搜档网
当前位置:搜档网 › 固体物理实验报告

固体物理实验报告

固体物理实验报告
固体物理实验报告

固体物理实验报告

院系:电光院

班级:09042402

组员:阴盼强(0916120146)

胡雨彤(0904240220)

侯世磊(0904240219)

实验一激光测定硅单晶晶轴

1、实验目的

1.1、掌握激光测定硅单晶晶轴的原理

1.2、学会使用激光定向仪测定硅单晶<111>、<110>、<100>晶轴

1.3、学会标定观察到的反射光斑所对应的晶面

2、实验原理

选用适当的预处理工艺其主要有腐蚀法和解理法两种,使预测单晶断面上暴露出某种与结晶学结构有关的表面结构(腐蚀坑或解理面),当一细的平行光束投射在此端面上时,其反射光即按照面上与结晶学构造有关的表面结构,在光屏上显示出特征光图。由于立方晶系的低指数晶轴均有严格的轴对称性,因而围绕这些晶轴的腐蚀坑或解理面及其反射出来的特征光图也具有严格的轴对称性。

下面分别叙述用腐蚀法和解理法在单晶端面上获得的表面结构与特征光图的情况。

2.1、腐蚀法

在进行腐蚀之前应先将晶体端面用 80#金刚沙或用氧化铝粉在平板玻璃上湿磨,湿端面均匀打毛,洗净后按指定的工艺条件进行腐蚀。

经过腐蚀后的硅单晶,{111}或{100}、{110}截面上会出现许多腐蚀坑,腐蚀坑底面平行于这些截面,而其侧面则湿另一些具有特定结晶学指数的晶面族,按轴对称的规律微绕着腐蚀坑的底面,构成各种具有特殊对称性的构造。腐蚀坑的限度约为 10um 的数量级,而激光束的直径约为 1mm,因而同一束激光可以照射到许多腐蚀坑。腐蚀坑的形状不尽完整,在表面上的分布也不规则,但光反射到相同的方向。图 1.5 是{111}面的典型腐蚀坑,有三个{221}侧面和一个{111}底面构成。当一束平行激光束照射在该腐蚀坑上时,即发生四个方向的反射。如将该晶体置于图 1.6 所示的测量系统中,调整其方位,使被测晶轴的方向与入

- 1 -

- 2 -

射激光轴相平行,则在光屏上就会显示出如图 1.4 (c )所示的反映晶轴对称性的特征光图。

2.2、 解理法

将待测晶锭的一端先磨成锥形,在盛有 80#金刚沙的研钵中研磨,使锥形对面上解理出微小的解理面。这些解理面都是按特定的晶向解理出来,因而包含着结晶学构造中 的各种方向特征。在图1.3 所示的单晶硅一类的金刚石结构中,其一级理解面为{111},这使因为此晶面族之间原子间距最大,键合最小,

最容易在外力作用下发生解理。从图 1.3 可以看出,[110]是一跟二次轴,其周围有两个对称的理解面(111)和(111),如果 [110]晶轴与激光束平行,则从(111)、(!! 1)解理面上反射得到的特征光图呈二次轴对称。而[100]是一根四次轴,其周围有四个解理面,(111)、(111)、(11 1),因而特征光图具有四次轴对称性。由于研磨不能保证全部得到由理想的解理面组成的由规则小坑,而往往是杂乱无章的,因此反射出来的特征光图就显的比较暗淡,降低了定向精度。在硅单晶定向中主要采用腐蚀法。两种不同的预处理工艺所产生的特征光图的区别是:(1)由于小坑内暴露出来的晶面不同,反射光束的方位和角度也不用;(2 )解理法产生的光图,其光斑呈点庄,这是因为其反射面为镜状解理面,这是由于腐蚀坑的侧面和底面的相交处的边缘呈圆钝状。

三、试验步骤

1.预检:一根硅单晶锭的晶向通常可以从其外部形状来粗略判断。在直拉硅单晶的柱面上通常显露处具有轴对称性的棱线,不仅可以从棱线的对称性判断他们围绕着什么晶轴,而且可以工具棱线间的相对位置来估计其他晶轴的大致取向。图1.8 是[111]和[100]晶轴方向直拉硅单晶的端面,可以看出在[111]晶向硅单晶的横断面上,相邻量晶棱的连线指向为[110],与此垂直的方向为[112]。在[100]晶向硅单晶的横断面上,通过两个棱的直径方向为[110],两个[110]之间为[100]。晶棱截面边缘上分布的对称程度反映了截面和晶轴的垂直程度。在识别了这些晶轴方向的基础上还可以推断处另外一些晶轴方向。通过这样的预检,可以大致估计出晶锭的空间位置,使被测晶轴近似与激光轴平行。

2 .将切好的样品端面用 80#金刚沙湿磨后,用水冲洗干净。

- 3 -

3.对于(111)晶面的硅单晶用5%的NaOH 水溶液煮沸7min,并用水冲洗干净即可准备定向。对于(100)晶面的硅单晶,可以采用同样的腐蚀液。实验发现硅单晶对于腐蚀液浓度和时间要求并不十分严格。

4.调节光学系统,将玻璃镜面与样品架上的标准面贴平,使平行光束入射到镜面上,反射光的中心点与光屏的中心孔重合这时认为光使垂直入射到镜面。

5、实验结果

在实验中,我们试了多个硅单晶片,最后得到三个不同的晶面图像,如下:

可判断出此晶面指数是(111)

此图代表的晶面指数是(110)

此图代表的晶面指数是(100)。

- 4 -

硅单晶中晶体缺陷的腐蚀显示

一、实验目的

1.1、了解硅单晶中缺陷的腐蚀显示技术,掌握常用的腐蚀显示方法

1.2、识别常见的缺陷的腐蚀图形,学会正确的使用金相显微镜和掌握金相显微镜摄影技术

二、原理

硅单晶属金刚石结构,在实际的硅单晶中不可能整块晶体中原子完全按金刚石结构整齐排列,总又某些局部区域点阵排列的规律性被破坏,则该区域就称为晶体缺陷。硅单晶中的缺陷主要有点缺陷、线缺陷和面缺陷等三类。晶体缺陷可以在晶体生长过程中产生,也可以在热处理、晶体加工和受放射性辐射时产生。

在硅单晶中缺陷区不仅是高应力区,而且极易富集一些杂质,这样缺陷区就比晶格完整区化学活拨性强,对化学腐蚀剂的作用灵敏,因此容易被腐蚀而形成蚀坑,在有高度对称性的低指数面上蚀坑形状通常呈现相应的对称性,如位错在(111)、(100)、(110)面上分别呈三角形、方形和菱形蚀坑。

