搜档网
当前位置:搜档网 › 第三章 飞行空气动力学

第三章 飞行空气动力学

第三章 飞行空气动力学
第三章 飞行空气动力学

第三章- 飞行空气动力学

飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。

作用于飞机的力

至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。飞行员必须控制的是这些力之间的平衡。对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。

下面定义和平直飞行(未加速的飞行)相关的力。

推力是由发动机或者螺旋桨产生的向前力量。它和阻力相反。作为一个通用规则,纵轴上的力是成对作用的。然而在后面的解释中也不总是这样的情况。

阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。阻力和推力相反,和气流相对机身的方向并行。

重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。由于地球引力导致重量向下压飞机。和升力相反,它垂直向下地作用于飞机的重心位置。

升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。它垂直向上的作用于机翼的升力中心。

在稳定的飞行中,这些相反作用的力的总和等于零。在稳定直飞中没有不平衡的力(牛顿第三定律)。无论水平飞行还是爬升或者下降这都是对的。也不等于说四个力总是相等的。这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。例如,考虑下一页的图3-1。在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升力)推力等于阻力,升力等于重力。必须理解这个基本正确的表述,否则可能误解。一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。必须强调的是,这是在稳定飞行中的力平衡关系。总结如下:

向上力的总和等于向下力的总和

向前力的总和等于向后力的总和

对旧的“推力等于阻力,升力等于重力”公式的提炼考虑了这样的事实,在爬升中,推力的一部分方向向上,表现为升力,重力的一部分方向向后,表现为阻力。在滑翔中,重力矢量的一部分方向向前,因此表现为推力。换句话说,在飞机航迹不水平的任何时刻,升力,重力,推力和阻力每一个都会分解为两个分力。如图3-2

对前面概念的讨论在航空学课本或者手册中经常被忽略。原因不是因为他们不重要,而是因为由于忽略这个讨论,谈到作用于飞行中飞机的航空动力学作用力的主要思想就可以用最基本的要素来表达,而不用考虑航空动力学者的专业性。就事实而言,仅仅考虑水平飞行和稳定状态中的正常爬升和下降,机翼升力确实是重要的向上的力而重力是重要的向下的力的表述仍然是正确的。

经常的,在解释作用于飞机的力时遇到的大量困难在很大程度上是语言和其含义的问题。例如,飞行员长期认为在飞机爬上是因为升力大于重力。如果他仅仅根据机翼升力考虑的话这是不对的。然而,如果考虑所有向上力的合力导致升力大于重力,那么这就是对的。但是当提到“升力推力和重力阻力”时,为这些力确立的前面的定义就不再有效,使问题变的复杂。语言表述的如此不严密为大量的争论提供了借口,这些争论集中于基本原理的精练。

尽管已经定义了作用于飞机上的力,飞行员如何使用他们来进行受控的飞行就需要对他们进行深入详细的讨论。

推力

飞机开始移动前,必须施加推力。飞机持续移动,速度增加,直到推力和阻力相等。为了维持恒定的空速,就像升力和重力必须保持相等以维持稳定的飞行高度一样,推力和阻力必须保持相等。假设在平直飞行中,引擎功率降低,推力就会下降,飞机速度就减慢。只要推力小于阻力,飞机就会一直减速,知道它的空速不足以支持飞行。

同样的,如果引擎的动力增加,推力比阻力大,空速就增加。只要推力一直比阻力大,飞机就一直加速。当阻力等于推力时,飞机飞行在恒定的空速。

平直飞行可以维持的速度可以很慢也可以很快。如果飞机要保持水平飞行,飞行员必须在所有飞行状态协调迎角和推力。概略的,这些飞行状态可以按类分为三组,低速飞行,巡航飞行和高速飞行。

在低空速时,要维持升力和重力的平衡,迎角必须相对较高以增加升力。如图3-3,

如果推力降低空速增加,升力变得小于重力,飞机就会开始下降。要维持水平飞行,飞行员可以增加一定量的迎角,它会再次让升力等于飞机的重力,而飞机会飞的更慢点,如果飞行员适当的协调了推力和迎角也可以保持水平飞行。

低速状态的平直飞行提供了需要关注的和力平衡有关的条件,因为飞机处于高机头的姿态,有一个垂直的推力分量帮助支持飞机。首先,可以预期机翼载荷趋于减少。大多数飞行员知道相比发动机停止时飞机在有动力时速度较低会失速,螺旋桨引起的气流通过机翼时也会恶化这种情况。然而,如果分析仅仅限于通常定义的这四个力,你可以说,平直低速飞行时推力等于阻力,升力等于重力。

在平直飞行中,推力增加时,空速增加,必须要降低迎角。如果协调好了变化,飞机仍然保持平直飞行,但是推力和迎角之间建立了合适的关系后飞行速度会变高。

如果推力增加时迎角没有降低,飞机会爬升。但是降低迎角可以修正升力,保持它等于重力,如果做的恰好,飞机仍然保持平飞。轻微的负迎角甚至可以出现在非常高速度的平直飞行中。那么就很明显,可以以失速迎角和高速时的相对较小负迎角之间的任意迎角进行平飞。

阻力

飞行中的阻力有两个基本类型:寄生阻力和诱导阻力。第一个称为寄生的是因为它永远对飞行的帮助是无用的,第二个是由机翼产生升力的结果所导致的。寄生阻力有两个基本元素:形阻力,来自机身对气流的破坏,另外就是外壳的摩擦阻力。

对于寄生阻力的两个因素,在设计飞机时容易降低形阻力。一般的,一个物体越是流线型的就越容易降低寄生阻力的形阻力。

外壳摩擦力是最难降低的寄生阻力类型。没有完全光滑的表面。甚至是机械加工的表面,通过放大来检测的话,仍然可以看到粗糙的不平坦的外观。这种粗糙的表面会使表面的空气流线型弯曲,对平滑气流产生阻力。通过使用光滑的磨平的表面,和去掉突出的铆钉头,粗糙和其他的不规则物来最小化外壳摩擦力。

设计飞机时必须要增加另一个对寄生阻力的考虑。这个阻力复合了形阻力效应和外壳摩擦,称为所谓的干涉阻力。如果两个物体靠近放置,产生的合成紊乱会比单个测试时大50%到200%。

形阻力,外壳摩擦力和干涉阻力这三个阻力都要被计算以确定一个飞机的寄生阻力。

寄生阻力中一个物体的外形是一个很大的因素。然而,说道寄生阻力时指示空速也是一个同样重要的因素。一个物体的外形阻力保持在一个相对气流固定的位置,大约以速度的平方成正比增加;这样,空速增加为原来的两倍,那么阻力就会变成原来的四倍,空速增加为三倍的话阻力也就增加为九倍。但是,这个关系只在相当的低音速时维持很好。在某些更高速度,外形阻力的增加会随速度而变的突然很快。

第二个基本的阻力类型是诱导阻力。以机械运动方式工作的系统没有一个可以达到100%的效率,这是一个确定的物理事实。这就意味着无论什么特性的系统,总是以系统中消耗某些额外的功来获得需要的功。系统越高效,损失就越小。

在平飞过程中,机翼的空气动力学特性产生要求的升力,但是这只能通过某种代价才能获得。这种代价的名字就叫诱导阻力。诱导阻力是内在的,在机翼产生升力的任何时刻,而事实上,这种阻力是升力的产物中不可分离的。继而,只要有升力就会有这种力。

机翼通过利用三种气流的能量产生升力。无论什么时候机翼产生升力,机翼下表面的压力总是大于机翼上表面的压力。结果,机翼下方的高压区空气有向机翼上方的低压去流动的趋势。在机翼的翼尖附近,这些压力有区域相等的趋势,产生一个从下表面到机翼上表面的向外的侧面气流。这个侧向气流给予翼尖的空气和机翼后面的尾流一个旋转速度。因此,翼尖的气流会变成随着机翼运动的两个涡流轨迹。

从尾部看飞机时,右边翼尖的涡流逆时针旋转,而左边翼尖的涡流顺时针旋转。如图3-4

记住这些涡流的旋转方向,可以看到他们在翼尖之外引入一个向上的气流,在机翼尾缘之后产生一个向下的气流。这个诱导的下洗气流和产生升力所需的下洗气流没有关系。实际上是诱导阻力的来源。涡流和后面的机翼上净气流分量越大越强,诱导阻力效应也就越强。这个机翼顶部的下洗流在翼尖处有相同的使向后的升力矢量弯曲的效果,因此升力和相对气流的蒸饺稍微向后,产生一个后向升力分量。这就是诱导阻力。

要记住为了在机翼上表面产生较大的负压力,机翼可以倾斜获得更大的迎角;如果不对称机翼的迎角为零,也就没有压力差,继而没有下洗分量,因此也就没有诱导阻力。无论如何,只要迎角增加,诱导阻力相应的增加。

换一种说法就是,较低的空速时就要求更大的迎角来产生等于飞机重量的升力,因而诱导阻力也就更大。总诱导阻力和空速的平方成反比变化关系。

从前面的讨论知道寄生阻力随空速的平方增加,诱导阻力随空速的平方反比变化。当空速降低到接近失速速度时,总阻力变的更大,主要由于诱导阻力的快速升高。类似的,当空速达

到飞机的终速时,因为寄生阻力的飞速增加使得总阻力再次快速增加。从图3-5可以看到,在某些空速上,总阻力处于最大值。在计算最大续航力和航程时这是非常重要的;阻力最小时,克服阻力所需要的动力也是最小的。

