搜档网
当前位置:搜档网 › 高中物理竞赛实用解题方法——递推法

高中物理竞赛实用解题方法——递推法

高中物理竞赛实用解题方法——递推法
高中物理竞赛实用解题方法——递推法

递推法

递推法是解决物体与物体发生多次作用后的情况. 即当问题中涉及相互联系的物体较多并且有规律时,应根据题目特点应用数学思想将所研究的问题归类,然后求出通式. 具体方法是先分析某一次作用的情况,得出结论. 再根据多次作用的重复性和它们的共同点,把结论推广,然后结合数学知识求解. 用递推法解题的关键是导出联系相邻两次作用的递推关系式.

例1 质点以加速度a 从静止出发做直线运动,在某时刻t ,加速度变为2a ;在时刻2t ,加速度变为3a ;…;在nt 时刻,加速度变为(n +1)a ,求:

(1)nt 时刻质点的速度;

(2)nt 时间内通过的总路程.

解析 根据递推法的思想,从特殊到一般找到规律,然后求解.

(1)物质在某时刻t 末的速度为at v t =

2t 末的速度为at at v at v v t t t 2,222+=+=所以

3t 末的速度为at at at at v v t t 32322++=+=

……

则nt 末的速度为nat v v t n nt +=-)1(

)321()1(32n at nat at n at at at ++++=+-++++=

at n n n n at )1(2

1)1(21+=+?= (2)同理:可推得nt 内通过的总路程.)12)(1(12

12at n n n s ++= 例2 小球从高m h 1800=处自由下落,着地后跳起又下落,每与地面相碰一次,速度减小)2(1=n n

,求小球从下落到停止经过的总时间为通过的总路程.(g 取10m/s 2) 解析 小球从h 0高处落地时,速率s m gh v /60200==

第一次跳起时和又落地时的速率2/01v v =

第二次跳起时和又落地时的速率2022/v v =

第m 次跳起时和又落地时的速率m m v v 2/0= 每次跳起的高度依次4

022*******,2n h g v h n h g v h ====, …

通过的总路程 +++++=∑m h h h h s 222210

m h n n h n h h n n n n h h m 300351112)1111(202202002242200==-+?=-+=++++++

=- 经过的总时间为 +++++=∑m t t t t t 210

s g v n n g v n n g v g

v g v g v m m 183)1

1(])1(2121[2200010==-+=+?++?+=++++=

例3 A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正

三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B

犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调

整方向,速度方向始终“盯”住对方,它们同时起动,经多长

时间可捕捉到猎物?

解析 由题意可知,由题意可知,三只猎犬都做等速率曲线运动,而且任一时刻三只猎犬的位置都分别在一个正三角形的三个顶点上,但这正三角形的边长不断减小,如图6—1所示.所以要想求出捕捉的时间,则需用微元法将等速率曲线运动变成等速率直线运动,再用递推法求解.

设经时间t 可捕捉猎物,再把t 分为n 个微小时间间隔△t ,在每一个△t 内每只猎犬的运动可视为直线运动,每隔△t ,正三角形的边长分别为a 1、a 2、a 3、…、a n ,显然当a n →0时三只猎犬相遇. t v n a a t v a t v a a t v a t v a a t v a BB AA a a n ??-=??-=?-=??-=?-=?-=?--=2

3,2

3323,2

3223,2

360cos 2312111

因为,023=??

-t v n a 即v

a t t t n 32==?所以

此题还可用对称法,在非惯性参考系中求解.

例4 一列进站后的重载列车,车头与各节车厢的质量相等,均为m ,若一次直接起动,车头的牵引力能带动30节车厢,那么,利用倒退起动,该车头能起动多少节同样质量的车厢?

解析 若一次直接起动,车头的牵引力需克服摩擦力做功,使各节车厢动能都增加,若利用倒退起动,则车头的牵引力需克服摩擦力做的总功不变,但各节车厢起动的动能则不同.

原来挂钩之间是张紧的,倒退后挂钩间存在△s 的宽松距离,设火车的牵引力为F ,则有: 车头起动时,有212

1)(mv s mg F =?-μ 拉第一节车厢时:11)(mv v m m ='

+ 故有s g m

F v v ?-==)(2141212

1μ 2122221221)2(v m mv s mg F '?-?=?-μ 拉第二节车厢时:22

2)2(mv v m m ='+ 故同样可得:s g m F v v ?-==')3

5(32942222

μ …… 推理可得 s g n m F n n v n ?+-+=')3

12(12

μ 由mg n F v n μ312:02+>>'可得 另由题意知46,31<=n mg F 得μ

因此该车头倒退起动时,能起动45节相同质量的车厢.

例5 有n 块质量均为m ,厚度为d 的相同砖块,平放在水平地面上,现将它们一块一块地叠放起来,如图6—2所示,人至少做多少功?

解析 将平放在水平地面上的砖一块一块地叠放起来,每次克服重

力做的功不同,因此需一次一次地计算递推出通式计算.