用作腐蚀显示的腐蚀剂按不同作用大体可分为两类,一类蚀非择优腐蚀剂,它主要用于晶体表面的化学抛光,目的在于达到清洁处理,去除机械损伤层和获得一个光亮的表面;另一类是择优腐蚀剂,用来揭示缺陷。一般腐蚀速度越快择择优性越差,而对择优腐蚀剂则要求缺陷蚀坑的出现率高、特征性强、再现性好和腐蚀时间短。

通常用的非择优腐蚀剂的配方为:

HF(40-42%):HNO3(65%)=1:2.5

它们的化学反应过程为:

Si+4HNO3+6HF=H2SiF6+4NO2+4H2O

通常用的择优腐蚀剂主要有以下二种:

(1)希尔腐蚀液(铬酸腐蚀液)

先用CrO3与去离子水配成标准液:

标准液=50g CrO3+100g H2O

然后配成下列几种腐蚀液:

- 5 -

A. 标准液:HF(40-42%)=2:1(慢速液)

B. 标准液:HF(40-42%)=3:2(中速液)

C. 标准液:HF(40-42%)=1:1(快速液)

D. 标准液:HF(40-42%)=1:2(快速液)

一般常用的为配方C液,它们的化学反应过程为:

Si+CrO3+8HF=H2SiF6+CrF2+3H2O

(2)达希腐蚀液

达希(Dash)腐蚀液的配方为:

HF(40-42%):HNO3(65%):CH3COOH(99%以上)=1:2.5:10

硅单晶中不同种类的缺陷需选用上述不同的配方,采用不同的腐蚀工艺。下面对硅单晶中三类缺陷的性质和腐蚀显示分别作一介绍。

1.点缺陷

硅单晶中的点缺陷是指三维(长、宽、高)都很小的缺陷。例如空位、间隙原子和微缺陷等。硅单晶中某些热运动能量大的原子可以离开格点位置到达晶体表面。从而在晶体内部留下一个空格点,称为“空位”,这种缺陷称为肖特基缺陷,或者脱离格点的原子进入晶体内部的间隙位置,那么在晶体内部会同时出现空位和间隙原子,间隙原子-空位对组成的缺陷称为弗兰克缺陷。单晶中空位和间隙原子在热平衡时的浓度与温度有关。温度愈高,平衡浓度愈大。高温生长的硅单晶,在冷却过程中过饱和的间隙原子和空位要消失,其消失的途径是:空位和间隙原子相遇使复合消失;扩散到晶体表面消失;或扩散到位错区消失并引起位错攀移;也可以和碳、氧及金属杂质凝聚成沉积团,这种沉积团叫做微缺陷。如果晶体生长过程中冷却速度较快,那些过饱和的间隙原子和空位就来不及通过上述途径消失,那么它们在以后的热处理过程中将按热处理的具体条件变化其状态。间隙原子和空位目前尚无法观察,但微缺陷可用腐蚀金相法显示。

2. 线缺陷

硅单晶中的线缺陷是二维上很小,一维上不很小的缺陷,如位错等。晶体生长过程中,晶体受到热应力引起塑性形变,在某些晶面族间产生滑移。如果在晶面上有局部区域发生滑移,则在滑移区和未滑移区之间就存在一条位错线。位错一般可分为刃位错和螺位错。若一条位错线处处都是刃位错(螺位错),则称为

- 6 -

纯刃位错(或纯螺位错),否则就称为混合位错。位错线具有封闭性,它可以自成封闭回路,也可终止在晶体表面或晶粒间界上,但不能终止在晶体的内部。

对于(111)晶面的硅单晶用希尔腐蚀液腐蚀后,位错蚀坑呈黑三角形。处于[111]晶向的晶面上,刃位错可以明显地看出是台阶式正三角形,螺位错能看到螺线。如果晶向略微偏离[111]晶向,则对称性被破坏,于是腐蚀图形也会发生变形。

在高温条件下,如果位错在滑移过程中遇到障碍物,则它会在障碍物前被阻止前进,后边那些接连而来的滑移位错也就依次停下来,从而排成一整齐的列队形式,这种一列位错称为位错排。在(111)面上可以发现位错排中所有三角形位错蚀坑的底边都在一直线上,它沿[110]晶向。

大量的位错排可以构成星形结构,在[111]晶向的晶体中,它的特定形状可以是三角星形结构。

3. 面缺陷

面缺陷是硅单晶中一维上很小,两维上不很小的缺陷,它是晶体中某一晶面的晶格不完整所形成的一种缺陷,如晶界、小角度晶界、层错和孪晶等。

(1)小角度晶界

在硅单晶体内当某一“晶界”的两边晶体取向略有偏离,而偏离角度小于10度时,就称此“晶界”为“小角度晶粒间界”,简称为“小角度晶界”。偏离角度大于10度就成了孪晶。在[111]方向生长的硅单晶中,小角度晶界由三角形的位错蚀坑所构成,它的图形特征是蚀坑以角底相顶的形式整齐排列,可长可短。

(2)层错

在晶体生长过程中,特别是在外延生长过程中,由于生长条件的扰乱(如外延衬底质量较差;在生长过程中有小的颗粒杂质引入等),使硅原子的生长排列出现新的核化位置,导致局部区域原子密排面的层序发生位错,这种缺陷称为“层错”。

层错的腐蚀金相蚀坑由一条倾斜面槽构成,这些倾斜面槽在(111)密排面上的层错多数呈现等边三角形,也有成为一条直线或自成120度角或相互交成60度、120度角,其方向通常沿[110]晶向,层错可以贯穿到晶体表面,也可以终止于晶体内的半位错或晶粒间界处。

- 7 -

三、实验方法

本实验是使用不同的腐蚀液核腐蚀方法显示硅单晶中各种不同的缺陷蚀坑,然后用金相显微镜来观察、区分和研究各种蚀坑的形态,定量计数比较缺陷密度大小,并用金相显微摄影仪拍摄各种缺陷的典型照片。

四、实验步骤

1. 晶体的化学腐蚀显示

(1)样品的预处理

要正确地判断分析各种缺陷的蚀坑图形,晶体背景干扰必须小,所以切割下的晶体表面必须经过预处理,使晶体表面清洁且光亮如镜。

①沿硅单晶棒的[111](或[100]、[110])晶向垂直切下薄圆片(偏角必须小于7度,越小越好)依次用300#、600#、302#、303#金刚砂细磨其表面。

