搜档网
当前位置:搜档网 › 2020高考物理大二轮复习考前基础回扣练7动能定理功能关系

2020高考物理大二轮复习考前基础回扣练7动能定理功能关系

2020高考物理大二轮复习考前基础回扣练7动能定理功能关系
2020高考物理大二轮复习考前基础回扣练7动能定理功能关系

回扣练7:动能定理 功能关系

1.在光滑的水平面上有一静止的物体,现以水平恒力F 1推这一物体,作用一段时间后换成相反方向的水平恒力F 2推这一物体,当恒力F 2作用的时间与恒力F 1作用的时间相等时,物体恰好回到原处,此时物体的动能为32 J ,则在整个过程中,恒力F 1、F 2做的功分别为( )

A .16 J 、16 J

B .8 J 、24 J

C .32 J 、0 J

D .48 J 、-16 J

解析:选B.设加速的末速度为v 1,匀变速的末速度为v 2,由于加速过程和匀变速过程的位移相反,又由于恒

力F 2作用的时间与恒力F 1作用的时间相等,根据平均速度公式有v 12=-v 1+v 2

2

,解得v 2=-2v 1,根据动能定理,

加速过程W 1=12mv 21,匀变速过程W 2=12mv 22-12mv 21根据题意12

mv 2

2=32 J ,故W 1=8 J ,W 2=24 J ,故选B.

2.如图甲所示,一次训练中,运动员腰部系着不可伸长的绳,拖着质量m =11 kg 的轮胎从静止开始沿着笔直的跑道加速奔跑,绳与水平跑道的夹角是37°,5 s 后拖绳从轮胎上脱落.轮胎运动的v -t 图象如图乙所示,不计空气阻力,已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2

.则下列说法正确的是( )

A .轮胎与水平地面间的动摩擦因数μ=0.2

B .拉力F 的大小为55 N

C .在0~5 s 内,轮胎克服摩擦力做功为1 375 J

D .在6 s 末,摩擦力的瞬时功率大小为275 W

解析:选D.撤去F 后,轮胎的受力分析如图1所示,由速度图象得5 s ~7 s 内的加速度a 2=-5 m/s 2

,根据牛顿运动定律有N 2-mg =0,-f 2=ma 2,又因为f 2=μN 2,代入数据解得μ=0.5,故A 错误; 力F 拉动轮胎的过程中,轮胎的受力情况如图2所示,根据牛顿运动定律有F cos 37°-f 1=ma 1,mg -F sin 37°-N 1=0, 又因为f 1=μN 1,由速度图象得此过程的加速度a 1=2 m/s 2

,联立解得:F =70 N ,B 错误;在0 s ~5 s 内,轮胎克服摩擦力做功为0.5×68×25 J=850 J ,C 错误;因6 s 末轮胎的速度为5 m/s ,所以在6 s 时,摩擦力的瞬时功率大小为0.5×110×5 W=275 W ,D 正确;故选D.

3.一质量为m 的电动汽车在平直公路上以恒定的功率加速行驶,当速度大小为v 时,其加速度大小为a ,设汽车所受的阻力恒为f .以下说法正

确的是( )

A .汽车的功率为fv

B .当汽车的速度增加到2v 时,加速度为a

2

C .汽车行驶的最大速率为? ????1+ma f v

D .当汽车的速度为v 时,行驶的距离为v 2

2a

解析:选C.汽车做加速运动,由牛顿第二定律有:F -f =ma ,所以F =f +ma ,所以汽车的功率为P =Fv =(f +ma )v ,故A 错误;当汽车的速度增加到2v 时,此时的牵引力为F =P

2v

(f +ma )v 2v =(f +ma )

2

,由牛顿第二定律有:F -f =ma 1,即(f +ma )2-f =ma 1,解得:a 1=ma -f

2m

,故B 错误;当汽车的牵引力与阻力相等时,汽车

速度最大,即v m =P f

=(f +ma )v f

=? ??

??

1+ma f v ,故C 正确;由于以恒定的功率行驶,即做加速度减小的加速运动,

行驶的距离不能用2ax =v 2

求解.故D 错误.

4.如图,两个相同的小球P 、Q 通过铰链用刚性轻杆连接,P 套在光滑竖直杆上,Q 放在光滑水平地面上.开始时轻杆贴近竖直杆,由静止释放后,Q 沿水平地面向右运

动.下列判断正确的是( )

A .P 触地前的速度一直增大

B .P 触地前的速度先增大后减小

C .Q 的速度一直增大

D .P 、Q 的速度同时达到最大

解析:选A.开始时P 、Q 的速度都为零,P 受重力和轻杆的作用下做加速运动,而Q 由于轻杆的作用,则开始时轻杆对Q 做正功,Q 加速,后对Q 做负功,Q 减速,当P 到达底端时,P 只有竖直方向的速度,而水平方向的速度为零,故Q 的速度为零,所以在整个过程中,P 的速度一直增大,Q 的速度先增大后减小,故A 正确,BCD 错误;故选A.

