搜档网
当前位置:搜档网 › 东南大学信号与系统复习总结

东南大学信号与系统复习总结

东南大学信号与系统复习总结
东南大学信号与系统复习总结

信号与系统重点概念公式总结

信号与系统重点概念公式 总结 Last updated on the afternoon of January 3, 2021

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jba 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为 复数的辐角。(复平面) 2.欧拉公式: wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11 ==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121 **==?≠=??? 其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

信号与系统_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()s i n ()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: s i n ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t <(0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

东南大学田玉平自动控制原理参考答案4

4.1 对于如下系统,求其传递函数。并判别:系统是否由其传递函数完全表征?系统是否渐进稳定?是否输入-输出稳定? (1) []0100001061161310x x u y x ???? ????=+????????---????= 解:由32 61160sI A s s s -=+++=得极点为:1231,2,3s s s =-=-=- 所以系统渐进稳定。 所以系统为输入-输出稳定,但不能由G (s )完全表征。 (2) []010000 1025005505 10x x u y x ????????=+????????-???? =- 解:由32 52500sI A s s -=+-=得1235,55,55s s i s i ==-+=-- 所以不是渐进稳定。 G(s)=C(sI-A)1-B=C 1 50250 10 01-???? ? ?????+---s s s B=)5)(55)(55() 5(50--+++-s j s j s s .= ) 55)(55(50 j s j s -+++ 所以系统是输入-输出稳定,但不能由G (s )完全表征。 (3) []110001010002110x x u y x -????????=-+????????????=- 解:由32 20sI A s s s -=++=得1230,1,1s s s ==-=- 所以系统不是渐进稳定。 所以系统是输入-输出稳定,但不能由G (s )完全表征。 (4) (a )解:2 5 ()27 s G s s s -= +- ,1,21s =-±,有极点在右半平面 所以既不是渐进稳定,又不是输入-输出稳定。系统可由其传递函数完全表征。.

奥本海姆 信号与系统 第一章知识点总结

第一章 信号与系统 一.连续时间和离散时间信号 1.两种基本类型的信号: 连续时间信号和离散时间信号。在前一种情况下,自变量是连续可变的,因此信号在自变量的连续值上都有定义;而后者是仅仅定义在离散时刻点上,也就是自变量仅取在一组离散值上。为了区分,我们用t 表示连续时间变量。而用n 表示离散时间变量,连续时间变量用圆括号()?把自变量括在里面,而离散时间信号则用方括号[]?来表示。 2.信号能量与功率 连续时间信号在[]21t t ,区间的能量定义为:E=dt t x t t 2 2 1 )(? 连续时间信号在[]21,t t 区间的平均功率定义为:P=dt t x t t t t 21 221)(1 ?- 离散时间信号在[]21,n n 区间的能量定义为:E=∑=2 1 2 ][n n n n x 离散时间信号在[]21,n n 区间的平均功率定义为:P=∑=+-2 1 2 12)(11n n n t x n n 在无限区间上也可以定义信号的总能量: 连续时间情况下:??+∞ ∞ --∞→? ∞==dt t x E T T T 2 2 x(t)dt )(lim 离散时间情况下:∑ ∑ +∞ -∞ =+-=∞ →? = =n N N n N n x n x E 2 2 ][][lim 在无限区间内的平均功率可定义为: ? -∞→?∞=T T T dt t x T P 2 )(21lim ∑+-=∞→? ∞+=N N n N n x N P 2 ][121lim 二.自变量的变换 1.时移变换 x(t)→x(t-0t ) 当0t >0时,信号向右平移0t ;当0t <0时,信号向左平移0t

2001年东南大学自动控制原理真题

东南大学 二00一年攻读硕士学位研究生入学考试试卷 一、图为简单电压调节器,在发电机的输出端 用一个电位器给出反馈电压K 0V ,K 为常数(K1),该电位器的电阻足够高,以致可假设它可以吸收的电流可以忽略。放大器的增益为20V/V ,发电机增益g K 为50V/A (励磁电流)参考电压r V =50V 。 (1) 画出当发电机供给一个负载电流时的系统方框图,并写出每个方块的传递 函数。 (2) 系统工作于闭环状态(即S 闭合),已知发电机的稳态空载端电压为250V , 求此时K 的值。通过30A 的稳态负载电流时,引起的端电压的变化是多少?恢复到250V 的发电机电压,需要多大的参考电压? (3) 系统运转在开环状态下(即S 断开),为获得250V 的稳态空载电压,需要 多大的参考电压?当负载电流为30A 时,端电压如何变化? 二、设某系统的开环传递函数为s Ke Ts -=)(s G 0,试求使闭环系统稳定的K 的取 值范围。 三、设系统的状态方程为u x ?? ? ???+???? ??--=103210 x · 试求当 (1)u (t )=δ(t ) (2)u (t )=1(t )时系统的状态响应x (t )。(假设初始状态为零) 四、如图所示的一阶采样系统中,ZOH 代表零阶保持器,求闭环系统的脉冲传递