②把样品放入10%的“海鸥水”中加热至沸腾约10-20分钟去除油污,然后用去离子水冲洗干净。

③把样品放入化学抛光液中腐蚀去除研磨损伤层,化学抛光液即前述的非择优腐蚀液。必须将样品浸没在腐蚀液中,而且要不停地搅拌以增强抛光的均匀性,抛光结束后用去离子水将样品冲洗干净。

④把样品放入HF溶液中漂洗,除去残存的氧化层,再用去离子水冲洗干净,经上述处理后即可得到一个清洁的、光亮如镜的表面。

外延片本身是平整的镜面,可不必作任何预处理。

(2)样品的化学腐蚀显示

①腐蚀剂的配制

对于(111)面的样品希尔腐蚀液是一种十分有效的显示液,它的配方如前所述,可针对缺陷(如位错)密度高低而分别选用A-D液,一般常用的为C液。还可以用增减HF来调整腐蚀速率,HF增加,腐蚀速率增大;反之则减小。此种腐蚀剂对(110)面的样品也是一种很好的显示液。

对于(100)面的样品通常用达希腐蚀液,它的配方如前所述,应该注意的是腐蚀液配方力求严格,对HF更应精确计量。

②样品的腐蚀

- 8 -

将(111)面样品放入希尔腐蚀液中,根据不同样品所要显示的不同缺陷,选用不同的腐蚀时间和腐蚀温度。

通常显示层错在室温下腐蚀时间是10-30秒左右,显示位错在室温下腐蚀5-10分钟,对微缺陷显示要求在沸腾的腐蚀液中腐蚀2-3分钟,若在室温下往往需要腐蚀20-30分钟。对(110)面的缺陷腐蚀条件类似。腐蚀结束后用去离子水冲洗干净。

将抛光好的(100)样品放入达希腐蚀液中,在35度的恒温条件下,腐蚀3-4小时后可显示位错。腐蚀结束后用去离子水冲洗干净,然后检查表面是否有氧化膜而影响观察,可将样品放入用过的希尔液中浸泡15-20分钟以去除氧化膜,同时还可扩大腐蚀图形便于进行观察。

2. 金相显微镜观察

(1)将照明灯泡电线与变压器相接,然后接上变压器电源,开亮照明灯泡,选择适当的亮度。

(2)在物镜转换器上装一个八倍物镜并转到工作位置,在目镜管上装上15倍目镜,并把被测样品放在载物台上;

(3)缓慢转动粗调焦手轮,观察到图像后,再进一步使用细调焦手轮,调到图像清晰为止。

(4)调节孔径光栅,使整个视场获得最明亮而均匀的照明;

(5)转动载物台位置,选择所需观察的位置并且仔细地观察各种物象的图形,记下位置和视场中缺陷(如位错)的数量。根据不同的情况和要求可转动物镜转换器或调换目镜来获得各种放大倍数;

(6)用石英标准微米尺标定显微镜视场直径,并计算视场面积。如果换用物、目镜则需重新进行标定。

3.金相显微摄影

将观察到的缺陷图形通过与显微镜相连的计算机数据采集卡读入计算机,并保存起来;

4. 缺陷计数

位错、层错和微缺陷常常用单位面积上的缺陷数目来表示: N=n/S, 式中n 表示视场中观测到的缺陷数目,S为视场面积。为了正确反映晶体内缺陷的密度

- 9 -

情况,一般取几个点的读数进行平均。

五、实验结果

1.对几块有位错、位错排、小角度晶界和微缺陷的单晶及有层错的外延片进行腐蚀显示后,用金相显微镜仔细地观察其蚀坑形态,并区分各种不同额缺陷;

2. 用金相显微摄影仪拍摄所观察到的各种缺陷的典型照片;

3. 对一块单晶样品的位错密度(或者微缺陷密度)作定量计数,求出缺陷密度。

六、观察结果

- 10 -

七、思考

位错蚀坑在(111)、(100)、(110)面上分别呈现三角形、方形和菱形,是因为在这些晶面上,更容易发生腐蚀,因此可看到腐蚀坑成不同的形状。

(111)面上的三个原子是对称的,是同时存在同时消失的,因此它形成的位错蚀坑和微缺陷都是三角形的。

由能量最低原理可知,如果在一个单晶样品里有位错的区域,也存在微缺陷,那么原子重新排列会使两者抵消,而只剩下一种。因此我们只能在一个单晶样品里观察到一种现象。

在实验中,预处理过程很重要,因为要是样品的表面被腐蚀,还要容易观察,必须要很好的把握溶剂的浓度和腐蚀时间。

- 11 -

固体物理概念答案

1. 基元,点阵,原胞,晶胞,布拉菲格子,简单格子,复式格子。 基元:在具体的晶体中,每个粒子都是在空间重复排列的最小单元; 点阵:晶体结构的显著特征就是粒子排列的周期性,这种周期性的阵列称为点阵; 原胞:只考虑点阵周期性的最小重复性单元; 晶胞:同时计及周期性与对称性的尽可能小的重复单元; 布拉菲格子:是矢量Rn=mA1+nA2+lA3全部端点的集合,A1,A2,A3分别为格点到邻近三个不共面格点的矢量; 简单格子:每个基元中只有一个原子或离子的晶体; 复式格子:每个基元中包含一个以上的原子或离子的晶体; 2. 晶体的宏观基本对称操作,点群,螺旋轴,滑移面,空间群。 宏观基本对称操作:1、2、3、4、6、i 、m 、4, 点群:元素为宏观对称操作的群 螺旋轴:n 度螺旋轴是绕轴旋转2/n π与沿转轴方向平移T t j n =的复合操作 滑移面:对某一平面作镜像反映后再沿平行于镜面的某方向平移该方向周期的一半的复合操作 空间群:保持晶体不变的所有对称操作 3. 晶向指数,晶面指数,密勒指数,面间距,配位数,密堆积。 晶向(列)指数:布拉菲格子中所有格点均可看作分列在一系列平行直线族上,取一个格点沿晶向到邻近格点的位移基失由互质的(l1/l2/l3)表示; 晶面指数:布拉菲格子中所有格点均可看作分列在一系列平行平面族上,取原胞基失为坐标轴取离原点最近晶面与三个基失上的截距的倒数由互质的(h1/h2/h3)表示; 密勒指数:晶胞基失的坐标系下的晶面指数; 配位数:晶体中每个原子(离子)周围的最近邻离子数称之为该晶体的配位数; 面间距:晶面族中相邻平面的间距; 密堆积:空间内最大密度将原子球堆砌起来仍有周期性的堆砌结构; 4. 倒易点阵,倒格子原胞,布里渊区。 倒易点阵:有一系列在倒空间周期性排列的点-倒格点构成。倒格点的位置可由倒格子基矢表示,倒格子基矢由…确定 倒格子原胞:倒空间的周期性重复单元(区域),每个单元包含一个倒格点 布里渊区:在倒格子中如以某个倒格点作为原点,画出所有倒格矢的垂直平分面,可得到倒格子的魏格纳塞茨原胞,即第一布里渊区 5. 布拉格方程,劳厄方程,几何结构因子。 劳厄方程0(s s )m m R S λ?-= 布拉格方程2sin hkl d m θλ=