将第2块砖平放在第一块砖上人至少需克服重力做功为mgd W =2

将第3、4、…、n 块砖依次叠放起来,人克服重力至少所需做的功

分别为

d

n mg W d

mg W d

mg W d

mg W n )1(432543-====

所以将n 块砖叠放起来,至少做的总功为

W =W 1+W 2+W 3+…+W n

2)1()1(32-?=-++++=n n mgd d

n mg d mg d mg mgd

例6 如图6—3所示,有六个完全相同的长条薄片1(=i B A i i 、

2、…、6)依次架在水平碗口上,一端搁在碗口,另一端架在另一

薄片的正中位置(不计薄片的质量). 将质量为m 的质点置于A 1A 6

的中点处,试求:A 1B 1薄片对A 6B 6的压力.

解析 本题共有六个物体,通过观察会发现,A 1B 1、A 2B 2、…、

A 5

B 5的受力情况完全相同,因此将A 1B 1、A 2B 2、…A 5B 5作为一类,

对其中一个进行受力分析,找出规律,求出通式即可求解.

以第i 个薄片AB 为研究对象,受力情况如图6—3甲所示,第i 个

薄片受到前一个薄片向上的支持力N i 、碗边向上的支持力和后一个薄片

向下的压力N i +1. 选碗边B 点为轴,根据力矩平衡有 2

,211++=?=?i i i i N N L N L N 得 所以65321)2

1(212121N N N N ==?== ① 再以A 6B 6为研究对象,受力情况如图6—3乙所示,A 6B 6受到薄片

A 5

B 5向上的支持力N 6、碗向上的支持力和后一个薄片A 1B 1向下的压力

N 1、质点向下的压力mg. 选B 6点为轴,根据力矩平衡有

L N L mg L N ?=?+?614

32 由①、②联立,解得 42

1mg N =

所以,A 1B 1薄片对A 6B 6的压力为.42mg 例7 用20块质量均匀分布的相同光滑积木块,在光滑水平面上一块叠一块地搭成单孔桥,已知每一积木块长度为L ,横截面是边长为)4/(L h h =的正方形,要求此桥具有最大的跨度(即桥孔底宽),计算跨度与桥孔高度的比值.

解析 为了使搭成的单孔桥平衡,桥孔两侧应有相同的积木块,从上往下计算,使积木块均能保证平衡,要满足合力矩为零,平衡时,每块积木块都有最大伸出量,则单孔桥就有最大跨度,又由于每块积木块都有厚度,所以最大跨度与桥孔高度存在一比值.

将从上到下的积木块依次计为1、2、…、n ,显然第1块相对第2块的最大伸出量为 2

1L x =? 第2块相对第3块的最大伸出量为2x ?(如图6—4所示),则

2

24)2(222?==???-=??L L x G x L x G

同理可得第3块的最大伸出量323?=

?L x …… 最后归纳得出n

L x n ?=

?2 所以总跨度h x

k n n 32.11291=?=∑= 跨度与桥孔高的比值为 258.1932.11==h

h H k 例8 如图6—5所示,一排人站在沿x 轴的水平轨道旁,原点O 两侧的人的序号都记为

3,2,1(=n n …). 每人只有一个沙袋,0>x 一侧的每个沙袋质量为m =14kg ,0

+=?--+n n n n n v nm M m n M v v nm M mv n v m n M 即. 同理有n n v m

n M m n M v )1()2(1+++-=

+,若抛上(n+1)包沙袋后车反向运动,则应有.0,01<>+n n v v 即.0)2(,0)1(<+->+-m n M m n M 由此两式解得:n n n ,14

20,1438><为整数取3. 当车反向滑行时,根据上面同样推理可知,当向左运动到第n 个人身旁,抛上第n 包沙袋后由动量守恒定律有:

''++='-''-++--n n n

v m n m M nv m v m n m M )3(2])1(3[11

解得:''

+++'+-+='''++'+-+='+-n n n n v m n m M m n m M v v m n m M m n m M v )1(3)2(33)1(311同理 设抛上n+1个沙袋后车速反向,要求0,01≤>'+n n v v

即???=>???≤'+-+>'+-+8

70)2(30)1(3n n m n m M m n m M 解得 即抛上第8个 沙袋后车就停止,所以车上最终有11个沙袋.

例9 如图6—6所示,一固定的斜面,倾角?=45θ,斜面

长L=2.00米. 在斜面下端有一与斜面垂直的挡板. 一质量为m 的

质点,从斜面的最高点沿斜面下滑,初速度为零. 下滑到最底端

与挡板发生弹性碰撞. 已知质点与斜面间的动摩擦因数20.0=μ,试求此质点从开始到发生第11次碰撞的过程中运动的总路程.

解析 因为质点每次下滑均要克服摩擦力做功,且每次做功又不相同,所以要想求质点从开始到发生n 次碰撞的过程中运动的总路程,需一次一次的求,推出通式即可求解.

设每次开始下滑时,小球距档板为s

则由功能关系:θθμsin )()(cos 2121s s mg s s mg -=+

θθμsin )()(cos 3232s s mg s s mg -=+ 即有3

2cos sin cos sin 2312=+-===θμθθμθ s s s s 由此可见每次碰撞后通过的路程是一等比数列,其公比为.3

2

∴在发生第11次碰撞过程中的路程 11321222s s s s s ++++=

11111113213

21])32(1[2)(2s s s s s s s ---?=-++++= )(86.9)()3

2(121011m m =?-= 例10 如图6—7所示,一水平放置的圆环形刚性窄槽固定在桌

面上,槽内嵌着三个大小相同的刚性小球,它们的质量分别是m 1、m 2

和m 3,m 2=m 3=2m 1. 小球与槽的两壁刚好接触而它们之间的摩擦可忽

略不计. 开始时,三球处在槽中Ⅰ、Ⅱ、Ⅲ的位置,彼此间距离相等,

m 2和m 3静止,m 1以初速2/0R v π=沿槽运动,R 为圆环的内半径和

小球半径之和,设各球之间的碰撞皆为弹性碰撞,求此系统的运动周期T.