5.如图所示,两光滑直杆成直角竖直固定,OM 水平,ON 竖直,两个质量相同的有孔小球A 、B (可视为质点)串在杆上通过长为L 的非弹性轻绳相连,开始时小球A 在水平向左的外力作用下处于静止状态,此时OB =4

5L ,重力加速度为g ,现将外力

增大到原来的4倍(方向不变),则小球B 运动到与O 点的距离为3

5

L 时的速度大小为( )

A.

1

5

10gL B .1

5

15gL

C.

8

255gL D .625

5gL 解析:选C.开始时A 到O 的距离: OA =

L 2

-? ????45L 2

=35

L ,

以B 为研究对象,开始时B 受到重力、杆的支持力N 和绳子的拉力T ,如图,则: tan θ=N mg ;由几何关系:tan θ=OA OB =35L

45

L =3

4

;联立得:N

=3

4

mg , 以AB 组成的整体为研究对象,在水平方向二者受到拉力F 和杆对B 的支持力N ,由于水平方向受力平衡,所以F =N =3

4

mg ,现将外力增大到原来的4倍(方向不变),则:F ′=4F =3mg ,

B 球向上运动时,小球B 运动到距O 点的距离3

5L 时,由几何关系得,A 到O 点的距离:OA ′=

L 2

-? ??

??35L 2

=45

L , A 向左的距离:Δs =45L -35L =15

L , B 上升的距离:Δh =45

L -35

L =15

L

此时细绳与竖直方向之间夹角的正切值:tan θ′=4

3,

则得 cos θ′=0.6,sin θ′=0.8 由运动的合成与分解知识可知:

A 球与

B 球的速度之间的关系为: v B cos θ′=v A sin θ′

可得v B =4

3

v A

以AB 球组成的整体为研究对象,拉力和重力对系统做功,由动能定理得: F ′·ΔS -mg Δh =12mv 2A +12mv 2

B

联立以上方程解得:v B =

8

25

5gL ,选项C 正确.故选C. 6.(多选)某研究小组对一辆新能源实验小车的性能进行研究.小车的质量为1.0 kg ,他们让这辆小车在水平的直轨道上由静止开始运动,其v -t 图象如图所示(除2~10 s 时间段图象为曲线外,其余时间段图象均为直线).已知2 s 后小车的功率P =9 W 保持不变,可认为在整个运动过程中小车所受到的阻力大小不变,下列说法正确的有( )

A .0~2 s 时间内,汽车的牵引力是3.5 N

B .汽车在第1 s 时的功率等于第14 s 时的功率的一半

C .小车在0~10 s 内位移的大小为42 m

D .2~10 s 时间内,汽车的平均速度是4.5 m/s

解析:选BC.汽车的最大速度为v m =6 m/s ,则阻力f =P v m =9

6

N =1.5 N ;在0~2 s 时间内,汽车的加速度a

=32

m/s 2=1.5 m/s 2

;则牵引力是F =ma +f =1×1.5 N+1.5 N =3 N ,选项A 错误;汽车在第1 s 末时的功率:P 1=Fv 1=3×1.5 W=4.5 W =12P 14,选项B 正确;在0~2 s 内的位移:s 1=12

×2×3 m=3 m ;在2 s ~10 s 内由动

能定理:Pt -fs 2=12mv 210-12mv 2

2,解得s 2=39 m ,则小车在0~10 s 内位移的大小为s =s 1+s 2=42 m ,选项C 正

确;2~10 s 时间内,汽车不是匀加速运动,则平均速度是v ≠3+6

2

m/s =4.5 m/s ,选项D 错误;故选BC.

7.(多选)如图为“阿特伍德机”模型,跨过光滑的定滑轮用质量不计的轻绳拴接质量分别为m 和2m 的物体甲、乙.将两物体置于同一高度,将装置由静止释放,经一段时间甲、乙两物体在竖直方

向的间距为l ,重力加速度用g 表示.则在该过程中( )

A .甲的机械能一直增大

B .乙的机械能减少了2

3

mgl

C .轻绳对乙所做的功在数值上等于乙的重力所做的功

D .甲的重力所做的功在数值上小于甲增加的动能

解析:选AB.机械能等于动能与重力势能之和,甲加速上升,其动能和重力势能均增加,所以机械能增加,

故A 正确;甲和乙组成的系统机械能守恒,由机械能守恒定律得:2mg l 2=mg l 2+12mv 2+12×2mv 2

,则解得:v =

1

3

gl ,乙动能增加量为12×2mv 2

=13mgl ,重力势能减小2mg l 2=mgl ,所以机械能减小23mgl ,故B 正确;由于乙加速下降,

则轻绳的拉力小于重力,因此轻绳对乙所做的功在数值上小于乙的重力所做的功,故C 错误;甲动能增加量为:ΔE k =12mv 2=16mgl ,甲的重力所做的功在数值上等于1

2mgl ,由此可知甲的重力所做的功在数值上大于甲增加的动

能,故D 错误.所以AB 正确,CD 错误.

