搜档网
当前位置:搜档网 › D微分方程的概念可分离变量的微分方程答案

D微分方程的概念可分离变量的微分方程答案

D微分方程的概念可分离变量的微分方程答案
D微分方程的概念可分离变量的微分方程答案

第七章 微分方程

第一节 微分方程的基本概念

一、单项选择题

1. 下列各式中是常微分方程的为 B .

A. 23y y +=

B. 2y y y '''+=

C. 22xy y xy +=

D. x y x z z y ''++=

2. 微分方程3d d y x y x x

=+的通解为y = B . A. 34x C x + B. 32x Cx + C. 33x C + D. 3

4

x Cx + 3. 函数y C x =-(C 为任意常数)是微分方程1xy y '''-=的 C .

A. 通解

B. 特解

C. 是解,但既不是通解也不是特解

D. 不是解

4. 微分方程0y y ''+=的通解是y = D .

A. sin A x

B. cos B x

C. sin cos x B x +

D. sin cos A x B x +

5. 已知某微分方程的通解为212()e x y C C x =+,且满足01x y ='=,00x y ==,

则有 B . A. 2e x y = B. 2e x y x = C. 2(1)e x y x =+ D. 22e x y =

二、验证满足()ln y xy =的函数()y y x =是微分方程()220xy x y xy yy y '''''-++-=的解.

解:方程ln()y xy =两边同时对x 求导得11y y x y ''=+,整理得y y xy x

'=-,两 边再对x 求导得()

()3223()(1)

22y xy x y y xy xy xy xy y xy x xy x ''--+--+-''==--,将,y y '''代入原 方程得()3223222()20()xy xy xy

y y y xy x x y xy x xy x xy x

xy x -+--++-=----.因此,由 ln()y xy =所确定的函数是微分方程的解.

第二节 可分离变量的微分方程

一、填空题

1. 微分方程0xy y '+=满足初始条件12x y ==的特解为2y x =

. 2. 微分方程e x y y -'=的通解是e =e y x C +.

3. 微分方程2(1)d (1)d 0y x yx x y +-+=

1

Cx x =+. 4. 微分方程d 2d 0x y y x +=满足初始条件21x y ==的特解为24y x =

. 二、

求微分方程d 0xy x y =满足初始条件1e x y ==的特解. 解:

1d x y y =

1ln ln C y =,由此得

11)y C C C C =±==±,满足初始条件1e x y ==,代入得e C =,

所以特解为1y =.

三、求微分方程cos d (1e )sin d 0x y x y y -++=的通解. 解:分离变量得 1d t a n d 1e

x x y y -=-+,两端积分得 1ln(e 1)ln ln cos x C y ++=, 由此得微分方程的通解为 1cos (e 1)(e 1)x x y C C =±+=+.

四、设位于第一象限的曲线()y f x =

过点122?? ? ???

,其上任一点(),P x y 处的法线与y

轴的交点为Q ,且线段PQ 被x 轴平分,求曲线()y f x =的方程. 解:易知Q 的坐标为()0,,y -2PQ y K x ∴=,2x y y '=-,即2d d y y x x =-,两边积分得222x y C +=

,再由已知12

x y

=,得1C =,故曲线的方程为2221x y +=.

用分离变量法解常微分方程

用分离变量法解常微分 方程 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

用 分离变量法解常微分方程 . 1 直接可分离变量的微分方程 形如 dx dy = ()x f ()y ? 的方程,称为变量分离方程,这里()x f ,()y ?分别是的连续函数. 如果?(y)≠0,我们可将()改写成 ) (y dy ?= ()x f ()x d , 这样,变量就“分离”开来了.两边积分,得到 通解:? )(x dy ?=? dx x f )(+c. 其中,c 表示该常数,? )(x dy ?,?dx x f )(分别理解为) (1y ?,()x f 的原函数.常数c 的取值必须保证()有意义.使()0=y ?的0y y =是方程的解. 例1 求解方程01122=-+-dx y dy x 的通解. 解:(1)变形且分离变量: (2)两边积分: c x dx y dy +-=-? ? 2 2 11 , 得 c x y +-=arcsin arcsin . 可以验证1±=y 也是原方程的解,若视x 和y 是平等的,则1±=x 也是原方程的解. 我们可以用这个方法来解决中学常见的一些几何问题.