为理解飞行中飞机的升力和阻力的影响,需要结合考虑两者以及升阻比L/D(升力/阻力)。对于稳定的非加速状态的飞机,用不同空速时升力和阻力的数据,可以计算每一具体迎角时的升力系数CL和阻力系数CD。升阻比对迎角的结果图显示升阻比增加到一最大值,在较高的升力系数和迎角阶段开始下降,如图3-6。注意最大升阻比(L/D Max)出现在一个特定的迎角和升力系数处。如果飞机在最大升阻比处稳定飞行,总阻力为最小。任何比最大升阻比(L/D Max)处更大或者更小的迎角,升阻比降低继而在给定飞机升力时总阻力增加。

重心(CG)的位置在每一具体飞机的总体设计阶段确定。设计者要确定压力中心(CP)会移动多大距离。他们然后把重心朝相应的飞行速度下的压力中心前面固定,这是为了提供足够的恢复运动以保持飞行平衡。

一架飞机的配置也对升阻比有很大的影响。高性能滑翔机会有极高的升阻比,超音速飞机在亚音速飞行时好像升阻比低,那可是超音速飞行(高马赫数时高升阻比)需要的飞机配置导致这样的情况。

重力

重力是趋向把所有物体朝地球中心拽的拉力。重心可以看成是飞机的所有重量都集中于所在的一点。如果飞机的重心恰好得到支持,飞机就会平衡在任何姿态。也会注意到重心占飞机的主导重要性,因为它的位置对稳定性有极大的影响。重心的位置通过每个飞机的总体设计来确定。设计者要确定压力中心(CP)会移动多大距离。他们然后把重心朝相应的飞行速度下的压力中心前面固定,这是为了提供足够的恢复运动以保持飞行平衡。

重力和升力有明确的关系,推力对应于拉力。这个关系简单,但是对于理解飞行动力学很重要。升力是作用于机翼上的向上的力,和相对风方向垂直。需要的升力是用来克服飞机的重力(由作用于飞机物质的地球引力导致)。这个重力通过飞机的重心向下作用。在稳定的平飞中,此时升力大小等于重力,飞机处于平衡状态,高度不增加也减少。如果升力变得小于重力,飞机将会降低高度。当升力大于重力时,飞机飞行高度增加。

升力

飞行员可以控制升力。随时控制轮子向前或者向后一点,迎角就会改变。当迎角增加时,升力增加(假设其他因素不变)。当飞机到达最大迎角时,升力开始快速变小。这就是失速迎角,或者叫紊流点。

在继续深入讨论升力和如何控制它之前,必须先说一下速度。机翼的外形不会有效,除非它持续不断的冲击新的空气。飞机若要保持飞行,它必须持续移动。升力和飞机速度成相应的比例。例如,如果迎角和其他因素不变的话,以200节速度飞行的飞机所得的升力是它在100节速度飞行时升力的四倍。

实际上,如果迎角增加,飞机就不能保持继续保持同一迎角而高度不变的平飞;升力会增加,结果升力增加使飞机爬升。因此,为了维持升力和重力的平衡,和为了保持飞机平直的平衡飞行状态,只要速度增加,升力必须减小。这通常是通过减小迎角来实现的,如降低机头。相反的,当飞机速度减慢时,降低的速度要求增加迎角来维持足够的升力以保持飞行。当然,如果要避免失速的话,迎角可以增加的范围是有限制的。

所以,如果所有其他因素不变的话,可以得出一个结论,对于每一个迎角,有一个要求的对应指示空速来维持稳定的高度-非加速飞行。记住,这只适用于维持水平飞行。由于机翼在一个相同的迎角上总会失速,如果增加重量,升力必须也要增加,如果迎角保持恒定且恰好在临界迎角,这样做的唯一方法是增加速度。

升力和阻力也随空气密度直接变化。好几个因素会影响密度,如压力,温度和湿度。记住,在18000英尺高度,空气密度是海平面上密度的一半。因此,为了在较高的高度维持升力,对于任何迎角都必须以更高的真实空速来飞行。

此外,暖空气密度比冷空气密度低,潮湿空气密度小于干燥空气的密度。这样,在热的潮湿天气,对于任何给定迎角都必须以比干冷天气下更大的真实空速飞行。

如果密度因素降低,总升力必须等于总重量才能维持飞行,它遵循其他因素之一必须增加。通常那些增加的因素是空速或者迎角,因为这些因素可以由飞行员直接控制。

也要指出,升力随机翼的面积直接变化,机翼的平面图没有改变。如果机翼有相同的比例和机翼剖面,迎角相同时,200平方英尺平面面积的机翼升力是100平方英尺面积机翼的两倍。

如你所见,从飞行员角度的两个主要因素是升力和速度,因为这两个因素的控制是最容易的和准确的。当然,飞行员可以通过调整来控制密度,如果机翼恰好有可以扩大机翼面积的襟翼,那么也可以控制机翼面积。但是,对大多数情况,飞行员控制升力和速度来操纵飞机。例如,在平直飞行状态,以恒定高度巡航时,调整升力以匹配飞机速度或者巡航速度来保持高度,而当升力等于重力时就可以维持平衡状态。在着陆进近中,当飞行员希望以实用的慢速着陆时,增加升力到接近最大以维持升力等于飞机的重量是有必要的。

翼尖涡流

对机翼的作用力提供升力的同时也产生了诱导阻力。当机翼以正迎角飞行时,机翼的上下表面有压力差是确定的,上表面的压力比大气压力低,下表面压力等于或者大于大气压力。由于空气总是从高压区域向低压区域流动,阻力最小的路径是朝飞机的翼尖,从机翼下方来的空气顺机身翼展方向向外绕翼尖运动。这个气流导致在翼尖溢出,所以产生了称为涡流的漩涡。同时,机翼上表面的空气趋于流向机身和机翼的尾缘。这个气流在机翼尾缘的内侧形成一个类似的涡流,但是由于机身阻止了向内的流动,这个涡流不是很重要。从而,翼尖的气流方向偏差是最大的,在未受限制的侧面气流是最强的。气流在翼尖处向上弯曲,它和机翼的下洗气流结合形成了更快的旋转的尾部涡流。这些漩涡增加了阻力,因为能量消耗在产生紊流上。接着可以看到无论何时机翼产生升力,诱导阻力就会产生,翼尖涡流随之出现。

就像升力随迎角增加而增加,诱导也随之增加。这是因为迎角增加后,机翼上下表面的压力差更大,空气的侧向流动也就更强;进而,这导致了更强烈的涡流的形成,结果紊流更多,诱导阻力也更多。

翼尖涡流的强度或者力度直接的和飞机的重量成正比,和翼展及飞机速度成反比。较重和慢速的飞机,迎角越大,翼尖涡流越强。因此,飞机在飞行的起飞爬升和着陆阶段会产生最大强度的翼尖涡流。

地面效应

飞机在畅通的地面以稍微低于高空平飞要求的空速来飞行是可能的。这样的结果源于一种现象,甚至对一些有经验的飞行员来说,知道这个比理解它更重要。

当飞行的飞机离地面几英尺时,飞机周围的三个方向的气流模式开始发生改变,因为机翼周围气流的垂直分量受地面限制。这就改变了机翼的升流和翼尖涡流,如图3-7。这些由于地面而导致的基本影响称为“地面效应”。地面效应时由于飞机飞行时气流模式受地面(或者水面)的干扰导致的。

当尾部表面和机身的空气动力学特性因地面效应改变时,由于接近地面受到的主要影响是机翼的空气动力学特性的变化。当机翼遇到地面效应且维持在恒定的升力系数时,那么上升流和下洗流和翼尖涡流随之减少。

诱导阻力是支持飞机的机翼导致的,机翼通过加速空气向后来获得飞机的升力。机翼上表面压力的降低是升力的主要基础,这样说是对的,但是这只是推动空气向后的总效果的其中之一。下洗流越多,机翼推动空气向下的难度就越大。大迎角时,总的诱导阻力就大,在实际的飞行中就相应于较低的空速,以可以这么说,低速飞行时诱导阻力是主导地位。

然而,由于地面效应导致的翼尖涡流减少改变了翼展方向的升力分布,降低了诱导迎角和诱导阻力。所以,在地面效应中机翼只要较小的迎角就能产生相同的升力系数,或者如果维持迎角不变,将导致升力系数的增加。如图3-8

地面效应也会改变所需推力和速度的关系。由于诱导阻力在低速时占主导,因地面效应使诱导阻力降低,这样就导致了最重要的低速时所需推力的降低。

地面效应导致的诱导流降低使得诱导阻力有重大的减少,但是对寄生阻力无直接影响。诱导阻力减少的结果就是使得在低速飞行时所需要的推力也减少了。

由于升流,下洗流和翼尖涡流的改变,可能空速系统有定位(设备)误差,这和地面效应有关。大多数情况下,地面效应会导致静态源的局部压力增加,出现对空速和高度的偏低指示。因此,会要求飞机空降的指示空速低于正常要求的值。

为了使地面效应有较大的程度,机翼必须相当的接近地面。地面效应的直接结果之一就是诱导阻力在恒定升力系数处随机翼距地面的高度变化。当机翼的高度等于翼展时,诱导阻力只降低1.4%。然而,当机翼高度为四分之一翼展时,诱导阻力降低23.5%,机翼高度等于翼展十分之一时,诱导阻力降低47.6%。所以,只有机翼非常靠近地面时,诱导阻力才有很大的降低。因为这种变化,地面效应在起飞离地和着陆触地的一瞬间是最明显的。

在飞行的起飞阶段,地面效应引起一些重要的关系。飞机起飞后离开地面效应会遇到和着陆时进入地面效应相反的情况,例如飞机离开地面效应将会:

要求增加迎角来维持相同的升力系数

诱导阻力增加,所需要的推理也要增加

稳定性降低,机头在瞬间会向上翘

产生静态源压力的减少,指示空速增加

应当指出在获得建议着陆速度之前这些总效果可能会对着陆尝试危险。由于地面效应中阻力降低,飞机好像能在低于建议速度下正常起飞。但是,当飞机以不足的速度飞出地面效应时,