解析 当m 1与m 2发生弹性碰撞时,由于m 2=2m 1,所以m 1碰后弹回,m 2向前与m 3

发生碰撞. 而又由于m 2=m 3,所以m 2与m 3碰后,m 3能静止在m 1的位置,m 1又以v 速度被反弹,可见碰撞又重复一次. 当m 1回到初始位置,则系统为一个周期.

以m 1、m 2为研究对象,当m 1与m 2发生弹性碰撞后,根据动量守恒定律,能量守恒定律可写出:

221101v m v m v m += ①

2222112012

12121v m v m v m += ② 由①、②式得:00211200212113

2231)(v v m m m v v v m m m m v =+=-=+-= 以m 2、m 3为研究对象,当m 2与m 3发生弹性碰撞后,得032203='=v v v 以m 3、m 1为研究对象,当m 3与m 1发生弹性碰撞后,得0130v v v ='=' 由此可见,当m 1运动到m 2处时与开始所处的状态相似. 所以碰撞使m 1、m 2、m 3交换位置,当m 1再次回到原来位置时,所用的时间恰好就是系统的一个周期T ,由此可得周期

).(202

1010)32232(3)(30

000321s R R v R v R v R v R t t t T ===++?=++=ππππππ 例11 有许多质量为m 的木块相互靠着沿一直线排列于光滑的水平面上. 每相邻的两个木块均用长为L 的柔绳连接着. 现用大小为F 的恒力沿排列方向拉第一个木块,以后各木块依次被牵而运动,求第n 个木块被牵动时的速度.

解析 每一个木块被拉动起来后,就和前面的木块成为一体,共同做匀加速运动一段距离L 后,把绳拉紧,再牵动下一个木块. 在绳子绷紧时,有部分机械能转化为内能. 因此,如果列出22

1)1(n nmv FL n =-这样的关系式是错误的. 设第)1(-n 个木块刚被拉动时的速度为1-n v ,它即将拉动下一个木块时速度增至1-'n

v , 第n 个木块刚被拉动时速度为n v . 对第)1(-n 个木块开始运动到它把下一段绳子即将拉紧这一过程,由动能定理有:

2121)1(2

1)1(21----'-=n n mv n v m n FL ① 对绳子把第n 个木块拉动这一短暂过程,由动量守恒定律,有

n n

nmv v m n ='--1)1( 得:n n v n n v 1

1-='- ② 把②式代入①式得:212)1(2

1)1()1(21-----=n n mv n v n n m n FL 整理后得:21222)1(2)1(---=-n n v n v n m FL n ③ ③式就是反映相邻两木块被拉动时速度关系的递推式,由③式可知

当n =2时有:

2122222v v m

FL -= 当n =3时有:2222322322v v m

FL -=? 当n =4时有:2322423423v v m

FL -=? … 一般地有21222)1(2)1(---=-n n v n v n m FL n 将以上)1(-n 个等式相加,得:21222)

1321(v v n m FL n n -=-++++ 所以有212222)1(v v n m

FL n n n -=?- 在本题中01=v ,所以.)1(nm n FL v n -=

例12 如图6—8所示,质量m =2kg 的平板小车,后端放

有质量M =3kg 的铁块,它和车之间动摩擦因数.50.0=μ开始

时,车和铁块共同以s m v /30=的速度向右在光滑水平面上

前进,并使车与墙发生正碰,设碰撞时间极短,碰撞无机械能损失,且车身足够长,使得铁块总不能和墙相碰,求小车走过的总路程.

解析 小车与墙撞后,应以原速率弹回. 铁块由于惯性继续沿原来方向运动,由于铁块和车的相互摩擦力作用,过一段时间后,它们就会相对静止,一起以相同的速度再向右运动,然后车与墙发生第二次碰撞,碰后,又重复第一次碰后的情况. 以后车与墙就这样一次次碰撞下去. 车每与墙碰一次,铁块就相对于车向前滑动一段距离,系统就有一部分机械能转化为内能,车每次与墙碰后,就左、右往返一次,车的总路程就是每次往返的路程之和.

设每次与墙碰后的速度分别为v 1、v 2、v 3、…、v n 、…车每次与墙碰后向左运动的最远距离分别为s 1、s 2、s 3、…、s n 、…. 以铁块运动方向为正方向,在车与墙第)1(-n 次碰后到发生第n 次碰撞之前,对车和铁块组成的系统,由动量守恒定律有 n n v m M v m M )()(1+=-- 所以 5