函数。为使系统保持稳定,积分器的增益A 的范围如何?(T 为采样周期) 五、某最小相位系统的折线对数幅频特性如图所示,试写出它的传递函数,并大致画出其对数相频特性曲线。 六、已知系统的状态方程为B u A x x · +=。设P 为非奇异常数阵,已知 ?? ? ? ??==-2221 1211 1 A A A A AP P A — ,?? ? ???==-0B B P B 11— ,其中11A 和1B 的行数均为1n ,而且 rank (1B )=1n 。试证明(A ,B )能控的充要条件是(22A ,21A )能控。 七、已知线性定常系统的状态转移矩阵为?? ? ? ??=cost sin2t sint cos2t (t)ψ,求系统矩阵A 。 八、已知非线性系统如图所示,其线性部分的频率特性G (jw )及非线性部分的负倒特性-1/N(E)如图所示 (1)试确定当初始误差E 在①A 点②B 点③C 点④D 点⑤E 点时C (t )的运动情况 (2)将上述分析结果在以e 为横坐标,· e 为纵坐标的相平面上定性的表示出来

信号与系统_复习总结(完整资料).doc

【最新整理,下载后即可编辑】 第一章知识要点 重难点一第A章A 1.1本章重难点总结 知识点一 1)知识点定义 2)背景或地位 3)性质、作用 4)相关知识点链接 5)常见错误分析 操作说明: 当专业课学习到冲刺阶段后,考生学习会及时转移到直接考查概率高、考查难度大的重难点,即需要考生掌握和应用的重点、难点。按照学科的内在逻辑、顺序呈现,并表现在ppt中。 1.2冲刺练习题及解析 第二章 重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号;连续信号和离散信号; 周期信号和非周期信号;能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ①连续正弦信号一定是周期信号。 ②两连续周期信号之和不一定是周期信号。

周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变 点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞-∞ = -=?? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞=? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; ()()d (0)f t t t f δ∞ -∞''=-? ()d ()t t t t δδ-∞'=? ; ()()t t δδ''-=- ()d 0t t δ∞ -∞'=? 带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激 (0)t <(0)t > ()1t dt δ∞ -∞=? ()0t δ=(当0t ≠时)

自动控制原理实验

自动控制原理实验 实验报告 实验三闭环电压控制系统研究 学号姓名 时间2014年10月21日 评定成绩审阅教师

实验三闭环电压控制系统研究 一、实验目的: (1)通过实例展示,认识自动控制系统的组成、功能及自动控制原理课程所要解决的问题。 (2)会正确实现闭环负反馈。 (3)通过开、闭环实验数据说明闭环控制效果。 二、预习与回答: (1)在实际控制系统调试时,如何正确实现负反馈闭环? 答:负反馈闭环,不是单纯的加减问题,它是通过增量法实现的,具体如下: 1.系统开环; 2.输入一个增或减的变化量; 3.相应的,反馈变化量会有增减; 4.若增大,也增大,则需用减法器; 5.若增大,减小,则需用加法器,即。 (2)你认为表格中加1KΩ载后,开环的电压值与闭环的电压值,哪个更接近2V? 答:闭环更接近。因为在开环系统下出现扰动时,系统前部分不会产生变化。故而系统不具有调节能力,对扰动的反应很大,也就会与2V相去甚远。 但在闭环系统下出现扰动时,由于有反馈的存在,扰动产生的影响会被反馈到输入端,系统就从输入部分产生了调整,经过调整后的电压值会与2V相差更小些。 因此,闭环的电压值更接近2V。 (3)学自动控制原理课程,在控制系统设计中主要设计哪一部份? 答:应当是系统的整体框架及误差调节部分。对于一个系统,功能部分是“被控对象”部分,这部分可由对应专业设计,反馈部分大多是传感器,因此可由传感器的专业设计,而自控原理关注的是系统整体的稳定性,因此,控制系统设计中心就要集中在整个系统的协调和误差调节环节。 二、实验原理: (1)利用各种实际物理装置(如电子装置、机械装置、化工装置等)在数学上的“相似性”,将各种实际物理装置从感兴趣的角度经过简化、并抽象成相同的数学形式。我们在设计控制系统时,不必研究每一种实际装置,而用几种“等价”的数学形式来表达、研究和设计。又由于人本身的自然属性,人对数学而言,不能直接感受它的自然物理属性,这给我们分析和设计带来了困难。所以,我们又用替代、模拟、仿真的形式把数学形式再变成“模拟实物”来研究。这样,就可以“秀才不出门,遍知天下事”。实际上,在后面的课程里,不同专业的学生将面对不同的实际物理对象,而“模拟实物”的实验方式可以做到举一反三,我们就是用下列“模拟实物”——电路系统,替代各种实际物理对象。