更大的诱导阻力可能会导致恰好临界的初始爬升性能。在,如大的总重量,高密度高度,高温的极端条件下,起飞时空速的不足可以使飞机飞起来,但是可能不足以飞出地面效应。这时,飞机可能在最初以不足的速度飞行,然后又下降回跑道。不要试图强制飞机以不足的速度飞起来是非常重要的;为提供充足的初始爬升性能建议起飞速度是非常必要的。因为这个原因,在收回起落架或者襟翼之前必须进入确定爬升状态。

在飞行的着陆阶段,也必须要理解和认识近地效应。如果飞机以恒定迎角被带进到地面效应,飞机升力系数会增加,所需要的推力会减少。因此,会出现“漂浮”效应。由于地面效应中阻力的降低和停车减速,拉平点的任何多余速度都会导致相当长的“漂浮”距离。当飞机接近触地点时,低于翼展高度时的地面效应是最容易发生的。在飞机接近地面的最后进近阶段,有必要降低动力配置或者降低所需的推力,这样可以让飞机在预期滑行轨迹上滑行。

飞机的轴向

飞行中无论什么时候飞机改变它的飞行姿态和位置,它都绕三个轴向的一个或者多个旋转,这些轴向是通过飞机重心的想象出来的线。飞机的轴向可以看成飞机可以绕这它转动的假想轴,非常象车轮旋转的那个轴。在三个轴的相交点,每一个轴都和其他两个轴成90度角。从飞机头部到尾部沿机身长度方向扩展的轴称为纵轴。从机翼到机翼的延伸轴称为横轴。垂直通过重心的轴叫垂直轴。图3-9

飞机关于其纵轴的运动类似于船从一边到一边的摇摆。事实上,描述飞机三个轴向运动的名字最初是航海术语。这三个术语被采纳到空气动力学术语就是因为飞机和航船之间运动的类似性。

根据对航海术语的采用,飞机纵轴固定后的运动称为“侧滚”,横轴固定时的运动叫“俯仰”;最后,飞机垂直轴固定后的运动叫“偏航”,就是飞机头水平的左右运动。

飞机的三个运动由三个控制面控制。侧滚由副翼控制,俯仰由升降舵控制,偏航由方向舵控制。对这些控制的使用在第四章解释-飞行控制。

运动和力臂

物理学研究表明如果一个物体可以自由旋转的话,将总是绕它的重心旋转。在空气动力学术语中,对飞机的趋向绕它的重心旋转的精确测量叫力矩。力矩是所施加的力和作用点距离的乘积。力臂是从参考点到作用力的距离。为计算飞机的重量和平衡,力矩用力臂距离乘以飞机的重量来表示,简单说是英寸磅(距离乘以重量,公制单位是牛顿米)。

飞机设计者把飞机的重心位置或前或后的定位在尽可能靠近平均动力弦的20%位置。如果推力线设计成水平的通过重心,这样当动力改变时也不会导致飞机俯仰,因此飞行中不管是有动力还是停机状态力臂都不会有差别。尽管设计者对阻力的位置可以有些控制,他们也不总是能够让合成阻力通过飞机的重心。不过,他们最能够控制的其中之一就是尾部的大小和位置。目标是让力矩(由于阻力,推力和升力产生)尽可能小;用适当的尾部位置作为任何飞行条件下的飞机提供纵向平衡的手段。

飞行时,除了通过改变迎角来控制升力中心外,飞行员没有对作用于飞机的力的位置作直接控制。然而,迎角的这个改变会立即的影响到其他力的改变。所以,飞行员不可能单独改变一个力的位置而不改变其他效果。例如,空速的改变伴随升力的改变,以及阻力的改变,还有尾部向上和向下的力也会改变。当象紊流和阵风这样的力作用于飞机时让飞机移动,飞行员通过提供反向的控制力来对抗这样的力。

某些飞机在载荷变化时引起重心位置的变化。配平设备用来抵消由燃油消耗,载荷或者乘客或货物的非载荷因素导致的力。升降舵配平片和可调节水平尾翼组成了为飞行员提供载荷配平的最常用设备。

在大飞机的大范围飞行平衡中,如果不提供配平的手段,那么飞行员必须施加的用于控制的力将会是过多的且使人容易疲劳。

设计特性

每一个飞过很多类型飞机的飞行员已经注意到操作是有些区别的,那就是对控制压力的抵抗和相应都有他们自己的方式。训练型飞机对控制有快速的相应,而运输型的飞机通常感觉控制繁重而且对控制压力的响应也更慢。通过考虑特定的稳定性和机动要求,这些特征可以设计到飞机中使特定用途的飞机容易实现。在接下来的讨论中,要总结一下更为重要的飞机稳定性方面;讨论稳定性是如何分析的;以及不同飞行条件下他们的关系。简而言之,稳定性,机动性和可控性的主要区别如下:

稳定性-这是飞机纠正那些可能改变它的平衡条件的内在品质,以及返回或继续在原始航迹上飞行的能力。这是一个飞机的主要设计特性。

机动性-这是飞机容易机动且承受机动引发的压力的能力。它受飞机的重量,惯量,大小,飞行控制的位置,结构强度,以及发动机等因素决定。这也是一个飞机的主要设计特性。可控性-这是飞机对飞行员控制的响应能力,特别考虑的是航迹和姿态。它是飞机对飞行员操作飞机时施加控制的响应特性,和稳定性特性无关。

稳定性的基本概念

飞机飞行的航迹和高度仅受飞机的空气动力学特性,推进系统和它的结构强度限制。这些限制表明了飞机的最大性能和机动性。如果飞机要提供最大效用,在这些限制的全部范围内必须是安全可控的,且不超出飞行员的强度和要求额外的飞行能力。如果飞机沿任意航迹笔直稳定的飞行,那么作用于飞机的力必定是静态平衡的。任何物体的平衡受到破坏后的反应和稳定性有关。有两种稳定性:静态的和动态的。先讨论静态的平衡,这里的讨论将用到下面的定义:

1) 平衡-所有作用于飞机的相反的力都是平衡的。(飞机处于稳定的不加速的飞行状态)

2) 静态稳定性-当平衡被破坏后飞机显示出的最初趋势。

3) 正静态稳定性-飞机平衡被破坏后返回到原来平衡状态的最初趋势。图3-10

4) 负静态稳定性-飞机平衡被破坏后持续偏离原来平衡状态的最初趋势。

5) 中性静态稳定性-飞机平衡被破坏后维持在一个新条件的最初趋势。

静态稳定性

飞行中飞机的稳定性比解释的要稍微复杂的多,因为飞机可以自由的向各个方向运动,且俯仰和侧滚以及方向都必须是可控的。设计飞机时,工程师必须在稳定性,机动性和可控性之间折中;因为飞机的三个轴向自由度使得问题变的更加复杂了。太高的稳定性对机动性有害,类似的,不足的稳定性对可控性也有害。在飞机设计中,这两者(稳定性和机动性)之间的折中是个关键。

动态稳定性

静态稳定性定义为飞机在平衡条件被破坏后显示出来的初始趋势。有时候,初始趋势和总体趋势不同或者相反,因此必须区别这两者。动态稳定性是飞机的平衡被打破后显示出来的总体趋势。图3-11的曲线显示了受控的功能随时间的变化。可以看出时间单位非常重要。如果一个周期或者一个起伏的时间单位超过10秒,这叫长周期振动(起伏运动),且容易被控制。在纵向长周期振动中,当空速增加或者降低时,迎角保持不变。对于某一角度,期望振动会收敛,但是不是必须的。起伏运动只能在静态稳定的飞机上测定,这对飞机的配平质量有很大的影响。如果一个周期或者一个起伏的时间单位小于一秒或者两秒,这称为短周期振动,如果不是不可能的话,飞行员通常是非常难以控制的。这是飞行员很容易增强它的一种振动类型。

中性或者发散的短期振动是危险的,如果振动不是快速阻尼的话,一般会导致结构化失效。短期振动影响飞机和控制面是类似的,它们表现为飞机的纵向摆动,或表现为控制面的振动或颤动。基本上,短期振动出现在迎角变化而空速不变时。控制面的短期振动一般是飞机的高频振动以至于飞机都没时间反应。逻辑上,联邦管制法规要求短期振动必须是大阻尼的(也就是短期振动立即消失)。飞机的适航性认证时的飞行测试就是为这个情况而执行的,方法是通过降低极大临界速度(也就是Vne, 不过速)时配平,侧滚或俯仰控制中的振动。测试中,飞行员拉下控制轮或下踏方向舵踏板压低,然后观察结果。

纵向稳定性(俯仰)

设计飞机时,为开发三个轴向期望的稳定性角度作了大量的努力。但是横轴的纵向稳定性被认为是最受不同飞行条件下特定变量的影响。纵向稳定性是使飞机绕横轴维持稳定的品质。它影响飞机的俯仰运动,即飞机头向上或向下的运动。纵向不稳定的飞机有一个逐渐爬升或者俯冲到非常极端状态的趋势,甚至是失速。因此,纵向不稳定的飞机变的难以飞行,有时还危险。

飞机的静态纵向稳定性或者不稳定性依赖于下面三个因素:

机翼对重心的位置

水平尾翼控制面对重心的位置

尾部控制面面积和大小

分析稳定性时,应该记得一个物体如果可以自由旋转的话,它总会绕它的重心旋转。

为获得静态纵向稳定性,机翼和尾部力矩的关系必须是这样的,如果力矩最初是平衡的,然后突然机头上翘,机翼力矩和尾部力矩将会改变以至于他们的力的总和将提供一个不平衡的但是恢复力矩,接着机头被再次向下拉。类似的,如果机头向下,结果力矩的改变使得机头向后。