例2 曲线L 上的点),(y x P 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分.求曲线L 的方程. 分析:这是一个利用几何条件来建立微分方程的例子.先建立法线PQ 的方程,用大写的),(Y X 表示法线上的动点,用小写的表示曲线L 上的点,法κ为过点),(y x P 的法线的斜率. 解:由题意得 y '- =1法κ. 从而法线PQ 的方程为 )(1 x X y y Y -' - =-. 又PQ 被y 轴平分,PQ 与y 轴交点M 的坐标为?? ? ??2,0y ,代入上式,得 )0(1 2x y y y -' -=-. 整理后,得 x y y 2-=', 分离变量,解得 x +2 其中c 为任意正数,如图1. 2 变量可替换的微分方程 种可化为变量分离方程的类型: 齐次方程 形如 ?? ? ??=x y dx dy ?

高数可分离变量的微分方程教案

§7. 2 可分离变量的微分方程 观察与分析: 1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得 y =x 2+C . 一般地, 方程y '=f (x )的通解为C dx x f y +=?)((此处积分后不再加任意常数). 2. 求微分方程y '=2xy 2 的通解. 因为y 是未知的, 所以积分? dx xy 22无法进行, 方程两边直 接积分不能求出通解. 为求通解可将方程变为 xdx dy y 212 =, 两边积分, 得 C x y +=-21, 或C x y +-=21, 可以验证函数C x y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=?(x , y )能写成 g (y )dy =f (x )dx 形式, 则两边积分可得一个不含未知函数的导数的方程 G (y )=F (x )+C , 由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P (x , y )dx +Q (x , y )dy =0 在这种方程中, 变量x 与y 是对称的. 若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有 ) ,(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有 ) ,(),(y x P y x Q dy dx -=.

可分离变量的微分方程: 如果一个一阶微分方程能写成 g (y )dy =f (x )dx (或写成y '=?(x )ψ(y )) 的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程? (1) y '=2xy , 是. ?y -1dy =2xdx . (2)3x 2+5x -y '=0, 是. ?dy =(3x 2+5x )dx . (3)(x 2+y 2)dx -xydy =0, 不是. (4)y '=1+x +y 2+xy 2, 是. ?y '=(1+x )(1+y 2). (5)y '=10x +y , 是. ?10-y dy =10x dx . (6)x y y x y +='. 不是. 可分离变量的微分方程的解法: 第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式; 第二步 两端积分:??=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ; 第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y ) G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解. 例1 求微分方程xy dx dy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得 xdx dy y 21=, 两边积分得 ??=xdx dy y 21, 即 ln|y |=x 2+C 1, 从而 2 112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解 2 x Ce y =. 例2 铀的衰变速度与当时未衰变的原子的含量M 成正比. 已知t =0时铀的含量为M 0, 求在衰变过程中铀含量M (t )随时间t 变化的规律.

微分方程的基础知识及解析解

微分方程的基础知识及解析解

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

微分方程中的几个基础概念

微分方程中的几个基础概念 微分方程—基础 微分方程(Differential equation, DFQ)是一种用来描述函数与其导数之间关系的数学方程。与之前所接触初等数学代数方程的解不同,它的解不是数,而是符合方程关系的函数。 微分方程的起源约在十七世纪末,为了解决自然科学发展中遇到物理及天文学问题而产生,随着微积分的诞生与在各个科学领域中的广泛应用,很多问题被归化为某类微分方程的问题。 在微分方程分支中,存在很多各种各样已知类型的微分方程。实事上,提高对微分方程的理解的最好的方法之一是首先处理基本的分类系统。为什么?因为你可能永远不会遇到完全陌生的微分方程。大多数微分方程已经被解决了,因此,普遍适用的解决方法很可能已经存在。 除了描述方程本身的性质外,对微分方程进行分类和识别的真正附加值来自于为跳转点提供一张导图。求解微分方程的诀窍不是创造原始解法,而是对已证明的解法进行分类和应用;有时,可能需要几步把一类方程转换为另一类等效方程,以获得可实现的广义解。 最常用于描述微分方程的四个属性是: ?常微分与偏微分 ?线性与非线性 ?齐次与非齐次