11--=+-=n n n v v m M m M v 由这一关系可得: ,5

,521312v v v v == 一般地,有 ,51

1-=n n v v 由运动学公式可求出车与墙发生第n 次碰撞后向左运动的最远距离为

2221215

122-?==n n a v a v s

类似的,由这一关系可递推到:2221421322122115

12,,512,512,2-?=?=?==n n a v s a v s a v s a v s 所以车运动的总路程

)(2321 +++++=n s s s s s 总

24255

111)5

151511(2221221224221?=-?=+++++?=-a v a v a v n 因此201/215/3s m m Mg a s

m v v ====μ 所以)(4

5m s =总 例13 10个相同的扁长木块一个紧挨一个地放在水平

地面上,如图6—9所示,每个木块的质量,40.0kg m =长度

m l 45.0=,它们与地面间的静摩擦因数和动摩擦因数均为

.10.02=μ原来木块处于静止状态. 左方第一个木块的左端

上方放一个质量为M=1.0kg 的小铅块,它与木块间的静摩

擦因数和动摩擦因数均为.20.01=μ现突然给铅块一向右的初速度s m v /3.40=,使其在大木块上滑行. 试确定铅块最后的位置在何处(落在地上还是停在哪块木块上). 重力加速度g 取2)/(10s m ,设铅块的长度与木块相比可以忽略.

解析 当铅块向右运动时,铅块与10个相同的扁长木块中的第一块先发生摩擦力,若此摩擦力大于10个扁长木块与地面间的最大静摩擦力,则10个扁长木块开始运动,若此摩擦力小于10个扁长木块与地面间的最大摩擦力,则10个扁长木块先静止不动,随着铅块的运动,总有一个时刻扁长木块要运动,直到铅块与扁长木块相对静止,后又一起匀减速运动到停止.

铅块M 在木块上滑行所受到的滑动摩擦力N Mg f 0.211==μ

设M 可以带动木块的数目为n ,则n 满足:0)1()(221≥--+-mg n g m M f μμ 即0)1(4.04.10.2≥---n

上式中的n 只能取整数,所以n 只能取2,也就是当M 滑行到倒数第二个木块时,剩下的两个木块将开始运动.设铅块刚离开第8个木块时速度为v ,则 l Mg Mv Mv 82

1211202?-=μ 得:0)/(49.22

2>=s m v

由此可见木块还可以滑到第9个木块上. M 在第9个木块

上运动如图6—9甲所示,则对M 而言有:M Ma Mg =-1μ

得:2

/0.2s m a M -=

第9及第10个木块的动力学方程为:m ma mg g m M Mg 2)(221=-+-μμμ,

得:./25.02s m a m = 设M 刚离开第9个木块上时速度为v ',而第10个木块运动的速度为V ',并设木块运动的距离为s ,则M 运动的距离为l s +,有:

s a V l s a v v m M 2)

(2222='++='

t

a V t a v v m M ='+=' 消去s 及t 求出:???='-='???='='s

m V s m v s m V s m v /23.0/26.0/212.0/611.0或,显然后一解不合理应舍去. 因V v '>',故M 将运动到第10个木块上.

再设M 运动到第10个木块的边缘时速度为v '',这时木块的速度为V '',则: )(222l s a v v M +'+'=''

解得:0463.12<'--=''s v ,故M 不能滑离第10个木块,只能停在它的表面上,最后和木块一起静止在地面上.

例14 如图6—10所示,质量为m 的长方形箱子,放在光滑

的水平地面上. 箱内有一质量也为m 的小滑块,滑块与箱底间无摩

擦. 开始时箱子静止不动,滑块以恒定的速度v 0从箱子的A 壁处向

B 处运动,后与B 壁碰撞. 假设滑块与箱壁每碰撞一次,两者相对

速度的大小变为该次碰撞前相对速度的e 倍,.214=e (1)要使滑块与箱子这一系统消耗的总动能不超过其初始动能的40%,滑块与箱壁最多可碰撞几次?

(2)从滑块开始运动到刚完成上述次数的碰撞期间,箱子的平均速度是多少?

解析 由于滑块与箱子在水平方向不受外力,故碰撞时系统水平方向动量守恒. 根据题目给出的每次碰撞前后相对速度之比,可求出每一次碰撞过程中动能的损耗.滑块开始运动到完成题目要求的碰撞期间箱子的平均速度,应等于这期间运动的总位移与总时间的比值.

(1)滑块与箱壁碰撞,碰后滑块对地速度为v ,箱子对地速度为u . 由于题中每次碰撞的e 是一样的,故有:

1

111220011----==--=--=n n n n u v v u u v v u u v v u e 或1

111220110----==--=--=

-n n n n u v u v u v u v v u v e

1

11122011)(----??--?-=-n n n n n u v u v u v u v v u v e 即碰撞n 次后0)(v e u v n n n -=- ①

碰撞第n 次的动量守恒式是0mv mu mv n n =+ ② ①、②联立得00])(1[2

1])(1[21v e u v e v n n n n --=-+= 第n 次碰撞后,系统损失的动能

)(2

1212220n n kn k kn u v m mv E E E +-=-=? k n

n n E e mv e e mv mv 212

121)1(4

121220222020-=?-=+-=

下面分别讨论: 当146.022112

1,12

=-=-=?=e E E n k kl 时 25.022112

1,242=-

=-=?=e E E n k k 时 323.02212112

1,36

3=-=-=?=e E E n k k 时 375.02

41121,48

4=-=-=?=e E E n k k 时 412.02

2141121,510

5=-=-=?=e E E n k k 时 因为要求的动能损失不超过40%,故n=4.

