size处输入4,width处输入4,ratio 处输入1.2,选择上一步创建好的两点,Apply生成加密区如右下图黄色线。

结构化网格与非结构化网格的优缺点

结构化网格与非结构化网格极其优缺点 摘要:结构化和非结构化网格在实际应用中采用的是两种不同的网格划分方式,结构化网格相比而言更精细,而非机构化网格相比而言跟快速。 关键词:结构化非机构化 1、结构化网格: 结构化网格是指网格区域内所有的内部点都具有相同的毗邻单元。它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面的计算。 1.1结构化网格的优点: 1、它可以很容易地实现区域的边界拟合,适于流体和表面应力集中等方面 的计算。 2、网格生成的速度快。 3、网格生成的质量好 4、数据结构简单 5、对曲面或空间的拟合大多数采用参数化或样条插值的方法得到,区域 光滑,与实际的模型更容易接近。 1.2结构化网格的缺点: 1、适用的范围比较窄,只适用于形状规则的图形。 2、同一单元的边长尺寸相差很大,或整个区域网格尺寸变化很大,造成单元质量很差。 3、由于每个单元的节点相应的单元数一样,所以无法实现光滑的尺寸过渡, 从而造成整个区域大部分网格过密,增加不必要的节点。 2、非结构化网格: 同结构化网格的定义相对应,非结构化网格是指网格区域内的内部点不具有相同的毗邻单元。即与网格剖分区域内的不同内点相连的网格数目不同。从定义上可以看出,结构化网格和非结构化网格有相互重叠的部分,即非结构化网格中可能会包含结构化网格的部分。 2.1非结构化网格的优点: 1、非结构网格生成方法在其生成过程中采用一定的准则进行优化判断,因而能生成高质量的网格。 2、很容易控制网格大小和节点密度。 3、采用随机的数据结构有利于进行网格自适应。 4、一旦在边界指定网格的分布,在边界之间可以自动生成网格无需分块或者用户的干预,而且不需要在子域之间传递信息。 2.2非结构化网格的缺点: 1、不能很好的处理粘性问题,在附面层内只采用三角形或四面体网络,其网格数量将极其巨大。 2、对于相同的物理空间,网格填充效率不高,在满足同样流场计算条件的情况小,它产生的网格数量要比结构网格大的多。 [参考文献]:王福军·计算流体动力学分析-CFD软件原理与应用.清华大学出版社.2004.9

相关主题