8.(多选)如图所示,倾角为θ=37°的传送带以速度v =2 m/s 沿图

示方向匀速运

动.现将一质量为2 kg 的小木块,从传送带的底端以v 0=4 m/s 的初速度,沿传送带运动方向滑上传送带.已知小木块与传送带间的动摩擦因数为μ=0.5,传送带足够长,sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2

.小物块从滑上传送带至到达最高点的过程中,下列说法正确的是( )

A .运动时间为0.4 s

B .发生的位移为1.6 m

C .产生的热量为9.6 J

D .摩擦力对小木块所做功为12.8 J

解析:选BC.第一阶段:根据牛顿第二定律,mg sin θ+μmg cos θ=ma 1,得a 1=10 m/s 2

,第一阶段位移为

x 1=v 2-v 20-2a 1=0.6 m ,所用时间为t 1=v -v 0-a 1=0.2 s ,传送带位移为x 传1=vt 1=0.4 m ,划痕为Δx 1=x 1-x 传1=0.2

m ;第二阶段:mg sin θ-μmg cos θ=ma 2,得a 2=2 m/s 2

,第二阶段位移为x 2=v 22a 2=1 m ,所用时间为t 2=v a 2

1 s ,传送带位移为x

传2

=vt 2=2 m ,划痕为Δx 2=x 传1-x 2=1 m .由以上分析可知,物体运动总时间为t =t 1+

t 2=1.2 s ;物体的总位移x =x 1+x 2=1.6 m ;产生总热量为Q =μmg cos θ·Δx 1+μmg cos θ·Δx 2=9.6 J ;

摩擦力第一阶段做负功,第二阶段做正功,摩擦力对小木块所做功为W =-μmg cos θ·x 1+μmg cos θ·x 2=3.2 J ,综上分析可知BC 正确.

9.(多选)如图所示,内壁光滑的绝缘管做成的圆环半径为R ,位于竖直平面内,管的内径远小于R .ab 为该环的水平直径,ab 及其以下区域处于水平向左的匀强电场中.现将质量为m 、电荷量为q 的带正电小球从管中a 点由静止开始释放,已知qE =mg .

则下列说法正确的是( )

A .小球释放后,可以运动过b 点

B .小球释放后,到达b 点时速度为零,并在bda 间往复运动

C .小球释放后,第一次和第二次经过最高点c 时对管壁的压力之比为1∶6

D .小球释放后,第一次经过最低点d 和最高点c 时对管壁的压力之比为5∶1

解析:选AD.从a 到b 的过程,由动能定理qE ·2R =12

mv 2

b ,可知v b ≠0,故小球可以运动过b 点,则选项A

正确,B 错误;小球释放后,第一次经过最高点c 时有:N 1+mg =m v 21

R ,-mgR +Eq ·2R =12

mv 21,因为qE =mg ,解

得N 1=mg ;第二次经过最高点c 时有:Eq ·2R =12mv 22-12mv 2

1,同理可得N 2=5mg ,所以比值为1∶5,选项C 错误;

小球释放后,第一次经过最低点d ,由动能定理mgR +EqR =12mv 2,在d 点有:N -mg =m v

2

R ,解得N =5mg .故D 正确;

故选AD.

10.(多选)如图所示,质量为M 、半径为R 的ABC 凹槽(为光滑圆槽的一部分)静止在光滑水平面上,B 为最

低点,

BC 为14

圆弧,OA 与竖直方向夹角θ=60°,其右侧紧贴竖直墙壁PQ .一质量为m 的小物块(可视为质点)从D

处水平抛出,同时将ABC 凹槽锁定在地面上,小物块恰好从A 点无碰撞的射入凹槽 ,当其到达B 点时解除锁定,小物块刚好能达到C 点.不计空气阻力,重力加速度为g .则下列说法正确的是( )

A .从D 点抛出的初速度为v 0=

gR

2;D 点距A 点高度差h =3R

8

B .小球第一次过B 点时对槽底的压力大小为2mg

C .小球从C 点到B 点过程中,竖直墙壁对槽的冲量为I =m 2gR ,方向水平向左

D .小球从C 到B 向A 运动的过程中,以小球、槽ABC 作为一个系统,机械能守恒、动量守恒

解析:选AC.A 项:小物块恰好从A 点无碰撞的射入凹槽 ,即小球进入凹槽时的速度方向与凹槽相切,将速度分解为水平方向和竖直方向可知,v =2v 0,从A 到C 应用能量守恒可知,12m (2v 0)2