?微分阶数 虽然这个列表并非详尽无遗,但是它是我们学习首先要掌握的知识,通常在微分方程学期课程的前几周会进行回顾;通过快速回顾每一个类别,我们将会配备基本的入门工具包来处理常见的微分方程问题。 常微分与偏微分 首先,我们在自然中所发现的微分方程最常见的分类来源于从我们手边的问题中所发现的导数类型;简单地说,方程是否包含偏导数? 如果不包含,那么它是一个常微分方程(, Ordinary differential equation)。如果包含,那么它是一个偏微分方程(, Partial differential equation)。 常微分方程是未知函数只含有一个自变量的微分方程,其微分基于该单一的自变量,通常是时间。一个常微分方程有一组离散的(有限的)变量;它们通常是一维动力系统的模型,例如:钟摆随时间的摆动。 另一方面,偏微分方程相当复杂,因为它们通常涉及多个自变量,其多种多样的偏微分方程可能基于也可能并不基于一个已知的自变量。偏微分方程常被用来描述自然界中各种各样的现象,例如:热,空间中的流体速度,或电动力学。这些似乎完全不同的物理现象被化为偏微分方程;它们在随机偏微分方程中得到推广。 下面的这些例子有助于我们分辨微分方程的导数类型包括:

微分方程的基本概念

求函数关系是数学中的重要问题。然而,在实际中有时很难直接找出函数关系,我们所得到的仅是含有未知函数及其导数的关系式,称之为微分方程.我们的任务就是求解微分方程,找出未知函数。本章将介绍一些微分方程的基本概念和几种常用的微分方程的解法. 微分方程的基本概念 下面通过几个例题来说明微分方程的基本概念. 例1 一曲线通过)2,1(点,且在该曲线上任一点),(y x 处 的切线的斜率为x 2,求曲线的方程. 解 由导数的几何意义可得 x dx dy 2= ① 此外,未知函数)(x y y =还应满足条件 1=x 时,2=y (或写成21==x y ) ② 在式①两端积分,得 C x y +=2 , ③ 其中C 为任意常数.将条件②代入式③中,得1=C , 于是得所求曲线的方程为 ④ 12+=x y

我们知道式③表示一族曲线, 曲线族中的每一条曲线的函数 代入式①中都成为恒等式, 而式④仅表示是其中的一条,它是通过点()2,1的. 从以上例子中,可归纳出如下一些基本概念. (一)微分方程:含有自变量、未知函数以及未知函数导数或微分的方程叫微分方程(以下简称方程)。在方程中出现的未知函数导数的最高阶数成为微分方程的阶,n 阶微分方程的一般形式为 ()(,,,,,)0n F x y y y y '''=L ⑤ 如式①为一阶微分方程.

(二)解:一个函数代入微分方程后,使其成为恒等式,则该函数称为微分方程的解. 含有任意常数,且独立的任意常数的个数和微分方程的阶数相等的解,称为微分方程的通解或一般解.不含任意常数的解叫特解. 若I x x y ∈=),(?为方程⑤的解,则有 ()[,(),(),,()]0n F x x x x φφφ'≡L , I x ∈. 方程⑤的通解应含有n 个独立的任意常数, 其通解有时用隐函数表达式 12(,,,,,)0n x y C C C Φ=L 表示. ⑥ 例如:式③为方程①的通解.

微分方程(习题及解答)

第十二章 微分方程 § 微分方程基本概念、可分离变量的微分方程、齐次微分方程 一、单项选择题 1. 下列所给方程中,不是微分方程的是( ) . (A)2xy y '=; (B)222x y C +=; (C)0y y ''+=; (D)(76)d ()d 0x y x x y y -++=. 答(B). 2. 微分方程4(3)520y y xy y '''+-=的阶数是( ). (A)1; (B)2; (C)3; (D)4; 答(C). 3. 下列所给的函数,是微分方程0y y ''+=的通解的是( ). (A)1cos y C x =; (B)2sin y C x =; (C)cos sin y x C x =+; (D)12cos sin y C x C x =+ 答(D). 4. 下列微分方程中,可分离变量的方程是( ). (A)x y y e +'=; (B)xy y x '+=; (C)10y xy '--=; (D)()d ()d 0x y x x y y -++=. 答(A). 5. 下列微分方程中,是齐次方程是微分方程的是( ). (A)x y y e +'=; 2(B)xy y x '+=; (C)0y xy x '--=; (D)()d ()d 0x y x x y y -++=. 答(D). 二、填空题 1.函数25y x =是否是微分方程2xy y '=的解 . 答:是 . 2.微分方程 3d d 0,4x x y y y x =+==的解是 . 答:2225x y +=. 3.微分方程2 3550x x y '+-=的通解是 . 答:32 52 x x y C =++. 4.微分方程ln 0xy y y '-=的通解是 . 答: Cx y e =. 5'=的通解是 . 答:arcsin arcsin y x C =+. 6.微分方程 (ln ln )xy y y y x '-=-的通解是. 答: Cx y e x =. 三、解答题 1.求下列微分方程的通解. (1) 22sec tan d sec tan d 0x y x y x y +=; (2) 2()y xy a y y '''-=+; 解: 解: (3) d 10d x y y x +=; (4) 23d (1)0.d y y x x ++=