固体物理习题解答

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003级

2006年6月 第一章 晶体结构 1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出 这两种结构的原胞与晶胞基矢,设晶格常数为a 。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个Na +和一个Cl - 组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。 由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: 12 3()2()2()2a a a ? =+?? ?=+?? ?=+?? a j k a k i a i j 相应的晶胞基矢都为: ,,.a a a =?? =??=? a i b j c k 2. 六角密集结构可取四个原胞基矢 123,,a a a 与4a ,如图所示。试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的 晶面指数()h k l m 。 解: (1).对于13O A A '面,其在四个原胞基矢 上的截矩分别为:1,1,1 2 -,1。所以, 其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,1 2-,∞。 所以,其晶面指数为()1120。 (3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。所以,其晶面指数为()1100。 (4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。所以,其晶面指数为()0001。 3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的 比为: 简立方: 6 π ;六角密集:6;金刚石: 。 证明: 由于晶格常数为a ,所以: (1).构成简立方时,最大球半径为2 m a R = ,每个原胞中占有一个原子, 3 34326m a V a π π??∴== ??? 36 m V a π∴ = (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子, 3 3 422348m V a π??∴=?= ? ??? 32m V a ∴ = (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子, 3 3 444346 m V a a π??∴=?= ? ???

固体物理知识点总结

一、考试重点 晶体结构、晶体结合、晶格振动、能带论得基本概念与基本理论与知识 二、复习内容 第一章晶体结构 基本概念 1、晶体分类及其特点: 单晶粒子在整个固体中周期性排列 非晶粒子在几个原子范围排列有序(短程有序) 多晶粒子在微米尺度内有序排列形成晶粒,晶粒随机堆积 准晶体粒子有序排列介于晶体与非晶体之间 2、晶体得共性: 解理性沿某些晶面方位容易劈裂得性质 各向异性晶体得性质与方向有关 旋转对称性 平移对称性 3、晶体平移对称性描述: 基元构成实际晶体得一个最小重复结构单元 格点用几何点代表基元,该几何点称为格点 晶格、 平移矢量基矢确定后,一个点阵可以用一个矢量表示,称为晶格平移矢量 基矢 元胞以一个格点为顶点,以某一方向上相邻格点得距离为该方向得周期,以三个不同方向得周期为边长,构成得最小体积平行六面体。原胞就是晶体结构得最小体积重复单元,可以平行、无交叠、无空隙地堆积构成整个晶体。每个原胞含1个格点,原胞选择不就是唯一得 晶胞以一格点为原点,以晶体三个不共面对称轴(晶轴) 为坐标轴,坐标轴上原点到相邻格点距离为边长,构成得平行六面体称为晶胞。 晶格常数 WS元胞以一格点为中心,作该点与最邻近格点连线得中垂面,中垂面围成得多面体称为WS原胞。WS原胞含一个格点

复式格子不同原子构成得若干相同结构得简单晶格相互套构形成得晶格简单格子 点阵格点得集合称为点阵 布拉菲格子全同原子构成得晶体结构称为布拉菲晶格子、 4、常见晶体结构:简单立方、体心立方、面心立方、 金刚石 闪锌矿 铅锌矿 氯化铯

氯化钠 钙钛矿结构 5、密排面将原子瞧成同种等大刚球,在同一平面上,一个球最多与六个球相切,形成密排面密堆积密排面按最紧密方式叠起来形成得三维结构称为密堆积。 六脚密堆积密排面按AB\AB\AB…堆积

固体物理作业

固体物理作业 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 2.简单阐述下列概念: I.晶格、晶胞、晶列、晶向、晶面、晶系。 II.固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞)。 III.正格子、倒格子、布喇菲格子和复式格子。 3.晶体的重要结合类型有哪些,他们的基本特征为何? 4.为什么晶体的稳定结合需要引力外还需要排斥力?排斥力的来源是什么? 5.何谓声子?试将声子的性质与光子作一个比较。 6.何谓夫伦克耳缺陷和肖脱基缺陷? 7.自由电子气体的模型的基本假设是什么? 8.绝缘体中的镜带或能隙的起因是什么? 9.试简述重要的半导体材料的晶格结构、特征。 10.超导体的基本电磁性质是什么? 作业解答: 1.分别用空间点阵、晶格和原胞的概念给晶体下一个定义。 解答: I. 取一个阵点做顶点,以不同方向上的平移周期a、b、c为棱长,做一个平 行六面体,这样的平行六面体叫做晶胞。由很多个晶胞结合在一起构成晶 体。 II. 在空间点阵各个点上配置一些粒子,就构成了晶格。晶格是晶体矩阵所形成的空间网状结构。在网状结构的点上配置一些结构就构成了晶体。 III. 在空间无限排列最小的结构称为原胞,原胞是构成了晶体的最小结构。2.简单阐述下列概念: 解答: I . 晶格、晶胞、晶列、晶向、晶面、晶系。 晶格:又称晶架,是指的晶体矩阵所形成的空间网状结构——说白了就是晶胞的 排列方式。把每一个晶胞抽象成一个点,连接这些点就构成了晶格。 晶胞:顾名思义,则是衡量晶体结构的最小单元。众所周知,晶体具有平移对称 性。在一个无限延伸的晶体网络中取出一个最小的结构,使其能够在空间内密铺 构成整个晶体,那么这个立体就叫做晶胞。简而言之,晶胞就是晶体平移对称的 最小单位。 晶列:沿晶格的不同方向晶体性质不同。布喇菲格子的格点可以看成分裂在一系列相 互平行的直线系上,这些直线系称为晶列。 晶向:布喇菲格子可以形成方向不同的晶列,每一个晶列定义了一个反向,称为晶向。 晶面:在晶体学中,通过晶体中原子中心的平面叫作晶面。 晶系:晶体根据其在晶体理想外形或综合宏观物理性质中呈现的特征对称元素可 划分为立方、六方、三方、四方、正交、单斜、三斜等7类,是为7个晶系。 II 固体物理学原胞(初级原胞)、结晶学原胞(惯用原胞)和魏格纳赛斥原胞(W-S 原胞。