升力中心,有时也叫压力中心,在大多数飞对称机翼中有一个趋势,即随着迎角的改变而改变它的前后位置。迎角增加时压力中心趋于向前移动,迎角减小时压力中心趋于向后移动。这就意味着机翼的迎角增加时,压力(升力)中心向前移动,趋于把机翼的前缘抬升的多一些。这个趋势给机翼带来了固有的不稳定特性。

图3-12所示的飞机处于平直飞行状态。线段CG-CL-T表示从重心CG到水平升降舵T点的飞机纵轴。CL点表示升力中心。

大多数飞机设计成机翼的升力中心CL在飞机的重心CG后面。这使得飞机出现“头重”现象,也要求水平升降舵有向下的力来维持飞机的平衡,以避免机头持续的向下俯。对“头重”的补偿是通过设置升降舵处于轻微的负迎角来实现的。这样就产生了保持尾部向下的力,来平衡很重的机头。就象线段CG-CL-T是水平的,CL点有向上的作用力,另外两个向下的力互相平衡,一个是作用在CG点的很大的力,另外一个是作用于T点大的小得多的力。应用简单的物理学原理就可以看到,如果CL点用铁条悬挂,而很大的重量挂在CG点,那么就会在T点产生维持水平平衡的向下作用力。

尽管平飞时水平升降舵可能是水平的,还是有来自机翼的向下气流。这个气流冲击升降舵的上表面产生向下的压力,在某一速度就足以保持飞机水平平衡。飞机飞的越快,向下的气流就越强,产生的作用于升降舵(T尾除外)的力也就越大,图3-13。

在固定位置的水平升降舵飞机中,飞机制造商设置一个升降舵迎角,以设计巡航速度和功率设置飞行时能够提供最好稳定性。图3-14

如果飞机速度降低,机翼上气流的速度也会降低。机翼上气流速度降低的结果是下洗流也降低,导致升降舵上向下的作用力变小。接着,“头重”特性加重,使得机头更加的向下俯。这样飞机就处于低头姿态,减少机翼迎角和阻力可以让空速增加,当飞机继续处于低头姿态时,它的速度增加,升降舵上向下的力再次增加。进而,尾部再次被向下压,机头抬升进入爬升姿态。

当爬升继续时,空速又降低,导致尾部的向下力又降低,直到机头更低。但是,因为飞机是动态稳定的,这回机头的降低就不会向前面降低的那么厉害。这次飞机将获得足够的速度,更加逐渐的冲到另一个爬升状态,但是爬升不会象前一次那么陡峭。

经过几次减小的起伏后,起伏中机头时而抬升时而降低,飞机最终会在一个速度上平稳下来,这个速度会让尾部向下的力恰好平衡机头向下俯冲的趋势。当获得这样的条件后,飞机会再次平衡的飞行,只要高度和空速不变就会持续稳定的飞行。

当关闭节流阀时会注意到一个类似的效果。机翼的下洗流降低,图3-12中T点作用力不足以保持升降舵向下。这就好像T点的作用力让机头的重力下拉机头一样。当然这是想要的特性,因为飞机固有地试图再次获得空速和再次建立适当的平衡。

动力或者推力也有不稳定效果,增加的动力会趋于使机头抬升。飞机设计者可以通过建立一个“高推力线”来抵消这个效果,高推力线中推力从重心上方通过。图3-15和图3-16。这种情况下,当动力或者推力增加时,就会产生一个抵抗尾部向下载荷的力矩。另一方面,一个恰好的“低推力线”会趋于增加水平尾部控制面的抬升机头效果。

那么就可以得出结论,随着重心向升力中心的前面移动,尾部向下的空气动力,结果是飞机总是试图恢复到安全飞机姿态。

纵向稳定性的简单演示如下:把飞机配平到不用控制的平飞状态。然后快速的控制飞机头轻微的向下压。如果在短暂的时间内,机头抬升到原来的位置然后停止,飞机就是静态稳定的。一般的,机头会通过原来的位置,连续的慢速俯仰起伏随之而来。如果起伏逐渐停止,即飞机有正的稳定性;如果继续不稳定,那么飞机就有中性稳定性;如果起伏增加,那么飞机是不稳定的。

横向稳定性(侧滚)

沿机头到尾部的纵轴的稳定性称为飞机的横向稳定性。当一边的机翼比另一边的机翼低时,这可以帮助稳定侧面倾斜或者侧滚效果。有四个主要的因素使飞机保持横向稳定:上反角,倾覆效应,后掠角和重力分布。

引起横向稳定性的最通常步骤是构造机翼有1-3度的上反角。换句话说,飞机每一边的机翼和机身形成一个窄的V字型,或者叫上反角。它是通过位于平行于横轴的直线之上的机翼形成的角度来度量。

当然,侧滚稳定性的基础是机翼产生力的横向平衡。升力的任何不平衡都导致飞机纵轴侧滚的趋势。也就是说,上反角引起升力的平衡,这些升力由飞机纵轴两边的机翼产生。

如果短暂的阵风使飞机的一个机翼上升,另外一个机翼较低,飞机就会倾斜。当飞机不是转弯的倾斜时,它会侧滑或者超机翼较低的侧面下滑。图3-17

因为机翼有上反角,空气冲击较低一侧的机翼的迎角比较高一侧的机翼大得多。这样,较低一侧的机翼的升力就增加,高一侧的机翼升力就降低,飞机趋于恢复到最初的横向平衡状态(机翼水平)-即两个机翼的迎角和升力又一次相等。

上反角的效果是产生一个侧滚力矩,在发生侧滑时这个力矩趋于使飞机恢复到横向平衡飞行条件。恢复力会把较低一侧的机翼向上移动很多,导致另一侧的机翼向下。如果这样的话,这个过程会重复下去,每一次横向摆动幅度降低,直到最终达到了机翼水平飞行的平衡。

相反地,过大的上反角对横向机动特性是不利的。飞机会横向非常稳定,以至于它会阻抗任何有意识的侧滚运动。出于这个原因,要求快速侧滚或者倾斜特性的飞机通常其上反角比那些较少机动性设计的飞机上反角小。

由于后掠角影响的本性,它对上反角效果的影响是重要的。在侧滑时,风中的机翼后掠角实际减小,而外侧的机翼后掠角实际增大。掠翼只对垂直于机翼前缘的风分量敏感。从而,如果机翼工作在正升力系数,风中的机翼升力增加,风外的机翼升力降低。如此,后掠翼会促进正上反角效果,而前掠翼会促进负上反角效果。

飞行中,机身的侧面区域和垂直尾翼对气流的反作用非常类似于船的龙骨。它对飞机的纵轴施加一个稳定的横向影响。

建造如此横向稳定的飞机,以至于龙骨区域的绝大部分在重心的后面上方。图3-18

这样,当飞机朝一边侧滑时,飞机的重量和反抗龙骨区域上部的气流压力(都作用于重心)的合力趋于使飞机侧滚回到机翼水平的飞行状态中。

垂直稳定性(偏航)

飞机的垂直轴(侧向力矩)稳定性称为偏航或者方向稳定性。偏航或者方向稳定性在飞机设计中是更加容易实现的稳定性。垂直尾翼的面积和重心之后的侧面起主要的作用,它使得飞机就向熟悉的风向标或者箭一样使机头指向相对风方向。

在考查风向标时,可以看到如果支点的前后迎风的面积大小是相同的,那么结果是前后的力平衡,指向运动很小或者基本没有。所以,就必须让支点后面的面积比前面的面积大得多。在飞机中也类似,设计者必须确保正的方向稳定性,方法是适重心之后的侧面积比重心之前的侧面积大得多。如图3-19

为了在机身之外提供更多得正稳定性,增加了一个垂直尾翼。垂直尾翼得作用类似于箭上维持直飞的羽毛。和风向标和箭一样,垂直尾翼的位置越靠后,面积越大,飞机的方向稳定性就越强。

如果飞机以直线飞行,一个侧向阵风就会让飞机绕垂直轴发生轻微的转动(假定是右侧),那么运动会被垂直尾翼阻止并停止,因为当飞机往右旋转时,空气会以一个角度冲击垂直尾翼的左侧。在垂直尾翼的左侧就产生一个压力,它阻止飞机向右转动,使偏航慢慢的降低下来。在这样做时,飞机向相对风方向旋转有点象风向标。飞机航迹方向的最初变化通常在飞机机头朝向的变化之后。因此,当飞机向右稍微偏航后,有一个短暂的时间,这段时间内飞机继续沿原来的航迹方向移动,但是它的纵轴稍微指向右侧。

然后飞机有短暂的侧滑,在这个时刻(因为假设尽管偏航运动停止,垂直尾翼左侧的额外压力仍然存在)飞机必定有朝左侧回转的趋势。即,垂直尾翼导致了一个短暂的恢复趋势。

这个恢复趋势反展的相对较慢,当飞机停止侧滑时它也停止。在停止后,飞机就在稍微不同于原来方向的新方向上飞行。也就是说,它不会自己协调返回到原来的航向;飞行员必须重新确立最初的航向。

方向稳定性的一个小的改进可以通过后掠角实现。机翼设计中使用后略角主要是为了延迟高速飞行中压缩性的开始。在较轻和慢速的飞机上,后掠角对压力中心和重心建立正确的关系有帮助。压力中心在中心之后这样制造的飞机具备纵向稳定性。

空气动力学基础及飞行原理

M8空气动力学基础及飞行原理 1、绝对温度的零度是 A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为 A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是? A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是 A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是 A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度 A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强 A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持

不变。 D、随高度增加可能增加,也可能减小。 9、空气的密度 A、与压力成正比。 B、与压力成反比。 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: A、空气清洁度 B、速度剃度 C、空气温度 D、相对湿度 11、对于空气密度如下说法正确的是 A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大 A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力 A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力 A、与空气密度和摄氏温度乘积成正比

飞机的空气动力学.