微分方程的基本概念

第一节 微分方程的基本概念 教学目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等 教学重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件 教学难点:微分方程的通解概念的理解 教学内容: 1、首先通过几个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函 数

)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得 2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5)都含有未知函数的导数,它们都是微分方程。 2、 定义 一般地,凡表示未知函数、未知函数的导数与自变量之间的关系到的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。本章只讨论常微分方程。 微分方程中所出现的求知函数的最高阶导数的阶数,叫做微分方程的阶。例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+- 是四阶微分方程。

微分方程的基础知识与练习

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度 2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了 多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运 动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020 s t == 。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们 都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

§1 常微分方程的基本概念

第十三章 常微分方程简介 本章介绍微分方程的有关概念及某些简单微分方程的解法。 微分方程是包含未知函数及其导数的方程。由微分方程能够求出未知函数的解析表达式,从而掌握所研究的客观现象的变化规律和发展趋势。因此,掌握这方面的知识,用之分析解决问题是非常重要的。 由于在大多数情况下,微分方程很难求出初等解(即解的形式是初等函数)。那么,就需要研究解的存在理论,借助计算机求出微分方程的数值解。 本章的内容,仅仅包含常微分方程的一些最初步的知识,特殊的一阶和部分二阶微分方程的初等解法;最后一节讨论微分方程的简单应用。 §1 常微分方程的基本概念 像过去我们研究其他许多问题一样,首先通过具体实际例子来引入微分方程的概念。 1.1 两个实例 例1.1 设某一平面曲线上任意一点),(y x 处的切线斜率等于该点处横坐标x 的2倍,且曲线通过点)2,1(,求该曲线的方程。 解 平面上的曲线可由一元函数来表示 设所求的曲线方程为)(x f y =,根据导数的几何意义,由题意得 x dx dy 2=(这是一个含未知函数)(x f y =的导数的方程)。 另外,由题意,曲线通过点)2,1(,所以,所求函数)(x f y =还满足2|1==x y 。 从而得到 12 (1.1)|2(1.2) x dy x dx y =ì??=?í??=??,。 为了解出)(x f y =,我们只要将(1.1)的两端积分,得 ?+=+==C x C x xdx y 22 2 22, 我们说 C x y +=2对于任意常数C 都满足方程(1.1)。 再由条件(1.2),将2|1==x y 代入C x y +=2,即

微分方程及其解的定义

微分方程 什么是微分方程它是怎样产生的这是首先要回答的问题. 300多年前,由牛顿(Newton,1642-1727)和莱布尼兹(Leibniz,1646-1716)所创立的微积分学,是人类科学史上划时代的重大发现,而微积分的产生和发展,又与求解微分方程问题密切相关.这是因为,微积分产生的一个重要动因来自于人们探求物质世界运动规律的需求.一般地,运动规律很难全靠实验观测认识清楚,因为人们不太可能观察到运动的全过程.然而,运动物体(变量)与它的瞬时变化率(导数)之间,通常在运动过程中按照某种己知定律存在着联系,我们容易捕捉到这种联系,而这种联系,用数学语言表达出来,其结果往往形成一个微分方程.一旦求出这个方程的解,其运动规律将一目了然.下面的例子,将会使你看到微分方程是表达自然规律的一种最为自然的数学语言. 例1 物体下落问题 设质量为m的物体,在时间t=0时,在距地面高度为H处以初始速度v(0) = v0垂直地面下落,求此物体下落时距离与时间的关系. 解如图1-1建立坐标系,设为t时刻物体的位置坐标.于是物体下落的速度为 加速度为 质量为m的物体,在下落的任一时刻所受到的外力有重力mg和空气阻力,当速度不太大时,空气阻力可取为与速度成正比.于是根据牛顿第二定律 F = ma (力=质量×加速度) 可以列出方程 (·= ) 其中k >0为阻尼系数,g是重力加速度. 式就是一个微分方程,这里t是自变量,x是未知函数,是未知函数对t导数.现在,我们还不会求解方程,但是,如果考虑k=0的情形,即自由落体运动,此时方程可化为 将上式对t积分两次得 其中和是两个独立的任意常数,它是方程的解. 一般说来,微分方程就是联系自变量、未知函数以及未知函数的某些导数之间的关系式.如果其中的未知函数只与一个自变量有关,则称为常微分方程;如果未知函数是两个或两个以上自变量的函数,并且在方程中出现偏导数,则称为偏微分方程.本书所介绍的都是常微分方程,有时就简称微分方程或方程.