非常有用的固体物理实验方法课第4章_透射电子显微镜

第4章透射电子显微镜 同学们好!今天我们学习的内容是第4章透射电子显微镜,(transmission electron microscopy)简称TEM。下图就是我们今天要介绍的仪器。 那么透射电子显微镜在什么情况下产生的?又有什么功能和作用呢?下面我们就简单介绍一下它的历史背景和其功能和作用。 在光学显微镜下有的细微结构也无法看清,这些结构称为亚显微结构或超微结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska等发明了以电子束为光源的透射电子显微镜,电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。 透射电子显微镜(Transmission Electron Microscopy,TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,适于观察超微结构。透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力

低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。 那么我们总结以上内容可以给透射电子显微镜下一个简单的定义: 用透过样品的电子束使其成像的电子显微镜。在一个高真空系统中,由电子枪发射电子束,穿过被研究的样品,经电子透镜聚焦放大,在荧光屏上显示出高度放大的物像,还可作摄片记录的一类最常见的电子显微镜。 那么本章主要分为5个部分组成。 4.1 电子光学基础 4.2 电子与固体物质的相互作用 4.3 透射电子显微镜 4.4 电子衍射 4.5 透射电子显微分析样品制备 下面我们就来讲第一节,4.1 电子光学基础。本节内容有三部分组成 4.1.1 电子波与电磁透镜 4.1.2 电磁透镜的分辨率 4.1.3 电磁透镜的景深和焦长 那么我们再回顾一下以前所学的内容。

固体物理试题(A) 附答案

宝鸡文理学院试题 课程名称 固体物理 适 用 时 间 2010年1月12日 试卷类别 A 适用专业、年级、班06级物理教育1-3班 一、简要回答以下问题:(每小题6分,共30分) 1、试述晶态、非晶态、准晶、多晶和单晶的特征性质。 2、试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。 3、什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子? 4、周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大, q 的取值将会怎样? 5、金属自由电子论作了哪些假设?得到了哪些结果? 二、证明题(1、3题各20分;第2题10分,共50分) 1、试证明体心立方格子和面心立方格子互为正倒格子。(20分) 2、已知由N 个相同原子组成的一维单原子晶格格波的态密度可表示为(10) 2122)(2)(--= ωωπωρm N 。 式中m ω是格波的最高频率。求证它的振动模总数恰好等于N 。 3、利用刚球密堆模型,求证球可能占据的最大体积与总体积之比为(20分) (1)简单立方π / 6;(2 / 6; (3 / 6(4 / 6;(5 / 16。 三、计算题 (每小题10分,2×10=20分) 用钯靶K α X 射线投射到NaCl 晶体上,测得其一级反射的掠射角为5.9°,已知NaCl 晶胞中Na +与Cl -的距离为2.82×10-10m ,晶体密度为2.16g/cm 3。 求: (1)、X 射线的波长; (2)、阿伏加德罗常数。

宝鸡文理学院试题参考答案与评分标准 课程名称 固体物理学 适 用 时 间 2010年1月 12日 试卷类别 A 适用专业、年级、班 06物理教育1、2、3班 注意事项 一、简要回答以下问题(每小题6分,5×6=30分) 1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。 解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。 另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。 2.试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。 解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合力一般与 成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O ,F ,N 等)相结合形成的。该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol 。 3. 什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子? 解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计,即具有能量为 的声子平均数为11 )()/()(-=T k q w j B j e q n 对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化。 4. 周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大, 的取值将会怎样? 解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。其具体含义是设想在一长为 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第 个原子和第 个原子的运动情况一样,其中 =1,2,3…。 引入这个条件后,导致描写晶格振动状态的波矢 只能取一些分立的不同值。 如果晶体是无限大,波矢 的取值将趋于连续。 5. 金属自由电子论作了哪些假设?得到了哪些结果? 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而

固体物理基础课后1到10题答案

一.本章习题 P272习题 1.试证理想六方密堆结构中c/a=. 一. 说明: C 是上下底面距离,a 是六边形边长。 二. 分析: 首先看是怎样密堆的。 如图(书图(a),P8),六方密堆结构每个格点有12个近邻。 (同一面上有6个,上下各有3个) 上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。 中间层的三个球相切,又分别与上下底面的各七个球相切。球心之间距离为a 。 所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。 三. 证明: 如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点 3 3 'a AB AO = = ∴ (由余弦定理 ) 330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οο ο 633.13 22384132)2()2()3 ()2(2 22 222 22 2 2' '≈===∴+=+=+ =a c c a a c a a c OA AO OO

2.若晶胞基矢c b a ρ ρρ,,互相垂直,试求晶面族(hkl )的面间距。 一、分析: 我们想到倒格矢与面间距的关系G d ρπ 2=。 倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ ++= 写出)(321b b b ρρρ与正格子基矢 )(c b a ρ ρρ的关系。即可得与晶面族(hkl ) 垂直的倒格矢G ρ。进而求 得此面间距d 。 二、解: c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ ===,, 晶胞体积abc c b a v =??=)(ρ ρρ 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π ρ