(2)设A 、B 两侧壁的距离为L ,则滑块从开始运动到与箱壁发生第一次碰撞的时间 00v L t =. 在下一次发生碰撞的时间0

111||ev L v u L t =-=,共碰撞四次,另两次碰撞的时

间分别为022v e L t =、0

33v e L t =,所以总时间).1(32033210e e e v e L t t t t t +++=+++= 在这段时间中,箱子运动的距离是:

3322110t u t u t u s +++=

)1(22

22222)1(21)1(21)1(21323320303020200e e e e

L L e L L e L L e L v e L v e v e L v e ev L v e +++=+++-+=?++?-+?+=

所以平均速度为:2)1()1(20320

3323v e e e v e L e e e e

L t s v =++++++== 例15 一容积为1/4升的抽气机,每分钟可完成8次抽气动作. 一容积为1升的容器与此抽气筒相连通. 求抽气机工作多长时间才能使容器内的气体的压强由76mmmHg 降为

1.9mmHg.(在抽气过程中容器内的温度保持不变)

解析 根据玻一马定律,找出每抽气一次压强与容器容积和抽气机容积及原压强的关系,然后归纳递推出抽n 次的压强表达式.

设气体原压强为p 0,抽气机的容积为V 0,容器的容积为V . 每抽一次压强分别为p 1、p 2、…,则由玻一马定律得:

第一次抽气后:)(010V V p V p += ①

第二次抽气后:)(021V V p V p += ②

依次递推有:)(032V V p V p += ③

)(01V V p V p n n +=- ○n

由以上○n 式得:)lg(lg

)(0000v V V p p n p V V V p n n n +=+=所以 代入已知得:2725

.1lg 400lg ==n (次) 工作时间为:38.38

27==t 分钟 例16 使一原来不带电的导体小球与一带电量为Q 的导体大球接触,分开之后,小

球获得电量q. 今让小球与大球反复接触,在每次分开有后,都给大球补充电荷,使其带电量恢复到原来的值Q. 求小球可能获得的最大电量.

解析 两个孤立导体相互接触,相当于两个对地电容并联,设两个导体球带电Q 1、Q 2,由于两个导体球对地电压相等, 故有k C C C Q Q Q C C Q Q C Q C Q =+=+==2

1121121212211,,亦即即, 所以k Q Q k Q ),(21+=为常量,此式表明:带电(或不带电)的小球跟带电大球接触后,小球所获得的电量与总电量的比值不变,比值k 等于第一次带电量q 与总电量Q 的比值,即.Q

q k =根据此规律就可以求出小球可能获得的最大电量. 设第1、2、…、n 次接触后小球所带的电量分别为q 1、q 2、…,有:

q

k q k kq q q Q k q q k kq q kq kQ q Q k q kq

q q Q k q q

kQ q n n n 1212223121)()()(--++++=+=++=+=+=+=+===

由于1

q

Q qQ Q q

q k q q n -=-=-=11 即小球与大球多次接触后,获得的最大电量为.q Q qQ - 例17 在如图6—11所示的电路中,S 是一单刀双掷开关,A 1和A 2为两个平行板电容器,S 掷向a 时,A 1获电荷电量为Q ,当S 再掷向b 时,A 2获电荷电量为q. 问经过很多次S 掷向a ,再掷向b 后,A 2将获得多少电量?

解析 S 掷向a 时,电源给A 1充电,S 再掷向b ,A 1给A 2充电,在经过很多次重复的过程中,A 2的带电量越来越多,两板间电压越来越大. 当A 2的电压等于电源电压时,A 2的带电量将不再增加. 由此可知A 2最终将获得电量q 2=C 2E.

因为E C Q 1= 所以E

Q C =1 当S 由a 第一次掷向b 时,有:

21C q C q Q =- 所以E

q Q Qq C )(2-= 解得A 2最终获得的电量 q

Q Qq q -=

2

例18 电路如图6—12所示,求当R '为何值时,

R AB 的阻值与“网络”的“格”数无关?此时R AB 的阻

值等于什么?

解析 要使R AB 的阻值与“网络”的“格”数无关,则图中CD 间的阻值必须等于R '才行. 所以有R R

R R R R R '=+'+'+222)2( 解得R R )15(-=' 此时AB 间总电阻R R AB )15(+=

例19 如图6—13所示,在x 轴上方有垂直于xy 平面向里

的匀强磁场,磁感应强度为B ,在x 轴下方有沿y 轴负方向的匀

强电场,场强为E. 一质量为m ,电量为-q 的粒子从坐标原点O

沿着y 轴方向射出. 射出之后,第三次到达x 轴时,它与O 点的

距离为L. 求此粒子射出时的速度v 和每次到达x 轴时运动的总

路程s.(重力不计)

解析 粒子进入磁场后做匀速圆周运动,经半周后通过x

轴进入电场后做匀减速直线运动,速度减为零后,又反向匀加

速通过x 轴进入磁场后又做匀速圆周运动,所以运动有周期性.