可分离变量的微分方程

可分离变量的微分方程 观察与分析: 1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得 y =x 2+C . 一般地, 方程y '=f (x )的通解为C dx x f y +=?)((此处积分后不再加任意常数). 2. 求微分方程y '=2xy 2 的通解. 因为y 是未知的, 所以积分? dx xy 22无法进行, 方程两边直 接积分不能求出通解. 为求通解可将方程变为 xdx dy y 212=, 两边积分, 得 C x y +=-21, 或C x y +-=21, 可以验证函数C x y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=?(x , y )能写成 g (y )dy =f (x )dx 形式, 则两边积分可得一个不含未知函数的导数的方程 G (y )=F (x )+C , 由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P (x , y )dx +Q (x , y )dy =0 在这种方程中, 变量x 与y 是对称的. 若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有 ) ,(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有 ),(),(y x P y x Q dy dx -=. 可分离变量的微分方程: 如果一个一阶微分方程能写成

g (y )dy =f (x )dx (或写成y '=?(x )ψ(y )) 的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程? (1) y '=2xy , 是. ?y -1dy =2xdx . (2)3x 2+5x -y '=0, 是. ?dy =(3x 2+5x )dx . (3)(x 2+y 2)dx -xydy =0, 不是. (4)y '=1+x +y 2+xy 2, 是. ?y '=(1+x )(1+y 2). (5)y '=10x +y , 是. ?10-y dy =10x dx . (6)x y y x y +='. 不是. 可分离变量的微分方程的解法: 第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式; 第二步 两端积分:??=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ; 第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y ) G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解. 例1 求微分方程xy dx dy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得 xdx dy y 21=, 两边积分得 ??=xdx dy y 21, 即 ln|y |=x 2+C 1, 从而 2 112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解 2 x Ce y =. 解 此方程为可分离变量方程, 分离变量后得

用分离变量法解常微分方程

用分离变量法解常微分方程 . 1直接可分离变量的微分方程 1.1形如 dx dy =()x f ()y ?(1.1) 的方程,称为变量分离方程,这里()x f ,()y ?分别是的连续函数. 如果?(y)≠0,我们可将(1.1)改写成 ) (y dy ?=()x f ()x d , 这样,变量就“分离”开来了.两边积分,得到 通解:?)(x dy ?=?dx x f )(+c. (1.2) 其中,c 表示该常数,?)(x dy ?,?dx x f )(分别理解为) (1y ?,()x f 的原函数.常数c 的取值必须保证(1.2)有意义.使()0=y ?的0y y =是方程(1.1)的解. 例1求解方程01122=-+-dx y dy x 的通解. 解:(1)变形且分离变量: (2)两边积分: c x dx y dy +-=-??2211, 得 c x y +-=arcsin arcsin . 可以验证1±=y 也是原方程的解,若视x 和y 是平等的,则1±=x 也是原方程的解. 我们可以用这个方法来解决中学常见的一些几何问题. 例2曲线L 上的点),(y x P 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分.求曲线L 的方 程. 分析:这是一个利用几何条件来建立微分方程的例子.先建立法线PQ 的方程,用大写的),(Y X 表示法线上的动点,用小写的表示曲线L 上的点,法κ为过点),(y x P 的法线的斜率.