非常有用的固体物理实验方法课第2章__固体X射线学

第二章固体X-射线学 固体X-射线学是通过测定X-射线与凝聚态物质相互作用产生的效应来研究物质本性和结构的学科。在X-射线被吸收时产生吸收谱,通过对吸收谱的研究可以决定原子的能级结构,通过对吸收限高能测微弱的扩展吸收谱的研究可以获得吸收原子周围的结构信息;原子吸收了X-光子后发射标识辐射和俄歇电子,通过对这两中谱的测定可识别物质中的原子种类并测定其含量;X-射线被凝聚态物质散射时,通过对弹性散射线束强度和方向的测定可求得晶体和非晶体的结构、组织和缺陷,通过对非弹性散射线束这些量的测定可求出物质中晶格振动谱和原子外层电子的动量分布。 在这一章里,我们将固体X-射线学中的一些试验技术分成三部分来介绍:①晶体的衍射强度公式和衍射仪的使用方法,②常用的一些晶体结构分析法,③固体物理发展前沿的一些结构分析技术。 §2.1 散射理论与强度公式 在原理上,凝聚态物质对X-射线相干散射强度的计算是:将全部相干波叠加,求出合振幅,这合振幅的平方就是所求的强度。计算出来的强度是与散射体的结构状态密切相关的;进行叠加的振幅和位相因子决定于散射体内的原子及其分布,因而散射强度及其分布代表散射体的结构信息。这就是衍射法结构分析的依据。 按照结构来分类,凝聚态物质可分成晶体、准晶态和非晶态固体与液体。晶体又可分成大块完整晶体和嵌镶结构晶体。衍射理论中使用于大块完整晶体的理论叫做衍射动力学理论,适于嵌镶晶体的理论叫做衍射运动学理论,而适用于非晶态固体和液体的理论叫做非晶态衍射理论。准晶态固体是近几年才发现的含有5次度转对称类型机构但非周期性(有准周期性)的物质,其结构介乎晶态与非晶态之间,它的衍射理论正在迅速发展中。 X-射线在完整晶体中传播时,它首先被点阵第一次衍射,这些衍射线又被点阵再次衍射,衍射线与透射线相互作用,发生干涉效应。动力学理论是考虑这种再衍射效应的理论。X-射线在嵌镶晶体中传播时,由于嵌镶警惕是由许多位略有差别的完整小晶块嵌镶而成的,这样,一方面完整小晶块足够小以致其内部再衍射引起的效应可以忽略,另一方面各晶块之间的取向差又足以使它们的衍射线之间没有相干性,因而运动学理论是不考虑再衍射效应的理论。由于动力学理论和运动学理论有这样根本的差别,导出的衍射强度公式及衍射线束张角也就大不相同:动力学理论导出的衍射强度正比于结构因数F(hkl)的一次方,张角只有数弧秒,而运动学理论导出的衍射强度正比于F(hkl)的平方,平常见到的衍射强度,张角却有数分弧(由嵌镶晶体的位向分布决定)。 实际晶体绝大多数是嵌镶晶体,平常见到的衍射强度公式是根据运动学理论导出的。在这一节里准备对运动学强度公式做一扼要介绍。此外还将对小角散射及两种重要的不相干散射作一个简单说明。非晶态衍射理论则放在下面有关章节中叙述。

固体物理习题与答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3r 3 4π,Vc=a 3 ,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理基础解答吴代鸣

固体物理基础解答吴代鸣

————————————————————————————————作者: ————————————————————————————————日期:

1.试证理想六方密堆结构中c/a =1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ===,, 晶胞体积abc c b a v =??=)( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=?=?==?=?==?=?= 而与 (h kl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππ 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d ++= ++= =ππ π

3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613=?+?个原子。 (111)面面积 ()222232 322)2 2( )2(22 1 a a a a a a =?= -? 所以原子面密度2 2)111(34 2 32a a = = σ (110)面 平均每个(110)面有22 1 2414=?+? 个原子。 (110)面面积2 22a a a =? 所以(110)面原子面密度22 )110(2 22a a ==σ 5.设二维矩形格子的基矢为j a a i a a 2,21==,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2===??=?===??=?=πππππππ 所以倒格子也是二维矩形格子。2b 方向短一半。 最近邻;,22b b - 次近邻;2,2,,2211b b b b -- 再次近邻;,,,12122121b b b b b b b b ---+- 再再次近邻;3,322b b - 做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得: 第一布里渊区是一个扁长方形; 第二布里渊区是2块梯形和2块三角形组成; 第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。

固体物理考题及答案三

一、 填空题 (共20分,每空2分) 目的:考核基本知识。 1、金刚石晶体的结合类型是典型的 共价结合 晶体, 它有 6 支格波。 2、晶格常数为a 的体心立方晶格,原胞体积Ω为 23a 。 3、晶体的对称性可由 32 点群表征,晶体的排列可分为 14 种布喇菲格子,其中六角密积结构 不是 布喇菲格子。 4、两种不同金属接触后,费米能级高的带 正 电,对导电有贡献的是 费米面附近 的电子。 5、固体能带论的三个基本近似:绝热近似 、_单电子近似_、_周期场近似_。 二、 判断题 (共10分,每小题2分) 目的:考核基本知识。 1、解理面是面指数高的晶面。 (×) 2、面心立方晶格的致密度为π61 ( ×) 3、二维自由电子气的能态密度()1~E E N 。 (×) 4、晶格振动的能量量子称为声子。 ( √) 5、 长声学波不能导致离子晶体的宏观极化。 ( √) 三、 简答题(共20分,每小题5分) 1、波矢空间与倒格空间(或倒易空间)有何关系? 为什么说波矢空间内的状态点是准连续的? 波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为, 而波矢空间的基矢分别为, N1、N2、N3分别是沿正格子基矢方向晶体的原胞数目. 倒格空间中一个倒格点对应的体积为 , 波矢空间中一个波矢点对应的体积为 , 即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N. 由于N 是晶体的原胞数目,数目巨大,所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的。 也就是说,波矢点在倒格空间看是极其稠密的。因此, 在波矢空间内作求和处理时,可把波矢空间内的状态点看成是准连续的。 2、在甚低温下, 德拜模型为什么与实验相符? 在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 321 b b b 、、 32N N / / /321b b b 、、 1N 321 a a a 、、*321) (Ω=??b b b N N b N b N b * 332211)(Ω=??