它第3次到达x 轴时距O 点的距离L 等于圆半径的4倍(如图

6—13甲所示)

粒子在磁场中做匀速圆周运动的半径为 4L Bq mv R == 所以粒子射出时的速度 m

B q L v 4= 粒子做圆周运动的半周长为 41L

s π=

粒子以速度v 进入电场后做匀减速直线运动,能深入的最大距离为y , 因为y m

Eq ay v 222== 所以粒子在电场中进入一次通过的路程为 mE

qL B y s 1622

22== 粒子第1次到达x 轴时通过的路程为 41L

R s ππ=?=

粒子第2次到达x 轴时,已通过的路程为 mE qL B L

s s s 1642

2212+=+=π 粒子第3次到达x 轴时,已通过的路程为 mE qL B L

s s s s 1622

21213+=++=π 粒子第4次到达x 轴时,已通过的路程为 mE qL B L

s s s 82222

2214+=+=π 粒子第)12(-n 次到达x 轴时,已通过的路程为

mE

qL B n L n s n ns s n 16)1(4)1(2221)12(-+=-+=-π 粒子第2n 次到达x 轴时,已通过的路程为 )164()(2

2212mE qL B L

n s s n s n

+=+=π 上面n 都取正整数.

针对训练

1.一物体放在光滑水平面上,初速为零,先对物体施加一向东的恒力F ,历时1秒钟,随即把此力改为向西,大小不变,历时1秒钟,接着又把此力改为向东,大小不变,历时1秒钟,如此反复,只改变力的方向,共历时1分钟. 在此1分钟内 ( )

A .物体时而向东运动,时而向西运动,在1分钟末静止于初始位置之东

B .物体时而向东运动,时而向西运动,在1分钟末静止于初始位置

C .物体时而向东运动,时而向西运动,在1分钟末继续向东运动

D .物体一直向东运动,从不向西运动,在1分钟末静止于初始位置之东

2.一小球从距地面为H 的高度处由静止开始落下. 已知小球在空中运动时所受空气阻力为球所受重力的k 倍)1(

(1)总共通过的路程;

(2)所经历的时间.

3.如图6—14所示,小球从长L 的光滑斜面顶端自由下滑,滑到底

端时与挡板碰撞并反弹而回,若每次与挡板碰撞后的速度大小为

碰撞前的4/5,求小球从开始下滑到最终停止于斜面下端物体共

通过的路程.

4.如图6—15所示,有一固定的斜面,倾角为45°,斜面长为2

米,在斜面下端有一与斜面垂直的挡板,一质量为m 的质点,

从斜面的最高点沿斜面下滑,初速度为1米/秒. 质点沿斜面下

滑到斜面最底端与挡板发生弹性碰撞. 已知质点与斜面间的滑

动摩擦因数为0.20.

(1)试求此质点从开始运动到与挡板发生第10次碰撞的过程中通过的总路程;

(2)求此质点从开始运动到最后停下来的过程中通过的总路程.

5.有5个质量相同、其大小可不计的小木块1、2、3、4、5等距

离地依次放在倾角?=30θ的斜面上(如图6—16所示).斜面

在木块2以上的部分是光滑的,以下部分是粗糙的,5个木块

与斜面粗糙部分之间的静摩擦系数和滑动摩擦系数都是μ,开

始时用手扶着木块1,其余各木块都静止在斜面上. 现在放手,

使木块1自然下滑,并与木块2发生碰撞,接着陆续发生其他

碰撞. 假设各木块间的碰撞都是完全非弹性的. 求μ取何值时

木块4能被撞而木块5不能被撞.

6.在一光滑水平的长直轨道上,等距离地放着足够多的完全

相同的质量为m 的长方形木块,依次编号为木块1,木块

2,…,如图6—17所示.

在木块1之前放一质量为M=4m 的大木块,大木块与

木块1之间的距离与相邻各木块间的距离相同,均为L. 现在,在所有木块都静止的情

况下,以一沿轨道方向的恒力F 一直作用在大木块上,使其先与木块1发生碰撞,设碰后与木块1结为一体再与木块2发生碰撞,碰后又结为一体,再与木块3发生碰撞,碰后又结为一体,如此继续下去. 今问大木块(以及与之结为一体的各小木块)与第几个小木块碰撞之前的一瞬间,会达到它在整个过程中的最大速度?此速度等于多少?

7.有电量为Q 1的电荷均匀分布在一个半球面上,另有无数个电量均为Q 2的点电荷位于

通过球心的轴线上,且在半球面的下部. 第k 个电荷与球心的距离为12-?k R ,且k =1,2,3,4,…,设球心处的电势为零,周围空间均为自由空间. 若Q 1已知,求Q 2.

8.一个半径为1米的金属球,充电后的电势为U ,把10个半径为1/9米的均不带电的小

金属球顺次分别与这个大金属球相碰后拿走,然后把这10个充了电了小金属球彼此分隔摆在半径为10米的圆周上,并拿走大金属球. 求圆心处的电势. (设整个过程中系统的总电量无泄漏)

9.真空中,有五个电量均为q 的均匀带电薄球壳,它们的半径

分别为R ,R/2,R/4,R/8,R/16,彼此内切于P 点(如图

6—18).球心分别为O 1,O 2,O 3,O 4,O 5,求O 1与O 5间的

电势差.

10.在图6—19所示的电路中,三个电容器C Ⅰ、C Ⅱ、C Ⅲ的电容

值均等于C ,电源的电动势为ε,R Ⅰ、R Ⅱ为电阻,S 为双掷

开关. 开始时,三个电容器都不带电.先接通O a ,再接通Ob ,

再接通O a ,再接通Ob ……如此反复换向,设每次接通前都

已达到静电平衡,试求:

(1)当S 第n 次接通Ob 并达到平衡后,每个电容器两端的

电压各是多少?

(2)当反复换向的次数无限增多时,在所有电阻上消耗的

总电能是多少?