=mgR sin 30°,解得v 0=gR 2,

从D 到A 应用动能定理可得:mgh =12m (2v 0)2-12mv 20,

解得:h =3R

8,故A 正确;B 项:从A 到B 应用动能定理,mgR (1-sin 30°)=12mv 2B -12mv 2A ,在B 点由重力与支持力的合力提供向心力可得,F N -mg =mv 2

B

R ,由以上两式解得F N =3mg ,

故B 错误;C 项:小球到B 时的速度为v B 1=2gR ,根据动量定理可得:I =mv B 1-0=m 2gR ,故C 正确;D 项:小球从C 到B 向A 运动的过程中,以小球、槽ABC 作为一个系统,由于没有摩擦,所以机械能守恒,但在小球从

C 到B 过程中,墙壁对槽有水平方向的作用力,所以系统所受外力不为零,故动量不守恒,故

D 错误.

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

最新高考物理动能与动能定理练习题及答案

最新高考物理动能与动能定理练习题及答案 一、高中物理精讲专题测试动能与动能定理 1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37?角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小; (2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。 【答案】(1)62N (2)60N (3)10m 【解析】 【详解】 (1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==? 解得:04 m /5m /cos370.8 A v v s s = ==? 小物块经过A 点运动到B 点,根据机械能守恒定律有: ()2211cos3722 A B mv mg R R mv +-?= 小物块经过B 点时,有:2 B NB v F mg m R -= 解得:()232cos3762N B NB v F mg m R =-?+= 根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有: 22011222 C B mgL mg r mv mv μ--?= - 在C 点,由牛顿第二定律得:2 C NC v F mg m r += 代入数据解得:60N NC F = 根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N

高三物理《动能和动能定理》教材分析

高三物理《动能和动能定理》教材分析高三物理《动能和动能定理》教材分析 考点18 动能和动能定理 考点名片 考点细研究:本考点的命题要点有:(1)动能及动能定理;(2)应用动能定理求解多过程问题;(3)应用动能 定理求解多物体的运动问题。其中考查到的如:2016年 全国卷第20题、2016年浙江高考第18题、2016年天津高考第10题、2016年四川高考第1题、2015年全国卷第17题、2015年海南高考第4题、2015年天津高考第10题、2015年山东高考第23题、2015年浙江高考第23题、2014年福建高考第21题、2014年大纲全国卷第19题、2014年北京高考第22题等。 备考正能量:本考点内容命题题型非常全面,既有 选择题、又有实验题、也有计算题,以中等试题难度为主。常以生产、科技发展为命题背景,可与动力学结合,也可以与电磁学结合考查。预计今后依然会延续这些特点。 一、基础与经典 1.NBA篮球赛非常精彩,吸引了众多观众。比赛中 经常有这样的场面:在临终场0.1s的时候,运动员把球投出且准确命中,获得比赛的胜利。若运动员投篮过程

中对篮球做功为W,出手高度为h1,篮筐的高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能为( ) A.mgh1+mgh2-WB.mgh2-mgh1-W C.W+mgh1-mgh2D.W+mgh2-mgh1 答案 C 解析根据动能定理,球获得初动能Ek0的过程有W =Ek0-0,球离开手到进筐时的过程有-mg(h2-h1)=Ek-Ek0,得篮球进筐时的动能Ek=W+mgh1-mgh2,只有选项C正确。 2.如图所示,质量为m的物块,在恒力F的作用下,沿光滑水平面运动,物块通过A点和B点的速度分别是vA和vB,物块由A运动到B点的过程中,力F对物块做的功W为( ) A.Wmv-mv B.W=mv-mv C.W=mv-mv D.由于F的方向未知,W无法求出 答案 B 解析对物块由动能定理得:W=mv-mv,故选项B 正确。 3.质量为10kg的物体,在变力F作用下沿x轴做直