低速、亚音速飞机的空气动力 环境c091 王亚飞 飞机上的空气动力学和现在的流体力学有着相同的特点,研究空气动力学可以间接的学习流体力学,而空气动学上的最突出的应用就是飞机,所以现在着重讲述下飞机的空气学特点, 翼型的升力和阻力 飞机之所以能在空中飞行,最基本的事实是,有一股力量克服了它的重量把它托举在空中。而这种力量主要是靠飞机的机翼与空气的相对运动产生的。 迎角的概念飞行速度(飞机质心相对于未受飞机流场影响的空气的速度)在飞机参考平面上的投影与某一固定基准线(一般取机翼翼根弦线或机身轴线)之间的夹角,称为迎角(图2.3.5(a)),用α表示。当飞行速度沿机体坐标系(见2.4.1节)竖轴的分量为正时,迎角为正。 如果按照相对气流(未受飞机流场影响的气流)方向,则相对气流速度(未受飞机流场影响的空气相对于飞机质心的运动速度)在飞机参考平面上的投影与某一固定基准线之间的夹角就是迎角,且当相对速度沿机体坐标系竖轴的分量为负时,迎角为正(图2.3.5(b))。

图2.3.5 迎角图2.3.6小迎角α下翼剖面上的空气动力 1—压力中心 2—前缘 3—后缘 4—翼弦 升力和阻力的产生根据我们已经讨论过的运动的转换原理,可以认为在空中飞行的飞机是不动的,而空气以同样的速度流过飞机。如图2.3.6所示,当气流流过翼型时,由于翼型的上表面凸些,这里的流线变密,流管变细,相反翼型的下表面平坦些,这里的流线变化不大(与远前方流线相比)。根据连续性定理和伯努利定理可知,在翼型的上表面,由于流管变细,即流管截面积减小,气流速度增大,故压强减小;而翼型的下表面,由于流管变化不大使压强基本不变。这样,翼型上下表面产生了压强差,形成了总空气动力R,R的方向向后向上。根据它们实际所起的作用,可把R分成两个分力:一个与气流速度v垂直,起支托飞机重量的作用,就是升力L;另一个与流速v平行,起阻碍飞机前进的作用,就是阻力D。此时产生的阻力除了摩擦阻力外,还有一部分是由于翼型前后压强不等引起的,称之为压差阻力。总空气动力R与翼弦的交点叫做压力中心(见图 2.3.6)。好像整个空气动力都集中在这一点上,作用在翼型上。 根据翼型上下表面各处的压强,可以绘制出翼型的压强分布图(压力分布图),如图 2.3.7(a)所示。图中自表面向外指的箭头,代表吸力;指向表面的箭头,代表压力。箭头都与表面垂直,其长短表示负压(与吸力对应)或正压(与压力对应)的大小。由图可看出,上表面的吸力占升力的大部分。靠近前缘处稀薄度最大,即这里的吸力最大。

空气动力学基本概念

第一章 一、大气的物理参数 1、大气的(7个)物理参数的概念 2、理想流体的概念 3、流体粘性随温度变化的规律 4、大气密度随高度变化规律 5、大气压力随高度变化规律 6、影响音速大小的主要因素 二、大气的构造 1、大气的构造(根据热状态的特征) 2、对流层的位置和特点 3、平流层的位置和特点 三、国际标准大气(ISA) 1、国际标准大气(ISA)的概念和基本内容 四、气象对飞行活动的影响 1、阵风分类对飞机飞行的影响(垂直阵风和水平阵风*) 2、什么是稳定风场? 3、低空风切变的概念和对飞行的影响 五、大气状况对飞机机体腐蚀的影响 1、大气湿度对机体有什么影响? 2、临界相对湿度值的概念 3、大气的温度和温差对机体的影响 第二章 1、相对运动原理 2、连续性假设 3、流场、定常流和非定常流 4、流线、流线谱、流管 5、体积流量、质量流量的概念和计算公式。 二、流体流动的基本规律 1、连续方程的含义和几种表达式(注意适用条件) 2、连续方程的结论:对于低速、不可压缩的定常流动,流管变细,流线变密,流速变快;流管变粗,流线变疏,流速变慢。 3、伯努利方程的含义和表达式 4、动压、静压和总压 5、伯努利方程的结论:对于不可压缩的定常流动,流速小的地方,压力大;而流速大的地方压力小。(这里的压力是指静压) 重点伯努利方程的适用条件:1)定常流动。2)研究的是在同一条流线上,或同一条流管上的不同截面。3)流动的空气与外界没有能量交换,即空气是绝热的。4)空气没有粘性,不可压缩——理想流体。 三、机体几何外形和参数 1、什么是机翼翼型; 2、翼型的主要几何参数; 3、翼型的几个基本特征参数 4、表示机翼平面形状的参数(6个) 5、机翼相对机身的角度(3个) 6、表示机身几何形状的参数四、作用在飞机上的空气动力 1、什么是空气动力? 2、升力和阻力的概念 3、应用连续方程和伯努利方程解释机翼产生升力的原理 4、迎角的概念 5、低速飞行中飞机上的废阻力的种类、产生的原因和减少的方法; 6、诱导阻力的概念和产生的原因和减少的方法; 7、附面层的概念、分类和比较;附面层分离的原因 8、低速飞行时,不同速度下两类阻力的比较 9、升力与阻力的计算和影响因素 10、大气密度减小对飞行的影响 11、升力系数和升力系数曲线(会画出升力系数曲线、掌握升力随迎角的变化关系,零升力迎角和失速迎角的概念) 12、阻力系数和阻力系数曲线 13、掌握升阻比的概念 14、改变迎角引起的变化(升力、阻力、机翼的压力中心、失速等) 15、飞机大迎角失速和大迎角失速时的速度 16、机翼的压力中心和焦点概念和区别 六、高速飞行的一些特点 1、什么是空气的可压缩性? 2、飞行马赫数的含义 3、流速、空气密度、流管截面积之间关系 4、对于“超音速流通过流管扩张来加速”的理解 5、小扰动在空气中的传播及其传播速度 6、什么是激波?激波的分类 7、气流通过激波后参数的变化 8、什么是波阻 9、什么是膨胀波?气流通过膨胀波后参数的变化 10、临界马赫数和临界速度的概念 11、激波失速和大迎角失速的区别 12、激波分离 13、亚音速、跨音速和超音速飞行的划分* 14、采用后掠机翼的优缺点比较 第三章 一、飞机重心、机体坐标和飞机在空中运动的自由度 1、机体坐标系的建立 2、飞机在空中运动的6个自由度 二、飞行时作用在飞机上的外载荷及其平衡方程 外载荷组成平衡力系的2个条件*: ①、外载荷的合力等于零(外载荷在三个坐标轴投影之和分别等于零)∑x = 0 ∑Y = 0 ∑Z = 0 ②、外载荷的合力矩等于零(外载荷对三个坐标轴力矩之和分别等于零) ∑Mx=0 ∑My= 0 ∑Mz= 0 1、什么是定常飞行和非定常飞行? 2、定常飞行时,作用在飞机上的载荷平衡条件和平衡方程组

空气动力学基础及飞行原理笔试题

空气动力学基础及飞行原理笔试题 1绝对温度的零度是: C A -273℉ B -273K C -273℃ D 32℉ 2 空气的组成为 C A 78%氮,20%氢和2%其他气体 B 90%氧,6%氮和4%其他气体 C78%氮,21%氧和1%其他气体 D 21%氮,78%氧和1%其他气体 3 流体的粘性系数与温度之间的关系是 B A液体的粘性系数随温度的升高而增大。 B气体的粘性系数随温度的升高而增大。 C液体的粘性系数与温度无关。 D气体的粘性系数随温度的升高而降低。 4 在大气层内,大气密度: C A在同温层内随高度增加保持不变。 B随高度增加而增加。 C随高度增加而减小。 D随高度增加可能增加,也可能减小。 5 在大气层内,大气压强: B

A随高度增加而增加。 B随高度增加而减小。 C在同温层内随高度增加保持不变。 C随高度增加可能增加,也可能减小。 6 增出影响空气粘性力的主要因素 B C A空气清洁度 B速度梯度 C空气温度 D相对湿度 7 对于空气密度如下说法正确的是 B A空气密度正比于压力和绝对温度 B空气密度正比于压力,反比于绝对温度C空气密度反比于压力,正比于绝对温度 D空气密度反比于压力和绝对温度 8 “对于音速.如下说法正确的是” C A只要空气密度大,音速就大” B“只要空气压力大,音速就大“ C”只要空气温度高.音速就大” D“只要空气密度小.音速就大” 9 假设其他条件不变,空气湿度大: B A空气密度大,起飞滑跑距离长B空气密度小,起飞滑跑距离长 C空气密度大,起飞滑跑距离短 D空气密度小,起飞滑跑距离短 10一定体积的容器中。空气压力 D A与空气密度和空气温度乘积成正比 B与空气密度和空气温度乘积成反比

空气动力学原理.