11.一系列相同的电阻R ,如图6—20所示连接,求AB 间的等效电阻R AB .

12.如图6—21所示,R 1=R 3=R 5=…=R 99=5Ω,R 2=R 4=R 6=…=R 98=10Ω,R 100=5Ω,ε=10V

求:

(1)R AB =?

(2)电阻R 2消耗的电功率应等于多少?

(3))99,,3,2,1( =i R i 消耗的电功率;

(4)电路上的总功率.

13.试求如图6—22所示,框架中A 、B 两点间的电阻R AB ,此框架

是用同种细金属丝制作的,单位长的电阻为r ,一连串内接等边 三角形的数目可认为趋向无穷,取AB 边长为a ,以下每个三角 形的边长依次减少一半.

14.图6—23中,AOB 是一内表面光滑的楔形槽,固定在水平桌

面(图中纸面)上,夹角?=1α(为了能看清楚,图中的是 夸大了的). 现将一质点在BOA 面内从C 处以速度s m v /5= 射出,其方向与AO 间的夹角?=60θ,OC=10m. 设质点与 桌面间的摩擦可忽略不计,质点与OB 面及OA 面的碰撞都 是弹性碰撞,且每次碰撞时间极短,可忽略不计,试求:

(1)经过几次碰撞质点又回到C 处与OA 相碰?

(计算次数时包括在C 处的碰撞)

(2)共用多少时间?

(3)在这过程中,质点离O 点的最短距离是多少?

参考答案

1.D

2.k k k g k H k k k g k H k H 211)1(2211)1(2,22-+-++-++- 3.L 9

41 4.9.79m 50m

5.622.0597.0<<μ

6.21块 48

49m FL 7.2

1Q - 8.0.065U

9.24.46K

R

q 10.(1)I :],)41(1[32n C -ε Ⅱ Ⅲ:])41(1[31n C -ε (3)231εC 11.R R AB )13(+=

12.(1)10Ω (2)2.5W

(3)

)99,,5,3,1(2201 =+i i ,)98,,4,2(2

10 =i i (4)10W 13.40Ω

14.ra R AB )17(31-= 15.(1)60次 (2)2s (3)m 35

探析新课标高中物理教学方法及策略-物理论文

探析新课标高中物理教学方法及策略-物理论文 探析新课标高中物理教学方法及策略 摘要:随着新课标的不断推进与实施,其对高中物理课堂教学提出了更高的要求。作为一名高中物理教师不能仅仅传授给学生知识,还要培养学生的能力,提高他们的创新意识与自主探究学习的能力,使其成为全面发展的人才,满足素质教育对人才的基本需求。 关键词:高中物理;课堂教学;教学模式 高中物理的知识点繁多,而且内容比较抽象,若是学生在学习时不能真正地思考,深入挖掘其内涵,学生就很难学好物理,甚至产生厌学心理。因此,教师要采用多种教学手段与方法,生动地组织教学,将学生学习的积极性与主动性充分调动起来,从而有效地提高课堂教学的效率与质量。下面我就结合自身的教学经验与实践,简单谈谈在新课标教学理念下高中物理课堂的教学方法及策略,为提高物理课堂的教学质量提出几点建议。 一、让生活走进课堂 大千世界五彩缤纷,物理现象比比皆是,很多学生虽然在生活中看到过种种现象,却没有深入地思考,缺乏理论联系实际的意识,从而感觉物理知识是深奥的,是晦涩难懂的,造成学生的抵触心理,从而使得物理学习的效率低下,成绩下降。面对这样的学习现状,教师要将物理现象引入课堂,启发学生思考,运用物理知识解释生活中的常见现象,从而激发学生的兴趣与探究欲望,保证学习的质量。 我在教学中就曾经以“生活中的物理”为主题在课堂上与学生探讨生活中的物理现象,并启发学生结合自己的经验用所学的物理知识解释。比如,坐在快

速行驶的车上,在转弯的时候,会感觉向外甩,这是离心现象;在游乐园坐海盗船,从上往下落有失重现象;长期堆煤的墙角会发黑,这是固体分子的扩散现象等。将生活中的常见现象引入到物理课堂中,学生在熟悉的现象中找寻其存在的物理知识,体会物理在生活中的广泛存在,就能端正学生的学习态度,使学生有十分强烈的参与课堂的欲望,从而提高课堂教学的有效性。 二、运用现代教育媒体 多媒体辅助教学是现在课堂教学中常用的一种方式,多媒体集声音、图形、视频于一身,使其能在课堂教学中发挥重要的作用。高中物理虽然与生活联系密切,但是很多知识都具有抽象性,若是教师采用传统的教学方法,借助口头讲授学生很难真正地理解这些知识,而多媒体则可以将抽象的物理知识形象化,大大降低学生学习的难度,从而有效地提高学生的学习效率,促进学生的发展。 比如,在教学“万有引力定律”时,如果教师只是用语言介绍运动的过程,学生很难理解天体运动的规则,而采用多媒体进行演示,学生就可以形象地理解运动的过程与规律,从而在脑海中对天体的运动形式形成一个模式,有助于简化学习内容。又如,一些难以亲自操作的实验,教师就可以借助多媒体,像重核裂变、轻核聚变的过程,课堂上无法做这些实验,在一定程度上会影响教学效果,但是采用多媒体进行演示,将裂变、聚变的过程生动形象地展示出来,学生就很容易理解,也就能促进学生学习的积极性,提高了教学效果。 三、创新教学方法 物理作为一门科学性的学科,其知识性与逻辑性都很强。学生要想学好物理,只靠死记硬背的学习方法是行不通的。教师要指导学生采用合适的学习方法,以达到事半功倍的学习效果。