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

江苏高考物理考前指导

2019江苏高考物理考前指导 高考物理考前指导 一、理解物理基础知识——概念、规律 一轮复习的目标是夯实基础,将原来的基础知识结构化、基本概念规律化。把原来在高一、高二期间的零碎知识组织起来,理顺成纲。 现在把头脑中堆积的知识转化为结构式框架,这就是第一轮复习要达到的目的。 1、掌握物理概念内涵 学习物理这门学科,除了要知道它的定义、原理、标矢性,还要知道它的意义和内涵。 在第一轮复习阶段,整理公式定理,形成一种框架式图,做题时灵活应用,不死记硬背公式和定理。高考试题是把知识和能力结合起来考查的,然而一道试题往往考查多方面的知识和能力,在复习时应该注意知识的系统性和全面性。 在物理现象、物理概念、物理规律三个大的知识网络中理顺知识体系,分清主干、分支、叶子,形成一个系统性的章节复习模式和知识点的梳理。 2、理解物理规律 物理最具规律性,有迹可寻,学习物理最主要的是理解,只有不断地思考、探索问题的实质,才能真正的理解,才会求解各式各样的物理题型。

理解和学习物理规律不仅要掌握其结论,还要了解结论是如何而来。比如我们都知道苹果会往下掉,但是牛顿知道其原因。复习物理规律时还要了解其范围,如知道静电屏蔽时内部的场强为零却不知道怎么样证明。这些重结论轻过程的结果是,在老师的指导下很多学生做题觉得很容易,但是规律的得出过程并不清楚,造成进考场就不会做题的现象。 二、强化审题能力,规范解题方法 审题是解题的关键,解题的落点是表述的完整性、书写的规范性,它的总则:说理要充分,层次要清楚,逻辑要严谨,语言要规范,文字要简洁。 第二轮复习中把那些容易错的,经常性关注不到的关键点用笔记本记好,把那些错的和不会做的收集起来,认真分析错误的原因,归纳知识的缺陷、理解错误,寻找自己的错误出处和审题方面的原因。将那些学过的知识根据自己的理解进行整理、总结,形成自己的一种学习习惯性结构。 1、准确理解物理试题意义 “审题”是制约学生成绩的一个重要因素,也是学生做题过程中普遍存在的问题。 审题也讲求方法,准确的理解题意至关重要,如果说第一条是宏观上的,这一条就是微观上的。准确地判断题型考查的内容和范围,准确地理解物理概念和物理规律,把握试题性质,对教材内容要用心去研究,对典型的例题要多琢磨,试图总结出一些潜在的规律和答题

高考物理易错题专题三物理动能与动能定理(含解析)及解析

高考物理易错题专题三物理动能与动能定理(含解析)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)选手放开抓手时的速度大小; (2)选手在传送带上从A运动到B的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】 试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02, v1=5m/s (2)设选手放开抓手时的水平速度为v2,v2=v1cosθ① 选手在传送带上减速过程中 a=-μg② v=v2+at1③④ 匀速运动的时间t2,s-x1=vt2⑤ 选手在传送带上的运动时间t=t1+t2⑥ 联立①②③④⑤⑥得:t=3s (3)由动能定理得W f=mv2-mv22,解得:W f=-360J 故克服摩擦力做功为360J. 考点:动能定理的应用 2.如图所示,小滑块(视为质点)的质量m= 1kg;固定在地面上的斜面AB的倾角 =37°、长s=1m,点A和斜面最低点B之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。点B与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O点另一端恰好在B点。认为滑块通过点B前、后速度大小不变;最大静摩擦力等于滑动摩擦力。取g=10m/s2,sin37° =0.6,cos37° =0.8,不计空气阻力。(1)若设置μ=0,将滑块从A点由静止释放,求滑块从点A运动到点B所用的时间。(2)若滑块在A点以v0=lm/s的初速度沿斜面下滑,最终停止于B点,求μ的取值范围。

高考物理考前指导

高考物理考前指导The document was prepared on January 2, 2021

江苏省栟茶中学高考物理考前指导 一.本题共5小题,每小题3分,共15分.在每小题给出的四个选项中,只有一个选项正确,选对的得3分,选错或不答的得0分. 1.宇宙物理学观测研究表明,遥远的星系所生成的光谱都呈现“红移”,即光谱线都向红色部分移动了一段距离,根据多普勒效应可知 A .遥远的星系正在向地球靠近,宇宙在收缩 B .遥远的星系正在远离地球,宇宙在膨胀 C .遥远的星系发出的光传到地球上时频率变大 D .遥远的星系发出的光传到地球上时频率变小 2.电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积)。为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c ,流量计的两端与输送液体的管道相连接(图中虚线)。图中流量计的上下两面是绝缘材料,前后两面是金属材料,现于流量计所在处加磁感强度为B 的匀强磁场,磁场方向垂直于上、下两面。当导电液体稳定地流经流量计时,在管外将流量计前后两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值。已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为 A .)(a c bR B I ρ+ B .)(c b aR B I ρ+ C .)(a b cR B I ρ+ D .)(a bc R B I ρ+ 3.图表示LC 振荡电路某时刻的情况,以下说法正确的是 ( ) A .电容器正在充电 B .电感线圈中的磁场能正在增加 C .电感线圈中的电流正在增大 D .自感电动势正在阻碍电流增大 4.如图所示,一列简谐波向右以8.0m/s 的速度传播,某一时刻沿波的传播方向上有a 、b 两质点,位移大小相等,方向相同。以下说法正确的是 A .无论再经过多长时间,a 、b 两质点位移不可能大小相等、方向相反 B .再经过,a 、b 两质点位移第一次大小相等、方向相反 C .再经过,a 、b 两质点位移第一次大小相等、方向相反 D .再经过,a 、b 两质点位移第一次大小相等、方向相反 5.如图所示,S 为静止点光源,平面镜M 与水平面成θ角,当镜M 沿水平方向作振幅为A 的简谐运动时,S 在镜中所成虚像S ′的运动情况是 A 、在水平方向作振幅为2Asin θ的简谐运动 B 、在水平方向作振幅为4Asin θ的简谐运动 C 、沿S ′S 连线作振幅为2Asin θ的简谐运动 D 、沿S ′S 连线作振幅为4Asin θ的简谐运动 第5题