信号与系统知识点总结

ε(k )*ε(k ) = (k+1)ε(k ) f (k)*δ(k) = f (k) , f (k)*δ(k – k0) = f (k – k0) f (k)*ε(k) = f 1(k – k1)* f 2(k – k2) = f (k – k1 – k2) ?[f 1(k)* f 2(k)] = ?f 1(k)* f 2(k) = f 1(k)* ?f 2(k) f1(t)*f2(t) = f(t) 时域分析: 以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数之和,即 而任意信号作用下的零状态响应yzs(t) yzs (t) = h (t)*f (t) 用于系统分析的独立变量是频率,故称为频域分析。 学习3种变换域:频域、复频域、z 变换 ⑴ 频域:傅里叶表变换,t →ω;对象连续信号 ⑵ 复频域:拉普拉斯变换,t →s ;对象连续信号 ⑶ z 域:z 变换,k →z ;对象离散序列 设f (t)=f(t+mT)----周期信号、m 、T 、 Ω=2π/T 满足狄里赫利Dirichlet 条件,可分解为如下三角级数—— 称为f (t)的傅里叶级数 注意: an 是n 的偶函数, bn 是n 的奇函数 式中,A 0 = a 0 可见:A n 是n 的偶函数, ?n 是n 的奇函数。a n = A ncos ?n , b n = –A nsin ?n ,n =1,2,… 傅里叶级数的指数形式 虚指数函数集{ej n Ωt ,n =0,±1,±2,…} 系数F n 称为复傅里叶系数 欧拉公式 cos x =(ej x + e –j x )/2 sin x =(ej x - e –j x )/2j 傅里叶系数之间关系 n 的偶函数:a n , A n , |F n | n 的奇函数: b n ,?n 常用函数的傅里叶变换 1.矩形脉冲 (门函数) 记为g τ(t) ? ∞ ∞--=ττδτd )()()(t f t f ∑ ∑∞=∞ =Ω+Ω+=1 10)sin()cos(2)(n n n n t n b t n a a t f ∑∞=+Ω+=10)cos(2)(n n n t n A A t f ?2 2n n n b a A +=n n n a b arctan -=? e )(j t n n n F t f Ω∞-∞ =∑= d e )(122 j ?-Ω-=T T t n n t t f T F )j (21e 21e j n n n j n n b a A F F n n -===??n n n n A b a F 212122=+=??? ??-=n n n a b arctan ?n n n A a ?cos =n n n A b ?sin -=

自动控制原理作业参考答案(第五章

5.1 (1))(20)(20)(20)(12)(t r t r t c t c t c +=++ (2)21)10)(2()1(20)(s s s s s C ?+++= = s s s s 4 .0110275.02125.02+++-++- 所以 c(t)=4.0275.0125.0102++----t e e t t c(0)=0;c(∞)=∞; (3)单位斜坡响应,则r(t)=t 所以t t c t c t c 2020)(20)(12)(+=++ ,解微分方程加初始条件 解的: 4.04.02)(102++-+=--t e e t c t t c(0)=2, c(∞)=∞; 5.2 (1)t t e e t x 35.06.06.3)(---= (2)t e t x 2)(-= (3) t w n n n t w n n n n n n n e w b w a e w b w a t x )1(22)1(22221 2)1(1 2)1()(----+----+-+ -+----= ξξωξξωξξξωξξξω(4)t a A t a Aa e a a b t x at ωωωωωωωcos sin )()(2 22222+-++++=- 5.3 (1)y(kT)=)4(16 19 )3(45)2(T t T t T t -+-+-δδδ+…… (2) 由y(-2T)=y(-T)=0;可求得y(0)=0,y(T)=1; 则差分方程可改写为y[kT]-y[(k-1)T]+0.5y[(k-2) T]=0;,k=2,3,4…. 则有0))0()()((5.0))()(()(121=++++----y T y z z Y z T y z Y z z Y 2 11 5.015.01)(---+--=z z z z Y =.....125.025.025.05.015431----++++z z z 则y *(t)=0+)5(25.0)4(25.0)3(5.0)2()(T t T t T t T t T t -+-+-+-+-δδδδδ+… (3)y(kT)=k k k k k T T k T T )1(4 )1(4)1(4)1(4++---- 5.4