空气动力学原理 空气动力学在科学的范畴里是一门艰深的度量科学,一辆汽车在行使时,会对相对静止的空气造成不可避免的冲击,空气会因此向四周流动,而蹿入车底的气流便会被暂时困于车底的各个机械部件之中,空气会被行使中的汽车拉动,所以当一辆汽车飞驰而过之后,地上的纸张和树叶会被卷起。此外,车底的气流会对车头和引擎舱内产生一股浮升力,削弱车轮对地面的下压力,影响汽车的操控表现。 另外,汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力,而当汽车高速行使时,一部分动力也会被用做克服空气的阻力。所以,空气动力学对于汽车设计的意义不仅仅在于改善汽车的操控性,同时也是降低油耗的一个窍门。 对付浮升力的方法 对付浮升力的方法,其一可以在车底使用扰流板。不过,今天已经很少有量产型汽车使用这项装置了,其主要原因是因为研发和制造的费用实在太过高昂。在近期的量产车中只有FERRARI 360M 、LOTUS ESPRIT 、NISSAN SKYLINE GT-R还使用这样的装置。 另一个主流的做法是在车头下方加装一个坚固而比车头略长的阻流器。它可以将气流引导至引擎盖上,或者穿越水箱格栅和流过车身。至于车尾部分,其课题主要是如何令气流顺畅的流过车身,车尾的气流也要尽量保持整齐。 如果在汽车行驶时,流过车体的气流可以紧贴在车体轮廓之上,我们称之为A TTECHED 或者LAMINAR(即所谓的流线型)。而水滴的形状就是现今我们所知的最为流线的形状了。不过并非汽车非要设计成水滴的形状才能达到最好的LAMINAR,其实传统的汽车形态也可以达到很好的LAMIAR的效果。常用的方法就是将后挡风玻璃的倾斜角控制在25度之内。FERRARI 360M和丰田的SUPRA就是有此特点的双门轿跑车。 其实仔细观察这类轿跑车的侧面,就不难发现从车头至车尾的线条会朝着车顶向上呈弧形,而车底则十分的平坦,其实这个形状类似机翼截面的形状。当气流流过这个机翼形状的物体时,从车体上方流过的气体一定较从车体下方流过的快,如此一来便会产生一股浮升力。随着速度的升高,下压力的损失会逐渐加大。虽然车体上下方的压力差有可能只有一点点,但是由于车体上下的面积较大,微小的压力差便会造成明显的抓着力分别。一般而言,车尾更容易受到浮升力的影响,而车头部分也会因此造成操控稳定性的问题。 传统的房车、旅行车和掀背车这类后挡风玻璃较垂直的汽车,浮升力对它们的影响会较为轻微,因为气流经过垂直的后窗后就已经散落,形成所谓的乱流效果,浮升力因此下降,但是这些乱流也正是气流拉力的来源。有些研究指出像GOLF之类的两厢式掀背车,如车顶和尾窗的夹角在30度之内,它所造成的气流拉力会较超过30度的设计更低。所以有些人就会想当然的认为只要将后窗的和车顶的夹角控制在28至32度之间,就能同时兼顾浮升力和空气拉力的问题。其实问题并没有那么简单,在这个角度范围里气流既不能紧贴在车体上也不足以造成乱流,如此一来将很难预计空气的流动情况。因为汽车在行驶时并非在一个水平面上行驶,随着悬挂系统的上下运动,其实汽车的离地距离是一个变量,而气流在流过车体上下所造成的压力差也会随时改变,同时在车辆过弯时车尾左右的气流动态也会对车尾的

空气动力学基础及飞行原理题库

《空气动力学基础及飞行原理》 1、绝对温度的零度是(C) A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为(C) A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是?(B) A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括(C) A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是(A) A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是(D) A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度(C) A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强(B) A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持不变。 D、随高度增加可能增加,也可能减小。 9、空气的密度(A) A、与压力成正比 B、与压力成反比 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: (BC) A、空气清洁度B速度剃度C空气温度D、相对湿度 11、对于空气密度如下说法正确的是(B) A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: (C) A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大(B) A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力(D) A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力(D) A、与空气密度和摄氏温度乘积成正比 B、与空气密度和华氏温度乘积成反比 C、与空气密度和空气摄氏温度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 16、对于露点温度如下说法正确的是: (BC) A、温度升高,露点温度也升高 B、相对湿度达到100%时的温度是露点温度 C、露点温度下降,绝对湿度下降 D、露点温度下降,绝对湿度升高

空气动力学基础知识及飞行基础原理

-/ M8空气动力学基础及飞行原理 1、绝对温度的零度是 A、-273℉ B、-273K C、-273℃ D、32℉ 2、空气的组成为 A、78%氮,20%氢和2%其他气体 B、90%氧,6%氮和4%其他气体 C、78%氮,21%氧和1%其他气体 D、21%氮,78%氧和1%其他气体 3、流体的粘性系数与温度之间的关系是? A、液体的粘性系数随温度的升高而增大。 B、气体的粘性系数随温度的升高而增大。 C、液体的粘性系数与温度无关。 D、气体的粘性系数随温度的升高而降低。 4、空气的物理性质主要包括 A、空气的粘性 B、空气的压缩性 C、空气的粘性和压缩性 D、空气的可朔性 5、下列不是影响空气粘性的因素是 A、空气的流动位置 B、气流的流速 C、空气的粘性系数 D、与空气的接触面积 6、气体的压力

、密度<ρ>、温度三者之间的变化关系是 A、ρ=PRT B、T=PRρ C、P=Rρ/ T D、P=RρT 7、在大气层内,大气密度 A、在同温层内随高度增加保持不变。 B、随高度增加而增加。 C、随高度增加而减小。 D、随高度增加可能增加,也可能减小。 8、在大气层内,大气压强 A、随高度增加而增加。 B、随高度增加而减小。 C、在同温层内随高度增加保持不变。

-/ D、随高度增加可能增加,也可能减小。 9、空气的密度 A、与压力成正比。 B、与压力成反比。 C、与压力无关。 D、与温度成正比。 10、影响空气粘性力的主要因素: A、空气清洁度 B、速度剃度 C、空气温度 D、相对湿度 11、对于空气密度如下说法正确的是 A、空气密度正比于压力和绝对温度 B、空气密度正比于压力,反比于绝对温度 C、空气密度反比于压力,正比于绝对温度 D、空气密度反比于压力和绝对温度 12、对于音速.如下说法正确的是: A、只要空气密度大,音速就大 B、只要空气压力大,音速就大 C、只要空气温度高.音速就大 D、只要空气密度小.音速就大 13、假设其他条件不变,空气湿度大 A、空气密度大,起飞滑跑距离长 B、空气密度小,起飞滑跑距离长 C、空气密度大,起飞滑跑距离短 D、空气密度小,起飞滑跑距离短 14、一定体积的容器中,空气压力 A、与空气密度和空气温度乘积成正比 B、与空气密度和空气温度乘积成反比 C、与空气密度和空气绝对湿度乘积成反比 D、与空气密度和空气绝对温度乘积成正比 15、一定体积的容器中.空气压力 A、与空气密度和摄氏温度乘积成正比 B、与空气密度和华氏温度乘积成反比 C、与空气密度和空气摄氏温度

空气动力学原理(经典)

空气动力学原理(经典)
空气动力学原理 空气动力学在科学的范畴里是一门艰深的度量科学, 一辆汽车在行使时, 会 对相 对静止的空气造成不可避免的冲击, 空气会因此向四周流动, 而蹿入车底的 气流便会 被暂时困于车底的各个机械部件之中, 空气会被行使中的汽车拉动, 所 以当一辆汽车 飞驰而过之后, 地上的纸张和树叶会被卷起。 此外, 车底的气流会 对车头和引擎舱 内产生一股 浮升力 , 削弱车轮对地面的下压力, 影响汽车的操控 表现。b5E2RGbCAP 另外, 汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力, 而当汽 车高 速行使时, 一部分动力也会被用做克服空气的阻力。 所以, 空气动力学对于 汽车设 计的意义不仅仅在于改善汽车的 操控性 ,同时也是降低油耗的一个窍门。 对付浮升 力的方法 p1EanqFDPw 对付浮升力的方法,其一可以在车底使用扰流板。不过,今天已经很少有 量产型汽 车使用这项装置了,其主要原因是因为研发和制造的费用实在太过高 昂。在近期的量 产车中只有 FERRARI 360M 、 LOTUS ESPRIT 、 NISSAN SKYLINE GT -R 还使用这样的 装置。DXDiTa9E3d 另一个主流的做法是在车头下方加装一个坚固而比车头略长的阻流器。 它可 以 将气流引导至引擎盖上, 或者穿越水箱格栅和流过车身。 至于车尾部分, 其课 题主 要是如何令气流顺畅的流过车身,车尾的气流也要尽量保持整齐。RTCrpUDGiT 如果在汽车行驶时, 流过车体的气流可以紧贴在车体轮廓之上, 我们称之为 ATTECHED 或者 LAMINAR (即所谓的流线型) 。 而水滴的形状就是现今我们所知的 最 为流线的形状了。不过并非汽车非要设计成水滴的形状才能达到最好的 LAMINAR , 其
1/9

Para 1 基本原理 (1)

Para 1 基本原理Notes: Para. 1.appreciate: understand fully,评价,估价,理解 unsuitability :不适合,不相称,不匹配 present: submit, offer, give,提出,设置 2.patent: n,专利v,取得…专利 athodyd: 航空热力管道,冲压式喷气发动机 ram jet: 冲压喷气发动机 3.turbo-propeller engine: 涡轮螺桨发动机 viscount aircraft: 子爵式飞机 twin-spool: 双转子 triple-spool: 三转子 by-pass: 双涵式,内外涵 ducted fan: 管道风扇式,涵道风扇式 4.piston engine: 活塞发动机 solely:单独地,独自地,只是 5.pulse jet: 脉动式发动机 turbo/ram jet: 涡轮/冲压喷气发动机 6.momentum: 动量 issue:流出,放出 impart…to…:give,给予 jet: 喷嘴 8.sprinkler: 喷水器 by virtue of: 凭借,利用 firefighting: 消防 hose: 软管 carnival: 狂欢节 9.resultant: 合成的,总的 10.convert…into…:change…into, 11.convergent: 收敛的 divergent: 发散的 target vehicle: 耙机 12.intermittent: 间歇的,周期性的 static:静止的,静态的 dynamic:动力的,动态的 aero-:空气的 aerodynamic:空气动力学的 robust:坚固的,强壮的 spring-loaded:绷有弹簧的 (图1-7):shutter valve:薄片式,快门式阀门,节气活门depression:下降 rotor:旋翼