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,圆弧轨道AB是在竖直平面内的1 4 圆周,B点离地面的高度h=0.8m,该处切 线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求: (1)圆弧轨道的半径 (2)小球滑到B点时对轨道的压力. 【答案】(1)圆弧轨道的半径是5m. (2)小球滑到B点时对轨道的压力为6N,方向竖直向下. 【解析】 (1)小球由B到D做平抛运动,有:h=1 2 gt2 x=v B t 解得: 10 410/ 220.8 B g v x m s h ==?= ? A到B过程,由动能定理得:mgR=1 2 mv B2-0 解得轨道半径R=5m (2)在B点,由向心力公式得: 2 B v N mg m R -= 解得:N=6N 根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下 点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动. 2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在A点用一弹射装置可将静止的小滑块以v0水平速度弹射出去,沿水平直线轨道运动到B点后,进入半径R=0.3m 的光滑竖直圆形轨道,运行一周后自 B点向C点运动,C点右侧有一陷阱,C、D两点的竖直高度差h=0.2m,水平距离s=0.6m,水平轨道AB长为L1=1m,BC长为 L2 =2.6m,

第七节 动能和动能定理解析版

第七节动能和动能定理 【基础题】 1.人在距地面h高处抛出一个质量为m的小球,落地时小球的速度为v,不计空气阻力,人对小球做功是() A.mv2 B.mgh+mv2 C.mgh﹣mv2 D.mv2﹣mgh 【答案】D 【解析】对全过程运用动能定理得:mgh+W= ﹣0 解得:W= 故D正确,A、B、C错误.故选D. 【考点精析】本题主要考查了动能定理的综合应用的相关知识点,需要掌握应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷才能正确解答此题. 2. 如图甲所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x 轴方向运动,拉力F随物块所在位置坐标的变化关系如图乙所示,图线为半圆。则小物块运动到处时的动能为() A. B. C. D. 【答案】C 【解析】本题考查了动能定理的含义及其理解,通过F-x图像得到总功的表达式。根 动能改变据F-x图像的面积的含义代表其做功,且因为动能定理,合外力做功等于其 量,即末状态的动能大小等于合外力做功即面积大小故选:C

3.质量为60kg的体操运动员,做“单臂大回环”,用一只手抓住单杠,伸展身体,以单杠为轴做圆周运动.如图所示,此过程中,运动员到达最低点时手臂受的拉力至少应为多少?(忽略空气阻力,g=10m/s2)() A.600 N B.2400 N C.3 000 N D.3 600 N 【答案】C 【解析】设人的长度为l,人的重心在人体的中间.最高点的最小速度为零,根据动能定理得:.解得最低点人的速度 v= . 根据牛顿第二定律得,,解得F=5mg=3000N.故C正确,A、B、D错误.故选C. 【考点精析】根据题目的已知条件,利用向心力和动能定理的综合应用的相关知识可以得到问题的答案,需要掌握向心力总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小;向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力;应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷. 4.如图所示,质量相同的物体分别自斜面AC和BC的顶端由静止开始下滑,物体与斜面间的动摩擦因数都相同,物体滑到斜面底部C点时的动能分别为E k1和E k2,下滑过程中克服摩擦力所做的功分别为W1和W2,则()