解:由题意得 y ' -=1法κ. 从而法线PQ 的方程为 )(1x X y y Y -'-=-. 又PQ 被y 轴平分,PQ 与y 轴交点M 的坐标为?? ? ??2,0y ,代入上式,得 )0(12x y y y -' -=-. 整理后,得 x y y 2-=', 分离变量,解得 c y x =+22 2 , 其中c 为任意正数,如图1. 2变量可替换的微分方程 通过上面的介绍,我们已经知道了什么方程是变量分离方程.下面,我们再介绍几种可化为变 量分离方程的类型: 2.1齐次方程 形如?? ? ??=x y dx dy ?(1.3) 的微分方程,称为齐次微分方程.这里)(u ?是u 的连续函数. 对方程(1.3)做变量变换 x y u =,(1.4) 即ux y =,于是 u dx du x dx dy +=.(1.5) 将(1.4),(1.5)代入(1.3),则原方程变为 )(u u dx du x ?=+, 图1

常微分方程的基本概念

考点:常微分方程的基本概念【☆☆☆☆☆】 1.微分方程:含有未知函数的导数或微分的方程称为微分方程. 若未知函数是一元函数,则称为常微分方程; 若未知函数是多元函数,则称为偏微分方程. 考题链接: 例:*320y x y x y xdy ydx ''=++=+=,, 2.阶:未知函数的最高阶导数的阶数. 考题链接: 例:微分方程()2 420x y y x y '''+-=的阶数是( ) A.1 B.2 C.3 D.4 3.性微分方程: ()()()()()()*012n n f x y f x y f x y f x y f x '?+?+?+ +?= 考题链接: 例:判断下列函数是否为线性方程. (1)2y x y '=+ (2)2sin y x y x '=++ (3)sin 0y x y '-+= (4)2y yy x '''-= (5)()2 3y x y '=+ 4.解:若()y x ?=代入方程成为恒等式,则称()y x ?=为方程的一个解. (1)通解:含有相互独立(不能合并,212y C x C x =+与12y C x C x =+)的任意常数,且任意常数的个数与方程的阶数相同的微分方程的解. (2)特解:不含任意常数的解. 例1:某二阶常微分方程的下列解中为通解的是( ) A.sin y C x = B.12sin cos y C x C x =+ C.sin cos y x x =+ D.()12cos y C C x =+

例2:函数sin y C x =(其中C 为任意常数)是微分方程0y y ''+=的( ) A.通解 B.特解 C.解 D.不是解 例3:已知微分方程x y ay e '+=的一个特解为x y xe =,则a =________. 考点:可分离变量的微分方程【☆☆☆☆☆】 (1)标准形式:()()f y dy g x dx = (2)解法:①分离变量,化为标准形式;②两边同时积分. 例1:微分方程0dx dy y x +=的通解是( ) A.2225x y += B.34x y C += C.22x y C += D.227y x -= 例2:方程22sec tan sec tan 0x ydx y xdy +=的通解为________. 例3:微分方程220dy xy dx -=满足条件()11y =-的特解是( ) A.21 y x = B.21y x =- C.2y x = D.2y x =- 考点:齐次方程【☆☆☆☆☆】 (1)标准形式:y y f x ?? = ??? 考题链接: 例:22x y x y '=+不是 222x y x y '=+是 (2)解法:①化为标准形式; ②令y u x = ,代入方程消去y ; ③化为x 与u 的可分离变量的微分方程,求解. 例:求sin 0y xy x y x '--=的通解. 考点:一阶线性微分方程【☆☆☆☆☆】 (1)标准形式:()()y P x y Q x '+=

1.微分方程的一般概念

第十三章常微分方程 在研究客观现象时,常常遇到这样一类数学问题,即其中某个变量和其他变量之间的函数依赖关系是未知的,但是这个未知的函数关系以及它的某些阶的导数(或微分)连同自变量都由一个已知的方程联系在一起 ,这样的方程称为微分方程.如果未知函数是一元的,那末对应的微分方程称为常微分方程;如果未知函数是多元的,那末对应的微分方程称为偏微分方程 . 这一章介绍常微分方程,第十四章介绍偏微分方程 . 本章主要内容是介绍几类可以用分析方法求解的方程,如某些一阶微分方程,常系数线性微分方程,某些高阶微分方程和微分方程组.对于那些不能用分析方法求解的方程,介绍研究解的某些性质的方法(稳定性理论大意),或者用一些特殊的方法求出常微分方程的近似解(主要是数值解法). §1 微分方程的一般概念 微分方程是联系自变量 x ,未知函数y 和它的某些阶导数n n x y x y x y d d ,...,d d ,d d 22的关系式:0 d d ,...,d d ,d d ,,22n n x y x y x y y x F [微分方程的阶数]方程中出现的最高阶导数的阶数称为这个微分方程的阶. 例如: y y x 24是二阶常微分方程. [微分方程的次数]如果能把微分方程化作对所有导数的有理整式,则其中最高阶导数 的次数,称为微分方程的次数.并不是所有微分方程都有次数.例如:y y 11 2是一个二阶二次方程,因有理化后可得y y 12,而21 1y y 是二阶一次方程,方程ln y y 1没有次数可说. [微分方程的解]使常微分方程成为恒等式的变量之间的关系式都是该常微分方程的解.如果关系式是隐式,这种解又称为积分.微分方程的解的求法也可称为微分方程的积分法.微分方程的每一个解的图形又称为微分方程的积分曲线. [微分方程的通解]如果在微分方程的解式中,所含的独立的任意常数(如果一个解中的常数可取任意值,称它为任意常数)的个数等于这个微分方程的阶数,那末这解式称为微分方程的通解.n 阶微分方程的通解表达式中含有n 个彼此独立的任意常数. [微分方程的特解]相对于通解而言,微分方程的每一个解称为特解. [初值问题]如果在自变量某值给出适当个数的附加条件,用来确定微分方程的特解,那末这样的问题称为初值问题. [边值问题]如果在自变量一个以上的值给出适当个数的附加条件,用来确定微分方程的特解,那末这样的问题称为边值问题.