(完整版)信号与系统复习知识点

《信号与系统》复习要点 第一章 1.信号的运算:时移、反褶、尺度变换、微分、积分等; 2.LTI 系统的基本性质:叠加性、时不变特性、微分特性、因果性、可分解线性; 3.阶跃型号与冲激信号及其特性。 单位冲激信号的性质: 1. )()()()(t o f t t f δδ= 2. )()()()(0 t t t f t t t f -=-δδ 3. ?∞ ∞-=)0()()(f dt t t f δ 4. ? ∞ ∞ -=-)()()(00t f dt t t t f δ 5. )()(t t -=δδ 6. dt t du t )()(=δ ?∞ -=t t u d )()(ττδ 7. ∑∞ -∞=-= n T nT t t )()(δδ ∑∞ -∞ =-=n T nT t nT f t t f )()()()(δδ 例、求下列积分 dt t t t t f ? ∞ ∞ -= )2sin() (2)(δ 例、已知信号)(t f 的波形如下图1所示,试画出下列各信号的波形 (1) )2(t f ,(2))()2(t u t f ---,(3))2()2(t u t f -- 例 已知 )3(2)(-=t t f δ求系列积分?)25(0 =-?∞ dt t f

第二章 1.响应的分解,各种响应分量的含义、可分解线性; 2.卷积及其特性(微积分特性); 3.零状态响应及卷积积分求解。 第三章 1.典型信号的傅里叶变换; 2.傅里叶变换的基本性质:对称性、尺度变换特性、平移特性、微积分特性;3.傅里叶变换卷积定理。

*)(ωj F o 为周期信号取一个单周期信号的傅立叶变换 ● 理想抽样序列: ∑∞ -∞ =-=n s T nT t t )()(δδ ● 非理想抽样序列: ∑∞ -∞ =-= n s nT t G t P )()(τ 被抽样信号的表达式: ∑∞-∞ =-=n s s nT t t f t f )()()(δ ∑∞ -∞ =-=n s s nT t G t f t f )()()(τ

张宇-信号与系统各章内容整理48学时

第一章 信号与系统 主要内容 重点 难点 1.信号的描述x[n]、x (t ),两者不同之处 2.【了解】 信号的功率和能量 3.【掌握】自变量变换(计算题目)、理解变换前后图片的缩放或信号的变化 4.【了解】 常见信号:指数(j t j n e e w w 、)、正弦(cos cos t n w w 、)、单位冲激(()[]t n d d 、)、单位阶跃(()[]u t u n 、) 5.【掌握】用阶跃函数表示矩形函数;冲激与阶跃信号的关系;冲激信号的提取作用;指数信号和正弦信号的周期性。 6.【了解】系统互联 7.【掌握】系统的基本性质:记忆与无记忆性、可逆性、因果性、稳定性、时不变与线性。对已知系统进行性质判断(掌握) 1.3、5、7 1.0 0cos j n n e w w 、的周期性判断,是周期的条件,若是周期的,则周期: 2.00cos j t t e w w 、的周期: 自变量变换的量值 确定 0cos j n n e w w 、的周期 性和频率逆转性。 系统的时不变性与线性等性质的证明 2T ωπ = 2N m ωπ =