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理考前指导.doc

高考物理考前指导 一.本题共5小题,每小题3分,共15分.在每小题给出的四个选项中,只有一个选项正确,选对的得3分,选错或不答的得0分. 1.宇宙物理学观测研究表明,遥远的星系所生成的光谱都呈现“红移”,即光谱线都向红色部分移动了一段距离,根据多普勒效应可知 A .遥远的星系正在向地球靠近,宇宙在收缩 B .遥远的星系正在远离地球,宇宙在膨胀 C .遥远的星系发出的光传到地球上时频率变大 D .遥远的星系发出的光传到地球上时频率变小 2.电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积)。为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c ,流量计的两端与输送液体的管道相连接(图中虚线)。图中流量计的上下两面是绝缘材料,前后两面是金属材料,现于流量计所在处加磁感强度为B 的匀强磁场,磁场方向垂直于上、下两面。当导电液体稳定地流经流量计时,在管外将流量计前后两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得的电流值。已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为 A . )(a c bR B I ρ+ B .)(c b aR B I ρ+ C .)(a b cR B I ρ+ D .)(a bc R B I ρ+ 3.图表示LC 振荡电路某时刻的情况,以下说法正确的是 ( ) A .电容器正在充电 B .电感线圈中的磁场能正在增加 C .电感线圈中的电流正在增大 D .自感电动势正在阻碍电流增大 4.如图所示,一列简谐波向右以8.0m/s 的速度传播,某一时刻沿波的传播方向上有a 、b 两质点,位移大小相等,方向相同。以下说法正确的是 A .无论再经过多长时间,a 、b 两质点位移不可能大小相等、方向相反 B .再经过0.25s ,a 、b 两质点位移第一次大小相等、方向相反 C .再经过1.0s ,a 、b 两质点位移第一次大小相等、方向相反 D .再经过1.5s ,a 、b 两质点位移第一次大小相等、方向相反 5.如图所示,S 为静止点光源,平面镜M 与水平面成θ角,当镜M 沿水平方向作振幅为A 的简谐运动时,S 在镜中所成虚像S ′的运动情况是 A 、在水平方向作振幅为2Asin θ的简谐运动 B 、在水平方向作振幅为4Asin θ的简谐运动 C 、沿S ′S 连线作振幅为2Asin θ的简谐运动 D 、沿S ′S 连线作振幅为4Asin θ的简谐运动 第5题

高中物理动能与动能定理解析版汇编

高中物理动能与动能定理解析版汇编 一、高中物理精讲专题测试动能与动能定理 1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2. (1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥ 【解析】 【分析】 【详解】 (1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律 由B 到最高点2211 222 B mv mgR mv =+ 由A 到B : 解得A 点的速度为 (2)若小滑块刚好停在C 处,则: 解得A 点的速度为 若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有2 12 h gt = c s v t = 解得

所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥ 2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求: (1)剪断细绳前弹簧的弹性势能E p (2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E (3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。 【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】 (1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有: 0=m 1v 1-m 2v 2 解得 v 1=10m/s 剪断细绳前弹簧的弹性势能为: 22112211 22 p E m v m v = + 解得 E p =19.5J (2)设m 2向右减速运动的最大距离为x ,由动能定理得: -μm 2gx =0-1 2 m 2v 22 解得 x =3m <L =4m 则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。 设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。取向左为正方向。 根据动量定理得: μm 2gt =m 2v 0-(-m 2v 2)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理动能与动能定理试题(有答案和解析)含解析

高考物理动能与动能定理试题(有答案和解析)含解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

动能及动能定理典型例题剖析

动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可

高考物理动能定理和能量守恒专题

弄死我咯,搞了一个多钟 专题四动能定理及能量守恒(注意大点的字) 一、大纲解读 本专题涉及的考点有:功和功率、动能和动能定理、重力做功和重力势能、弹性势能、机械能守恒定律,都是历年高考的必考内容,考查的知识点覆盖面全,频率高,题型全。动能定理、机械能守恒定律是力学中的重点和难点,用能量观点解题是解决动力学问题的三大途径之一。《大纲》对本部分考点要求为Ⅱ类有五个,功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分值重,而且还常有高考压轴题。考题的内容经常及牛顿运动定律、曲线运动、动量守恒定律、电磁学等方面知识综合,物理过程复杂,综合分析的能力要求较高,这部分知识能密切联系生活实际、联系现代科学技术,因此,每年高考的压轴题,高难度的综合题经常涉及本专题知识。它的特点:一般过程复杂、难度大、能力

要求高。还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。在09年的高考中要考查学生对于生活、生产中的实际问题要建立相关物理模型,灵活运用牛顿定律、动能定理、动量定理及能量转化的方法提高解决实际问题的能力。 二、重点剖析 1、理解功的六个基本问题 (1)做功及否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。而所谓的“力的方向上的位移”可作如下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移及力既不垂直又不平行于力,则可对位移进行正交分解,其平行于力的方向上的分位移仍被称为力的方向上的位移。 (2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。②用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往 考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 (3)关于求功率问题:①t W P = 所求出的功率是时间t 内的平均功率。②功率的计算式:θcos Fv P =,其中θ是力及速度间的夹角。一般用于求某一时刻的瞬时功率。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理动能定理的综合应用及其解题技巧及练习题(含答案)