固体物理知识点总结

晶格(定义):理想晶体具有长程有序性,在理想情况下,晶体是由全同的原子团在空间无限重复排列而构成的。晶体中原子排列的具体形式称之为晶格,原子、原子间距不同,但有相同排列规则,这些原子构成的晶体具有相同的晶格;由等同点系所抽象出来的一系列在空间中周期排列的几何点的集合体空间点阵;晶格是属于排列方式范畴,而空间点阵是属于晶格周期性几何抽象出来的东西。 晶面指数:晶格所有的格点应该在一簇相互平行等距的平面,这些平面称之为晶面。将一晶面族中不经过原点的任一晶面在基矢轴上的截距分别是u、v、w,其倒数比的互质的整数比就是表示晶面方向的晶面指数,一般说来,晶面指数简单的晶面,面间距大,容易解理。Miller 指数标定方法:1)找出晶面系中任一晶面在轴矢上的截距;2)截距取倒数;3)化为互质整数,表示为(h,k,l)。注意:化互质整数时,所乘的因子的正、负并未限制,故[100]和[100]应视为同一晶向。 晶向指数:从该晶列通过轴矢坐标系原点的直线上任取一格点,把该格点指数化为互质整数,称为晶向指数,表示为[h,k,l]。要弄清几种典型晶体结构中(体心、面心和简单立方)特殊的晶向。 配位数: 在晶体学中,晶体原子配位数就是一个原子周围最近邻原子的数目,是用以描写晶体中粒子排列的紧密程度物理量。将组成晶体的原子看成钢球,原子之间通过一定的结构结合在一起,形成晶格;所谓堆积比就是组成晶体的原子所占体积与整个晶体结构的体积之比,也是表征晶体排列紧密程度的物理量。密堆积结构的堆积比最大。 布拉格定律: 假设:入射波从晶体中平行平面作镜面反射,每一各平面反射很少一部分辐射,就像一个轻微镀银的镜子,反射角等于入射角,来自平行平面的反射发生干涉形成衍射束。(公式)。其中:n为整数,称为反射级数;θ为入射线或反射线与反射面的夹角,称为掠射角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2θ称为衍射角。当间距为d的平行晶面,入射线在相邻平行晶面反射的射线行程差为2dsinθ,当行程差等于波长的整数倍时,来自相继平行平面的辐射就发生相长干涉,根据图示,干涉加强的条件是:,这就是所谓布拉格定律,布拉格定律成立的条件是波长λ≤2d。 布拉格定律和X射线衍射产生条件之间的等价性证明 假设:若X射线光子弹性散射,光子能量守恒,出射束频率:入射束频率: 2dSinθ= nλ Hω ω'= ck' ω= ck因此,有散射前后波矢大小相等k’=k 和k’2=k2根据X射线衍射产生条件得到(k’-k)=G 及k+G=k’两个等式;第二个式子两边平方并化简得到:2k.G+G2=0;将G用-G替换得到2k.G=G2也成立;因此得到了四个等价式子:;k+G=k’;2k.G+G2=0;以及2k.G=G2上面说明了X衍射产生条件的四个表达式等价性;下面就进一步证明布拉格定律与X射线衍射产生条件等价:证明:由 可以推出: 即可以得到即: 即:,命题得证 布里渊区定义 为维格纳-赛茨原胞(Wigner-Seitz Cell)。任选一倒格点为原点,从原点向它的第一、第二、第三……近邻倒格点画出倒格矢,并作这些倒格矢的中垂面,这些中垂面绕原点所围成的多面体称第一B.Z,它即为倒易间的Wigner-Seitz元胞,其“体积”为Ω※=b1·(b2×b3)布里渊区边界上波矢应该满足的方程形式为(公式) 因此,布里渊区实际上包括了所有能在晶体上发生布拉格反射的波的波矢k。 范德华耳斯-伦敦相互作用 答:对于组成晶体的原子,尤其是惰性气体原子,由于原子电子云是瞬间变化的,因此各个原子电子云间存在互感偶极矩,这种互感偶极矩将原子之间联系在一起形成晶体。也就是通过互感偶极矩作用即耦合作用后比没有耦合作用时要来得低,这种由于原子之间互感偶极矩所产生的相互吸引作用称之为范德华耳斯-伦敦相互作用 离子晶体中存在的相互作用: ? 异号离子间的静电吸引相互作用(主要组成部分)? 同号离子间的静电排斥相互作用(主要组成部分)? 对于具有惰性气体电子组态的离子,他们之间排斥作用有类似于惰性气体原子间的排斥相互作用? 存在很小部分的吸引性相互作用的范德华耳斯作用(大约占1%~2%)离子晶体中,吸引性相互作用的范德华耳斯部分对于晶体内聚能贡献比较小,大约1%~2%范德华耳斯相互作用是一种互感偶极相互作用,只要存在正负中心不重合的偶极子,就会存在这种相互作用,只是在离子晶体中,这种相互作用较小。

固体物理基础答案解析吴代鸣

1.试证理想六方密堆结构中c/a=1.633. 证明: 如图所示,六方密堆结构的两个晶格常数为a 和c 。右边为底面的俯视图。而三个正三角形构成的立体结构,其高度为 2.若晶胞基矢c b a ,,互相垂直,试求晶面族(hkl )的面间距。 解: c b a ,,互相垂直,可令k c c j b b i a a ,, 晶胞体积abc c b a v )( 倒格子基矢: k c j b i a abc b a v b j b i a k c abc a c v b i a k c j b ab c c b v b 2)(2)(22)(2)(22)(2)(2321 而与 (hkl )晶面族垂直的倒格矢 2 22321)()()(2) (2c l b k a h G k c l j b k i a h b l b k b h G 故(hkl ) 晶面族的面间距 2222 22)()()(1)()()(222c l b k a h c l b k a h G d 3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答: 通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。 体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。布拉菲晶格是简单立

方格子。 4.试求面心立方结构的(111)和(110)面的原子面密度。 解: (111)面 平均每个(111)面有22 1 3613 个原子。 (111)面面积 222232 322)2 2( )2(22 1 a a a a a a 所以原子面密度2 2)111(34 2 32a a (110)面 平均每个(110)面有22 1 2414 个原子。 (110)面面积2 22a a a 所以(110)面原子面密度22 )110(2 22a a 5.设二维矩形格子的基矢为j a a i a a 2,21 ,试画出第一、二、三、布里渊区。 解: 倒格子基矢: j b j a j a j ax x a a a a v b k x a i a x i a x a a a a v b 113233212 12212222)(2) (2222)(2 所以倒格子也是二维矩形格子。2b 方向短一半。 最近邻;,22b b 次近邻;2,2,,2211b b b b 再次近邻;,,,12122121b b b b b b b b 再再次近邻;3,322b b 做所有这些点与原点间连线的垂直平分线,围成布里渊区。再按各布里渊区的判断原则进行判断,得: 第一布里渊区是一个扁长方形; 第二布里渊区是2块梯形和2块三角形组成; 第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。 6.六方密堆结构的原胞基矢为:

固体物理复习题答案完整版

一·简答题 1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。(答案参考教材P7-8) (1)体心立方基矢:123() 2()2() 2 a i j k a i j k a i j k ααα=+-=-++=-+,体积:31 2a ,最近邻格点数:8 (2)面心立方基矢:123() 2()2() 2 a i j a j k a k i ααα=+=+=+,体积:31 4a ,最近邻格点数:12 2.习题、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。 证明: 因为33121323 ,a a a a CA CB h h h h = -=-,112233G h b h b h b =++ 利用2i j ij a b πδ?=,容易证明 12312300 h h h h h h G CA G CB ?=?= 所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