第二章 线性时不变系统 第三章 周期信号的傅里叶级数表示FS 本章内容安排基本思路: 主要内容 难点 ? 系统的单位冲激响应容易求出:令 ()()x t t d =,对应的输出即为单位 冲激响应() h t ; ? 将任意信号分解为冲激信号()[]t n d d 、的线性组合 [][][]; ()()()k x n x k n k x t x t d d t d t t ¥ ¥ - =- = -= -? ò ? 利用LTI 系统的线性和时不变性,在单位冲激响应[]() h t h n 、 已知的情况下,推导连续时间和离散时间系统对任意输入x 的响应: [][][]y n =x n * h n ; y(t)=x(t)* h(t) ? 利用输入输出的卷积关系,根据单位冲激响应[]() h t h n 、 ,判断ITI 系统的性质 1.【掌握】卷积和 2.【掌握】卷积积分 3.【掌握】用[]() h t h n 、 判断LTI 的性质 4.【理解】 初始松弛 5. 【掌握】任意信号与冲 激信号、阶跃函数的卷积性质(对比1章冲激信号抽取作用) 卷积运算中,求和或者求 积时,上下限的确定 本章内容安排基本思路: 主要内容 难点

信号与系统知识点整理

第一章 1、什么就是信号? 就是信息得载体,即信息得表现形式。通过信号传递与处理信息,传达某种物理现象(事件)特性得一个函数。 2、什么就是系统? 系统就是由若干相互作用与相互依赖得事物组合而成得具有特定功能得整体。 3、信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出得反应。 4、通常把信号分为五种: ?连续信号与离散信号 ?偶信号与奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5、连续信号:在所有得时刻或位置都有定义得信号。 6、离散信号:只在某些离散得时刻或位置才有定义得信号。 通常考虑自变量取等间隔得离散值得情况。 7、确定信号:任何时候都有确定值得信号 。 8、随机信号:出现之前具有不确定性得信号。 可以瞧作若干信号得集合,信号集中每一个信号 出现得可能性(概率)就是相对确定得,但何时出 现及出现得状态就是不确定得。 9、能量信号得平均功率为零,功率信号得能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10、自变量线性变换得顺序:先时间平移,后时间变换做缩放、 注意:对离散信号做自变量线性变换会产生信息得丢失! 11、系统对阶跃输入信号得响应反映了系统对突然变化得输入信号得快速响应能 力。(开关效应) 12、单位冲激信号得物理图景: 持续时间极短、幅度极大得实际信号得数学近似。 对于储能状态为零得系统,系统在单位冲激信号作 用下产生得零状态响应,可揭示系统得有关特性。 例:测试电路得瞬态响应。 13、冲激偶:即单位冲激信号得一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分得被积函数中一个因子, 其她因子在冲激偶出现处存在时间得连续导数、 14、斜升信号: 单位阶跃信号对时间得积分即为单位斜率得斜升信号。 15、系统具有六个方面得特性: 1、稳定性 2、记忆性

信号与系统(郑君里)复习要点

信号与系统复习 书中最重要的三大变换几乎都有。 第一章 信号与系统 1、信号的分类 ①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足 f (t ) = f (t + m T ), 离散周期信号f(k )满足 f (k ) = f (k + m N ),m = 0,±1,±2,… 两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。 ③能量信号和功率信号 ④因果信号和反因果信号 2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷) 2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号 3.1 单位冲激函数的性质 f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a) 例: 3.2序列δ(k )和ε(k ) f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0) 4、系统的分类与性质 4.1连续系统和离散系统4.2 动态系统与即时系统 4.3 线性系统与非线性系统 ①线性性质 T [a f (·)] = a T [ f (·)](齐次性) T [ f 1(·)+ f 2(·)] = T[ f 1(·)]+T[ f 2(·)] (可加性) ②当动态系统满足下列三个条件时该系统为线性系统: )0(d )()(f t t t f =?∞∞ -δ) (d )()(a f t a t t f =-? ∞ ∞-δ?d )()4 sin(9 1=-? -t t t δπ)0('d )()('f t t f t -=?∞∞ -δ) 0()1(d )()()()(n n n f t t f t -=? ∞ ∞ -δ4)2(2])2[(d d d )(')2(0022=--=--=-==∞ ∞-? t t t t t t t t δ)(1||1)()()(t a a at n n n δδ?=)(||1)(t a at δδ=)(||1 )(00a t t a t at -=-δδ) 0()()(f k k f k =∑ ∞-∞ =δ