高考物理动能定理的综合应用及其解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能定理的综合应用 1.如图所示,倾角为37°的粗糙斜面AB 底端与半径R=0.4 m 的光滑半圆轨道BC 平滑相连,O 点为轨道圆心,BC 为圆轨道直径且处于竖直方向,A 、C 两点等高.质量m=1 kg 的滑块从A 点由静止开始下滑,恰能滑到与O 点等高的D 点,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求: (1)求滑块与斜面间的动摩擦因数μ; (2)要使滑块能到达C 点,求滑块从A 点沿斜面滑下时初速度v 0的最小值; (3)若滑块离开C 点的速度为4 m/s ,求滑块从C 点飞出至落到斜面上所经历的时间. 【答案】(1)0.375(2)3/m s (3)0.2s 【解析】 试题分析:⑴滑块在整个运动过程中,受重力mg 、接触面的弹力N 和斜面的摩擦力f 作用,弹力始终不做功,因此在滑块由A 运动至D 的过程中,根据动能定理有:mgR - μmgcos37° 2sin 37R ? =0-0 解得:μ=0.375 ⑵滑块要能通过最高点C ,则在C 点所受圆轨道的弹力N 需满足:N≥0 ① 在C 点时,根据牛顿第二定律有:mg +N =2C v m R ② 在滑块由A 运动至C 的过程中,根据动能定理有:-μmgcos37° 2sin 37R ?=2 12 C mv - 2 012 mv ③ 由①②③式联立解得滑块从A 点沿斜面滑下时的初速度v 0需满足:v 03gR =23 即v 0的最小值为:v 0min =3 ⑶滑块从C 点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x =vt ④ 在竖直方向的位移为:y = 2 12 gt ⑤ 根据图中几何关系有:tan37°= 2R y x -⑥ 由④⑤⑥式联立解得:t =0.2s 考点:本题主要考查了牛顿第二定律、平抛运动规律、动能定理的应用问题,属于中档题.

高考物理考前指导专项训练四

新课标高考物理考前指导专项训练四 极限法的应用 (一)物理思想 在物理问题中,有些物理过程虽然比较复杂,但这个较为复杂的物理过程又包含在一个更复杂的物理过程中。若把这个复杂的物理过程分解成几个小过程,且这些小过程的变化是单一的。那么,选取全过程的两个端点及中间的奇变点来进行分析,其结果必然可以反映所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思维法的物理思想。 极限法是一种直观、简捷的科学方法。在我们已学过的物理规律中,常能看到科学家们利用这种思维方法得到的物理规律。例如伽利略在研究从斜面上滚下的小球的运动时就运用了极限思维法将第二斜面外推到极限——水平面;开尔文把查理定律外推到压强为零这一极限制,而引入了热力学温标……这些例子说明,在物理学的发展和物理问题的研究中,极限思维法是一种重要的方法。 (二)如何应用极限法解决问题 应用极限思维法时,特别要注意到所选取的某段物理过程研究的物理量的变化应是单一的。如增函数或减函数。但不能在所选过程中既包含有增函数,又包含有减函数的关系,这种题目的解答是不能应用极限法的。因此,在解题时,一定要先判定物理量间的变化关系是否为单调变化。若物理量间的变化关系为单调变化,可假设某种变化的极端情况,从而得出结论或作出判断。 极限法常见用于解答定性判断题和选择题,或者在解答某些大题时,用极限法确定“解题方向”。在解题过程中,极限法往往能化难为易,达到“事半功倍”的效果。 【典型例题】 例1. 如图所示电路中,当可变电阻R的阻值增大时() A. A、B两点间的电压U增大 B. A、B两点间的电压U减小 C. 通过R的电流I增大 D. 通过R的电流I减小 分析: 可变电阻R的变化范围在零到无穷大之间连续变化。当R=0时,A、B间短路,此时U=0, I E R r =+ () 1;当R→∞时,R断路,I U ER R R r ==++ 212 ,()。可见,当R的阻 值增大时,U增大而I减小,因此A、D选项正确。 点拨: 以上问题,若采用常规解法,必须先分析题中所给条件,再根据物理规律写出物理量间的关系,列出函数表达式,利用数学知识予以判断解答,过程复杂,需要时间较多,显然不能适应高考时短时间内快速解题的要求。而象题中这样运用“极限法”解题,通过寻找极端情况使解题过程的主要因素或物理量的发展趋势迅速显露出来,简单明了,避免了复杂的推理运算。 例2. 如图所示,用轻绳通过定滑轮牵引小船靠岸,若收绳的速度为v 1 ,则在绳与水平方向

相关主题