3.习题、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足: 22222()d a h k l =++,其中a 为立方边长; 解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak === 由倒格子基矢的定义:2311232a a b a a a π ?=??,3121232a a b a a a π?=??,123123 2a a b a a a π?=?? 倒格子基矢:123222,,b i b j b k a a a πππ = == 倒格子矢量:123G hb kb lb =++,222G h i k j l k a a a πππ =++ 晶面族()hkl 的面间距:2d G π= 2221 ()()()h k l a a a = ++ 4.习题、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。 解:(111) (1)、(111)面与(100)面的交线的AB ,AB 平移,A 与O 点重合,B 点位矢:B R aj ak =-+, (111)面与(100)面的交线的晶向AB aj ak =-+,晶向指数[011]。 (2)、(111)面与(110)面的交线的AB ,将AB 平移,A 与原点O 重合,B 点位矢:

东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案 第一章 微观粒子的状态 1-一维运动的粒子处在下面状态 (0,0)() (0) x Axe x x x λλψ-?≥>=? =??==?

固体物理实验方法课程作业及答案(仅供参考)

《固体物理实验方法》课程作业 所在院系: 年级专业: 姓 名: 学 号: 完成日期:2012年6月8日 一、X 射线衍射分析 1.原子比为1:1的MgO 晶体,其X 射线衍射谱(XRD )能否观察到以下衍射峰:(111)、(110)、 (001)和(002)。给出推导证明过程。 解:MgO 晶体是面心立方结构,及面心立方晶格结构。而面心立方结构的基元在(0,0,0),(0,1/2,1/2), (1/2,0, 1/2), (1/2,1/2,0)的位置具有全同的原子。其面心立方晶格的结构因子如下: 如果所有的指数123(,,)v v v 都是偶数,则s=4ρ(ρ为原子的形状因子);如果所有的指数123(,,)v v v 都是奇数,则 仍然得到s=4ρ;但是,如果123(,,)v v v 中只有一个整数为偶数,那么上式中将有两个指数项中的指数银子是-i π的 奇数倍,从而s=0。如果在123(,,)v v v 中只有一个整数为奇数,同理可知s=0。因此,对于面心立方晶格,如果整 数123(,,)v v v 不能同时取偶数或奇数,则不能发生反射。所以(111)、(002)可观测到衍射峰。而(110)、(001)不能观测到衍射峰。 2.L10相AuCu 合金点阵为四方晶格(a=b ≠c ,α=β=γ=90°)。下表为L10相AuCu 合金X 射线衍射峰位置。计算L10 相AuCu 合金的晶格参数。 解:从表格可以看出(111)峰的位置40.489θ=?,(110)峰的位置31.935θ=? 由布拉格定律:2sin d n θλ= 则有2sin31.935 1.54056d A ??= 得21.4562246, 2.0594126d A a b T d A ??===?= ,2sin 40.489 1.54056d A ? ?= 得 1.18632d A ?= 从而得出 2.0455678c A ?= 二、成分及形貌分析 1.电子与物质发生相互作用能产生哪些物理信号?解释各种物理信号产生的机理;基于这些 物理信号能发展出一系列分析方法,请论述这些分析方法的原理和应用。 电子束通过物质时发生的散射、电离、轫致辐射和吸收等过程。β射线同物质的相互作用 作为特例也属于这个范畴。具体原理及应用如下: (1)散射 电子和物质的原子核发生弹性散射时电子的运动方向受到偏折,根据所穿过物质

固体物理经典复习题及答案

一、简答题 1.理想晶体 答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间 无限重复排列而构成的。 2.晶体的解理性 答:晶体常具有沿某些确定方位的晶面劈裂的性质,这称为晶体的解理性。 3.配位数 答: 晶体中和某一粒子最近邻的原子数。 4.致密度 答:晶胞内原子所占的体积和晶胞体积之比。 5.空间点阵(布喇菲点阵) 答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由一些相同的 点子在空间有规则地做周期性无限重复排列,这些点子的总体称为空间点阵(布喇菲点阵),即平移矢量123d 、d 、h h h d 中123,,n n n 取整数时 所对应的点的排列。空间点阵是晶体结构周期性的数学抽象。 6.基元 答:组成晶体的最小基本单元,它可以由几个原子(离子)组成,整个晶体 可以看成是基元的周期性重复排列而构成。 7.格点(结点) 答: 空间点阵中的点子代表着结构中相同的位置,称为结点。 8.固体物理学原胞 答:固体物理学原胞是晶格中的最小重复单元,它反映了晶格的周期性。 取一结点为顶点,由此点向最近邻的三个结点作三个不共面的矢量,以此三个矢量为边作的平行六面体即固体物理学原胞。固体物理学原胞的结点都处在顶角位置上,原胞内部及面上都没有结点,每个固体物理学原胞平均含有一个结点。 9.结晶学原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为结晶学原胞,结晶学原胞反映了晶体的对称性,

它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积。 10.布喇菲原胞 答:使三个基矢的方向尽可能的沿空间对称轴的方向,以这样三个基矢为 边作的平行六面体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n Ω,其中n 是结晶学原胞所包含的结点数, Ω是固体物理学原胞的体积 11.维格纳-赛兹原胞(W-S 原胞) 答:以某一阵点为原点,原点与其它阵点连线的中垂面(或中垂线) 将空间 划分成各个区域。围绕原点的最小闭合区域为维格纳-赛兹原胞。 一个维格纳-赛兹原胞平均包含一个结点,其体积等于固体物理学原胞的体积。 12. 简单晶格 答:当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表 该原子,这种晶体结构就称为简单格子或Bravais 格子。 13.复式格子 答:当基元包含2 个或2 个以上的原子时,各基元中相应的原子组成与格 点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。显然,复式格子是由若干相同结构的子晶格相互位移套构而成。 14.晶面指数 答:描写晶面方位的一组数称为晶面指数。设基矢123,,a a a r u u r u u r ,末端分别落 在离原点距离为123d 、d 、h h h d 的晶面上,123、、h h h 为整数,d 为晶面 间距,可以证明123、、h h h 必是互质的整数,称123、、h h h 3为晶面指数,记为()123h h h 。用结晶学原胞基矢坐标系表示的晶面指数称为密勒指 数。 15.倒格子(倒易点阵)

相关主题