微型飞行器空气动力学研究

2005年9月系统工程理论与实践第9期 文章编号:100026788(2005)0920137205 微型飞行器空气动力学研究 李占科,宋笔锋,张亚锋 (西北工业大学航空学院,陕西西安710072) 摘要: 围绕与微型飞行器相关的低雷诺数空气动力学问题,进行了低雷诺数翼型气动特性的数值分析 研究、低马赫数低雷诺数流场数值计算方法研究、考虑扑翼结构弹性变形的气动特性估算方法研究、微 型飞行器气动特性估算的非定常涡格法研究和微型飞行器的风洞试验研究,取得的研究成果对微型飞 行器的发展具有重要的参考价值和指导意义. 关键词: 微型飞行器;雷诺数;扑翼;风洞试验 中图分类号: V27912 文献标识码: A Aerodynamics Research on M icro Air Vehicles LI Zhan2ke,S ONG Bi2feng,ZHANG Y a2feng (School of Aeronautics,N orthwestern P olytechnical University,X i’an710072,China) Abstract: In the paper,Based on the low Reynolds number aerodynamics of the micro air vehicles(M AVs),s ome researches were done.such as aerodynamics characteristic numerical analysis research on the air foil at low Reynolds numbers,numerical calculation method of low Mach low Reynolds numbers fluid field,estimation method research on aerodynamic characteristic of the aeroelastic flapping wing,unsteady v ortex method of aerodynamics characteristic estimation and wind tunnel test of M AVs.The results of this paper have im portant reference value and instructive meaning to the development of M AVs. K ey w ords: micro air vehicles(M AVs);Reynolds number;flapping wing;wind tunnel test 1 引言 近年来,微型飞行器作为一种新型的航空飞行器,在国内外形成了新的研究热潮.低速和小尺寸共同决定了微型飞行器的飞行雷诺数很低(105左右),这远低于传统飞行器(包括普通的无人驾驶飞机)的飞行雷诺数范围(106~108以上).微型飞行器必须在低雷诺数条件下仍能保持良好的气动性能,而这方面的研究目前尚处在探索阶段.本文主要围绕与微型飞行器有关的低雷诺数空气动力学问题,进行了数值计算和风洞试验等方面的研究,取得了具有一定参考价值的研究成果. 2 微型飞行器空气动力学研究 211 低雷诺数翼型气动特性的数值分析研究 微型飞行器外形尺寸小,速度低,基于微型飞行器尺寸的雷诺数也比较小,粘性效应相对强烈,流动易分离,准确求解这种低雷诺数的流场对湍流模型乃至整个数学模型都是一个极大的挑战.本研究针对低雷诺数问题,利用求解雷诺平均的NS方程,数值模拟了绕翼型的低雷诺数流动,分析了与低雷诺数流动有关的不稳定性.研究表明,分离流动都是不稳定的,会产生周期性的脱出涡.结合绕翼型的低雷诺数流动,对采用的计算模型进行了以下研究: 1)FNS方程与T LNS方程数值准确性的对比研究 分别采用FNS方程和T LNS方程计算了在条件:Ma=012,雷诺数Re=110×105,攻角α=1°时绕 收稿日期:2003207207 资助项目:总装气动预研项目(413130401)及国防基础科研项目(J1500C001)联合资助 作者简介:李占科(1973-),男,陕西岐山人,西北工业大学飞机系博士,主要从事与微型飞行器有关的研究.

空气动力学

基于空气动力学的车身设计方法 14车辆卓越雷方龙1408032214 现如今工业技术急速进步,为汽车工业发展创造了良好的契机,汽车变得越来越普及、越来越高速,由此车身空气动力学曲线问题得到诸多研究人员的热点关注。 众所周知,车速越快阻力越大,空气阻力与汽车速度的平方成正比。如果空气阻力占汽车行驶阻力的比率很大,会增加汽车燃油消耗量或严重影响汽车的动力性能。据测试,一辆以100km/h速度行驶的汽车,发动机输出功率的80%将被用来克服空气阻力,减少空气阻力,就能有效地改善汽车的行驶经济性。如图1为空气流动对汽车的各方面影响。 图1 自卡尔·本次在1886年发明生产出世界上第一辆汽车起,汽车已有了百年的发展历史。从汽车造型角度而言,自最初的马车型汽车(无空气动力学阶段),到现如今的复合型汽车(空气动力学高度化阶段),车身空气动力学曲线发展收获了显著的成效[1]。车身空气动力学一方面重要影响着汽车的各式各样关键性能,好比动力性能、安全性能、环保性能以及经济性能等,另一方面也重要影响着汽车的外观转变及审美发展潮流。随着社会经济发展,人们生活水平日益改善,人们对于出行必备交通工具汽车的性能要求愈来愈高,汽车生产商对于车辆的气动特征也越来越关注,气动性能的好坏以转变成汽车行业竞争的关键因素。 汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响,其中纵向空气力量是最大的空气阻力,大约占整体空气阻力的80%以上。

一、在研究汽车空气动力学的过程中的三种方法。 (1)、理论研究方法理论研究方法通过抓住所分析问题的主要影响因素,抽象出合理的简化理论模型,并根据总结出来的相关物理定律和有关介质性质的试验公式来建立描述介质运动规律的积分或微分方程。然后利用各种数学工具及相应的初始、边界条件解出方程组,通过对解分析来揭示各种物理量的变化规律,包括将它与实验或观察资料对照,确定解的准确度和适用范围。 (2)、数值计算研究方法由于数学发展水平的局限,理论研究只能建立较为简单的近似模型,无法完全满足研究更复杂更符合实际的气流的要求。于是近年来出现了依托快速电子计算机进行有效数值计算的方法CFD,其中包括有限元法、有限差分法等,它属于汽车计算机辅助空气动力学CAA的设计范畴,并已成为与理论分析和实验并列或具有同等重要性的研究方法。其优点是能够用来预测或解决一些理论及实验无法处理的复杂流动问题,取代部分实验环节,省时省工。但它要求事前对问题的物理特性有足够的理解,提炼出较精确的数学方程及相应的初始、边界条件等。但这些都离不开试验和理论方法的支持,并且数值方法通常无法直接反映同类问题中有普遍指导意义的结论或规律。 (3)、试验研究方法试验研究方法在空气动力学研究中占有重要地位,如风洞试验法、道路试验法。它使人们能在与所研究问题相同或相近条件下进行观测,提供建立运动规律及理论模型的依据,检验理论或计算结果的准确性、可靠性和适用范围,其作用是不可替代的。但试验方法受限于试验手段、设备和经费等物质条件,甚至有些问题尚无法在实验室中进行研究。 理论、数值计算和试验三种方法相互促进,彼此影响,取长补短从而推动汽车空气动力学的不断发展。 二、轿车外形设计的两种方法 (1)、局部最优化方法。基本思路是在满足功能、工艺学、人机工程学、安全法规以及美学造型等方面的要求下设计出汽车车身造型,然后再进行空气设计程序。此方法的优点是:操作简单,在流线型较差的车上有较好的效果。通过对原始模型仿真,从结果中得出某细节修改的模型,再重新进行仿真分析。像这样循环反复,最终达到自己预期的目标。这种方法在现实设计中运用广泛。 (2)、整体最优化方法。整体最优化是基于空气动力学原理,在汽车造型设计初期获得极佳的气动特性的理想外形,接着再根据功能结构需求,调整集合的局部外形,使其满足人机工程学、国家安全法规等各个必要因素的汽车[1]。所以,对于这种汽车的空气动力学设

纸飞机地空气动力学

纸飞机的空气动力学 作者:Ken Blac…文章来源:https://www.sodocs.net/doc/8d15993310.html,点击数:5666 更新时间:2007-2-4 4:41:01 如果图片太小,你可以在图片上面滚动鼠标滑轮来放大图片观察,也可以在图片上单击右键选择〔图片另存为〕保存图片到你的电脑上面再进行查看。 1.介绍 这里打算介绍关于纸飞机的空气动力学知识。如果你想全面了解为什么飞机能飞行,为什么有时坠毁,可以参阅我的《世界记录纸飞机》和《孩童纸飞机》中的任何一本书。本来打算在这里也用一个章节来写一些这方面的知识,但限于篇幅,不能写了。希望这些内容不会过于专业性,其中一些细节可能比较复杂,但大多数原则是很简单明了的。我的目标是高中生能理解大部分内容。我希望能在不久的将来在我的网站上放一个全面的空气动力学介绍 了解纸飞机和真正的飞机飞行的基本原理很重要。它们同样产生升力和拖力,并且同样会因此而稳定或不稳定。但纸飞机不但外形看上去和真飞机不同,它的空气动力原理也和真飞机有不同之处。这些不同点虽然不明显,但确实影响纸飞机的飞行。 2.为什么纸飞机很真飞机外形不同大多数真飞机有机翼、尾翼和机身(来承载飞行员和乘客)。大多数纸飞机只是将纸折出一对翅膀和一个手可以握住、投掷的部分。有以下几点理由来说明这种不同: 2.1 折纸时间 造成纸飞机和真飞机外形不同的主要原因是折纸飞机的人总想又快又简单地折出一个纸飞机。加一个机尾或其他部分总需要将纸折更多次,有时侯还可能需要剪刀、胶带或胶水。最简单的纸飞机就是一个飞行的