最新微分方程的基本概念

微分方程的基本概念

第一节微分方程的基本概念 教学目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等 教学重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件 教学难点:微分方程的通解概念的理解 教学内容: 1、首先通过几个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M(x,y)处的切线的斜率为2x,求这条曲线的方程。 解设曲线方程为?Skip Record If...?.由导数的几何意义可知函数 ?Skip Record If...?满足 ?Skip Record If...?(1)同时还满足以下条件: ?Skip Record If...?时,?Skip Record If...?(2)把(1)式两端积分,得 ?Skip Record If...?即 ?Skip Record If...?(3)其中C是任意常数。 把条件(2)代入(3)式,得 ?Skip Record If...?,

由此解出C并代入(3)式,得到所求曲线方程: ?Skip Record If...?(4)(2)列车在平直线路上以20?Skip Record If...?的速度行驶;当制动时列车获得加速度?Skip Record If...?.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解设列车开始制动后t秒时行驶了s米。根据题意,反映制动阶段列车运动规律的函数?Skip Record If...?满足: ?Skip Record If...?(5)此外,还满足条件: ?Skip Record If...?时,?Skip Record If...?(6) (5)式两端积分一次得: ?Skip Record If...?(7)再积分一次得 ?Skip Record If...?(8)其中?Skip Record If...?都是任意常数。 把条件“?Skip Record If...?时?Skip Record If...?”和“?Skip Record If...?时?Skip Record If...?”分别代入(7)式和(8)式,得 ?Skip Record If...? 把?Skip Record If...?的值代入(7)及(8)式得 ?Skip Record If...?(9) ?Skip Record If...?(10)在(9)式中令?Skip Record If...?,得到列车从开始制动到完全停止所需的时间:

D微分方程的概念可分离变量的微分方程答案

第七章 微分方程 第一节 微分方程的基本概念 一、单项选择题 1. 下列各式中是常微分方程的为 B . A. 23y y += B. 2y y y '''+= C. 22xy y xy += D. x y x z z y ''++= 2. 微分方程3d d y x y x x =+的通解为y = B . A. 34x C x + B. 32x Cx + C. 33x C + D. 3 4 x Cx + 3. 函数y C x =-(C 为任意常数)是微分方程1xy y '''-=的 C . A. 通解 B. 特解 C. 是解,但既不是通解也不是特解 D. 不是解 4. 微分方程0y y ''+=的通解是y = D . A. sin A x B. cos B x C. sin cos x B x + D. sin cos A x B x + 5. 已知某微分方程的通解为212()e x y C C x =+,且满足01x y ='=,00x y ==, 则有 B . A. 2e x y = B. 2e x y x = C. 2(1)e x y x =+ D. 22e x y = 二、验证满足()ln y xy =的函数()y y x =是微分方程()220xy x y xy yy y '''''-++-=的解. 解:方程ln()y xy =两边同时对x 求导得11y y x y ''=+,整理得y y xy x '=-,两 边再对x 求导得() ()3223()(1) 22y xy x y y xy xy xy xy y xy x xy x ''--+--+-''==--,将,y y '''代入原 方程得()3223222()20()xy xy xy y y y xy x x y xy x xy x xy x xy x -+--++-=----.因此,由 ln()y xy =所确定的函数是微分方程的解.

相关主题