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

信号与系统复习题型

信号与系统的时域分析 1. 什么是LTI 系统?在时域中,我们如何表示系统?什么是系统的单位冲激响应? ◆ 系统的线性时不变性的证明与判断(书中例子1-14,1-16,1-17,1-18); ◆ 表示系统的时域数学模型:卷积表示,微分方程(连续时间系统),差分方程(离散时间 系统); ◆ 单位冲激响应h(t):系统对输入为单位冲激信号)(t δ的零状态响应。 2. 请写出LTI 系统的卷积表达式。你会计算两个信号之间的卷积吗? 例1:假设LTI 系统的单位冲激响应为)()(t u t h =, 系统输入为)()(t u e t x t -=. 通过计算卷积 )(t y =)(*)(t h t x 确定系统的输出)(t y 。 3. 信号x(t)与单位冲激信号δ(t-t0)相乘、卷积,你会吗? ◆ 四个重要公式: 1))()(*)(00t t x t t t x -=-δ 2) )()(*)(t x t t x =δ 3) )()()()(000t t t x t t t x -=-δδ 4) )()0()()(t x t t x δδ= 例2:)1()1(*)(+=+t x t t x δ )1()1()1()(-=-t x t t x δδ等 4. 形如 )()(2) (3)(2 2t x t y dt t dy dt t y d =++的微分方程,你会求解吗? 例3:一因果LTI 系统由微分方程)()(6) (5)(2 2t x t y dt t dy dt t y d =++描述,给定系统的输入和初始条件如下:)()(t u e t x t -=,)0(y =-0.5, .50)(0 ==t dt t dy ,确定系统的完全解。 5. LTI 系统的因果性、稳定性,你理解吗?如何用单位冲激响应)(t h 来这两个性质描述系统的这两个性质? 因果性:判决条件:0,0)(<>t t h 稳定性:判决条件:∞

自动控制原理试卷

自动控制理论复习资料 自控期考试卷 一、计算题 1、已知二阶控制系统,其闭环传递函数为()25 625 2++= Φs s s ,求其自然振荡角频率n ω和阻尼比ζ,并求 上升时间r t 、峰值时间p t 、回复时间s t ,超调量(%)p M 。(6分) 解: 二阶控制系统的标准形式为()2 22 2n n n w s w s w s ++=Φξ(1分) 对比()256252++= Φs s s 得:???==25 6 22 n n w w ξ,解得:???==56.0n w ξ(1分) 所以自然振荡角频率为5 rad/s,阻尼比为0.6. 上升时间0.5495()r arctg arctg t s ππ--= ==(1分) 峰值时间0.785()p t s == =(1分) 回复时间331(),0.050.65s n t s w ξ= ==?=?;44 1.333(),0.020.65 s n t s w ξ===?=?(1分) 超调量0.3(%)100%100%9.43%ctg ctg p M e e πθ ππ-?-?=?=?=(1分) 2、简化下列自动控制系统结构方框图,并写出简化后的传递函数。(10分) 解:

因此,其传递函数为: ) ()()()()()()()()()()(1) ()()()()(143213434324321s H s G s G s G s G s H s G s G s G s G s G s G s G s G s G s G +++= (2分) 3、设单位反馈系统的开环传递函数为()) 5)(1(+-= s s s K s G ,求取K 的取值范围并判断系统的稳定性。(10 分) 解:()s s K s s s K s G 54s )5)(1(23-+=+-= ,其闭环传递函数为: ()()()K s s K s G s G s G +-+=+= 54s 1123 (2分) 特征方程为054s 2 3 =+-+K s s 列写劳斯判据:513-s (1分) K s 4 2 (1分) 04 201K s +- (1分) K s 0 (1分) 若使系统稳定,则?? ? ? ?>+->0 4 200 K K (2分) 解得:? ? ? -<>20 K K ,没有交集,解矛盾,因此没有适合的K 使系统稳定。(2分) 4、 单位负反馈的开环传递函数为()) 2)(1(++=s s s K s G ,试绘制其根轨迹。(10分) 解:

信号与系统,复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()t Sa t t = 奇异信号 (1) 单位阶跃信号 01 ()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t < (0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

信号与系统的重点概念公式的总结

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ 为复数的辐角。(复平面) 2.欧拉公式: wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n Λ= 如果满足: n i K dt t f j i dt t f t f i T T i T T j i Λ2,1)(0)()(2 1 2 12 ==≠=? ? 则称集合F 为正交函数集 如果n i K i Λ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为: n i K dt t f t f j i dt t f t f i T T i i T T j i Λ2,1)()(0)()(2 1 2 1* *==?≠=?? ? 其中)(* t f i 为 )(t f i 的复共轭。 2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数

相关主题