翅膀。 2.2不需要尾翼真飞机的水平尾翼有一个升降系统,飞行员可以通过旋转该系统使飞机抬头而缓慢飞行,或低头加速飞行。纸飞机通过将翅膀后端边缘的纸折起而达到上升缓慢飞行或下降加速飞行的目的。 有一些真飞机没有尾翼也能成功飞行。Northrop XB-35 and B-2、贺顿兄弟的滑翔机都是很稳定,很好的飞行器。许多人都以为飞机尾翼是必要的稳定器,但上面提到的飞机及成百万的纸飞机都证明没有尾翼飞机也能平稳。 飞机通过尾翼向前后不同的方向倾斜来保持飞机的稳定性。飞机只有在重心点上时才能保持平衡,而这个重心点会因承载的人员和货物的多少,甚至燃料的多少而前后移动。如果飞机的重心移到飞机的中点之后,飞机会不平稳,如果重心移到中点之前,又会过于平稳,需要更多的升力。升降系统安装在尾翼比在机翼上更有效。所以有尾翼的飞机比没有尾翼的飞机更好控制重心。纸飞机的重心不移动,所以不需要尾翼。 尾翼也用来在飞机向下俯冲减缓速度时保持平衡,纸飞机飞行不需要减缓速度,所以也不需要尾翼来帮助保持平衡。 真飞机通常还有一个垂直尾翼,用来帮助保持方向。这也叫方向稳定器。纸飞机机身(就是你手拿着进行投掷的地方)的作用类似于真飞机的这个方向稳定器。有时,将纸飞机的翅膀两端(翼尖)向上折有助于飞机的稳定。纸飞机的机身和翼尖共同起到了令飞机稳定的作用,所以不需要垂直尾翼。 2.3机翼的形状 纸飞机通常有短而粗的机翼,我们叫做“低”机翼。从翼尖到另一个翼尖的距离叫机翼跨度,从机翼前端到后端的距离叫弦度。跨度与平均弦度的比例就叫“展弦比”。它是机翼的一个重要的特征。 对于亚音速飞机,增加“展弦比”,(即增大跨度或减小弦度)会减小飞机

空气动力学部分知识要点

空气动力学及飞行原理课程 空气动力学部分知识要点 一、流体属性与静动力学基础 1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力 和产生剪切变形能力上的不同。 2、静止流体在剪应力作用下(不论所加剪切应力τ多么小,只要 不等于零)将产生持续不断的变形运动(流动),换句话说,静 止流体不能承受剪切应力,将这种特性称为流体的易流性。3、流体受压时其体积发生改变的性质称为流体的压缩性,而抵抗 压缩变形的能力和特性称为弹性。 4、当马赫数小于0.3时,气体的压缩性影响可以忽略不计。 5、流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘性, 相对错动流层间的一对摩擦力即粘性剪切力。 6、流体的剪切变形是指流体质点之间出现相对运动(例如流体层 间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间 的相对运动的能力。流体的粘性力是抵抗流体质点之间相对运 动(例如流体层间的相对运动)的剪应力或摩擦力。在静止状 态下流体不能承受剪力;但是在运动状态下,流体可以承受剪 力,剪切力大小与流体变形速度梯度有关,而且与流体种类有

关 7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力) 两类。例如重力,惯性力和磁流体具有的电磁力等都属于彻体 力,彻体力也称为体积力或质量力。 8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小 与流体团块表面积成正比的接触力。由于按面积分布,故用接 触应力表示,并可将其分解为法向应力和切向应力: 9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内 法线方向,压强的量纲是[力]/[长度]2 10、标准大气规定在海平面上,大气温度为15℃或T0= 288.15K ,压强p0 = 760 毫米汞柱= 101325牛/米2,密度ρ0 = 1.225千克/米3 11、从基准面到11 km 的高空称为对流层,在对流层内大气密度和 温度随高度有明显变化,温度随高度增加而下降,高度每增加 1km,温度下降6.5 K。从11 km 到21km 的高空大气温度基 本不变,称为同温层或平流层,在同温层内温度保持为216.5 K。 普通飞机主要在对流层和平流层里活动。 12、散度、旋度、有旋流、无旋流。 13、描述流体运动的方程。低速不可压缩理想流体:连续方程+动量 方程(欧拉方程);低速不可压缩粘性流体:连续方程+动量方

1第一章空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 大气层和标准大气 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这

两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 随着高度的增加,由于大气越来越稀薄,大气的压强逐渐降低。 气体的温度T表征气体的冷热程度,是与气体分子运动密切相关的。温度的度量单位常用摄氏温标t[℃]和绝对温标T[K]来表示。从微观来看,气体分子作不规则的热运动时,它的运动平均动能越大,则宏观表现为温度越高。气体分子运动的平均动能与绝对温度成正比。在绝对温标零点,理想气体的分子热运动就终止了。 单位体积物体所含有的质量称为密度。在国际单位制中,密度的单位是千克/米3。空气的密度与压力的变化成正比,与温度的变化成反比。随着高度的增加,大气的密度逐渐降低。 当气体层间发生相对运动或气体与物体间发生相对运动时,在气体内部两个流体层接触面上或者在气体与物体的两个接触面上,便产生相互牵扯和相互粘连的内摩擦力,

汽车空气动力学学习,绝对有用

空气动力学日常应用知识 空气动力学在科学的范畴里是一门艰深的度量科学,一辆汽车在行使时,会对相对静止的空气造成不可避免的冲击,空气会因此向四周流动,而蹿入车底的气流便会被暂时困于车底的各个机械部件之中,空气会被行使中的汽车拉动,所以当一辆汽车飞驰而过之后,地上的纸张和树叶会被卷起。此外,车底的气流会对车头和引擎舱内产生一股浮升力,削弱车轮对地面的下压力,影响汽车的操控表现。 另外,汽车的燃料在燃烧推动机械运转时已经消耗了一大部分动力,而当汽车高速行使时,一部分动力也会被用做克服空气的阻力。所以,空气动力学对于汽车设计的意义不仅仅在于改善汽车的操控性,同时也是降低油耗的一个窍门。 对付浮升力的方法 对付浮升力的方法,其一可以在车底使用扰流板。不过,今天已经很少有量产型汽车使用这项装置了,其主要原因是因为研发和制造的费用实在太过高昂。在近期的量产车中只有FERRARI 360M 、LOTUS ESPRIT 、NISSAN SKYLINE GT -R还使用这样的装置。 另一个主流的做法是在车头下方加装一个坚固而比车头略长的阻流器。它可以将气流引导至引擎盖上,或者穿越水箱格栅和流过车身。至于车尾部分,其课题主要是如何令气流顺畅的流过车身,车尾的气流也要尽量保持整齐。 如果在汽车行驶时,流过车体的气流可以紧贴在车体轮廓之上,我们称之为ATTECHED或者LAMINAR(即所谓的流线型)。而水滴的形状就是现今我们所知的最为流线的形状了。不过并非汽车非要设计成水滴的形状才能达到最好的LAMINAR,其实传统的汽车形态也可以达到很好的LAMIAR的效果。常用的方法就是将后挡风玻璃的倾斜角控制在25度之内。FERRARI 360M和丰田的SUPRA就是有此特点的双门轿跑车。 其实仔细观察这类轿跑车的侧面,就不难发现从车头至车尾的线条会朝着车顶向上呈弧形,而车底则十分的平坦,其实这个形状类似机翼截面的形状。当气流流过这个机翼形状的物体时,从车体上方流过的气体一定较从车体下方流过的快,如此一来便会产生一股浮升力。随着速度的升高,下压力的损失会逐渐加大。

叶片的空气动力学基础

叶片的空气动力学基础

叶片的空气动力学基础 在风力机基础知识一节中介绍过叶片的升力与阻力基本知识,本节将进一步介绍相关理论知识。在风力机基础知识一节中已作介绍的不再重复,仅介绍有关内容的提高部分。 常用叶片的翼型 由于平板叶片攻角略大就易产生气流分离,阻力增大;平板的强度也很低,所以正式的叶片截面都是流线型的,即使有一定厚度阻力也很小。图1是一幅常见翼型的几何参数图,该翼型的中弧线是一条向上弯曲的弧线,称这种翼型为不对称翼型或带弯度翼型,比较典型的带弯度翼型为美国的NACA4412。 图1--翼型的几何参数 当弯度等于0时,中弧线与弦线重合,称这种翼型为对称翼型,图2是一个对称翼型,比较典型的对称翼型为美国的NACA0012。

图2--对称翼型的几何参数 图3是一个性能较好的适合风力机的低阻翼型,是带弯度翼型,在水平轴风力机中应用较多。 图3--带弯度的低阻翼型 翼型的升力原理 有关翼型的升力原理解释有多种,归纳起来主要依据是基于牛顿定律的气流偏转产生反作用力与基于伯努利原理的气流速度不同产生压差两个原理,我们结合这两个原理对翼型的升力作通俗的解释。

带弯度翼型在攻角为0度时的升力与阻力 图4是一个带弯度翼型在攻角为0度时的流线图与压强分布图,左图是该翼型的流线图,由于翼型上下面不对称,气流在上下面的流动状态也不同。翼型上表面是凸起的,通道截面减小,气流的流速会加快,另一个原因是凸起的表面使翼型后面的气压有所减小,前后的压差使得气流速度加快,特别是翼型上表面前端流速较快。翼型下表面较平,多数气流基本是平稳流过,由于由于上表面前端高速气流产生低压的吸引,翼型前端气流都向上表面流去,造成靠下表面的气流通道加宽,导致靠近下表面的气流速度有所下降。这样流过上表面的气流速度要比下表面快,根据伯努利原理,流速快的地方压力比流速慢的地方压力小,也就是说翼型下方压力大于上方,压力差使翼型获得一个向上的力Fl,所以说带弯度翼型在攻角为0度时也会有升力。 图4--翼型在攻角为0度时的流线图与压强分布图图4右图是该翼型的压力分布图,图中翼型上部分浅绿色区域内的绿色箭头线是上表面的压力分布,箭头线的长短与方向表示该点的压力

相关主题