高中物理竞赛知识系统整理

物理知识整理 知识点睛 一.惯性力 先思考一个问题:设有一质量为m 的小球,放在一小车光滑的水平面上,平面上除小球(小球的线度远远小于小车的横向线度)之外别无他物,即小球水平方向合外力为零。然后突然使小车向右对地作加速运动,这时小球将如何运动呢? 地面上的观察者认为:小球将静止在原地,符合牛顿第一定律; 车上的观察者觉得:小球以-a s 相对于小车作加速运动; 我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力引起的印象至深,以致在任何场合下,他都强烈地要求保留这一认知,于是车上的人说:小球之所以对小车有 -a s 的加速度,是因为受到了一个指向左方的作用力,且力的大小为 - ma s ;但他同时又熟知,力是物体与物体之间的相互作用,而小球在水平方向不受其它物体的作用, 物理上把这个力命名为惯性力。 惯性力的理解 : (1) 惯性力不是物体间的相互作用。因此,没有反作用。 (2)惯性力的大小等于研究对象的质量m 与非惯性系的加速度a s 的乘积,而方向与 a s 相反,即 s a m f -=* (3)我们把牛顿运动定律成立的参考系叫惯性系,不成立的叫非惯性系,设一个参考系相对绝对空间加速度为a s ,物体受相对此参考系 加速度为a',牛顿定律可以写成:a m f F '=+* 其中F 为物理受的“真实的力”,f*为惯性力,是个“假力”。 (4)如果研究对象是刚体,则惯性力等效作用点在质心处, 说明:关于真假力,绝对空间之类的概念很诡异,这样说牛顿力学在逻辑上都是显得很不严密。所以质疑和争论的人比较多。不过笔者建议初学的时候不必较真,要能比较深刻的认识这个问题,既需要很广的物理知识面,也需要很强的物理思维能力。在这个问题的思考中培养出爱因斯坦2.0版本的概率很低(因为现有的迷惑都被1.0版本解决了),在以后的学习中我们的同学会逐渐对力的概念,空间的概念清晰起来,脑子里就不会有那么多低营养的疑问了。 极其不建议想不明白这问题的同学Baidu 这个问题,网上的讨论文章倒是极其多,不过基本都是民哲们的梦呓,很容易对不懂的人产生误导。 二.惯性力的具体表现(选讲) 1.作直线加速运动的非惯性系中的惯性力 这时惯性力仅与牵连运动有关,即仅与非惯性系相对于惯性系的加速度有关。惯性力将具有与恒定重力相类似的特性,即与惯性质量正比。记为: s a m f -=* 2.做圆周运动的非惯性系中的惯性力 这时候的惯性力可分为离心力以及科里奥利力: 1)离心力为背向圆心的一个力: r m f 2ω=*

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高中物理竞赛经典方法 2.隔离法

二、隔离法 方法简介 隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。 赛题精讲 例1:两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图2—1所示,如果它们分别受到水平推力F 1和F 2作用,且F 1>F 2 , 则物体1施于物体2的作用力的大小为( ) A .F 1 B .F 2 C .12F F 2+ D .12F F 2 - 解析:要求物体1和2之间的作用力,必须把其中一个隔离出来分析。先以整体为研 究对象,根据牛顿第二定律:F 1-F 2 = 2ma ① 再以物体2为研究对象,有N -F 2 = ma ② 解①、②两式可得N = 12 F F 2 +,所以应选C 例2:如图2—2在光滑的水平桌面上放一物体A ,A 上再放一物体B ,A 、B 间有摩擦。施加一水平力F 于B ,使它相对于桌面向右运动,这时物体A 相对于桌面( ) A .向左动 B .向右动 C .不动 D .运动,但运动方向不能判断 解析:A 的运动有两种可能,可根据隔离法分析 设AB 一起运动,则:a =A B F m m + AB 之间的最大静摩擦力:f m = μm B g 以A 为研究对象:若f m ≥m A a ,即:μ≥A B B A m m (m m )g +F 时,AB 一起向右运动。 若μ< A B B A m m (m m )g + F ,则A 向右运动,但比B 要慢,所 以应选B 例3:如图2—3所示,已知物块A 、B 的质量分别为m 1 、m 2 ,A 、B 间的摩擦因数为μ1 ,A 与地面之间的摩擦因数为μ2 ,在水平力F 的推动下,要使A 、B 一起运动而B 不至下滑,力F 至少为多大? 解析: B 受到A 向前的压力N ,要想B 不下滑,需满足的临界条件是:μ1N = m 2g 。

高中奥林匹克物理竞赛解题方法 10图像法

高中奥林匹克物理竞赛解题方法 十、图像法 方法简介 图像法是根据题意把抽象复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形象、简明的特点,来分析解决物理问题,由此达到化难为易,化繁为简的目的,图像法在处理某些运动问题,变力做功问题时是一种非常有效的方法。 赛题精讲 例1:一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。AB 两地相距s ,火 车做加速运动时,其加速度最大为a 1,做减速运动时,其加速度的绝对值最大为a 2,由此可可以判断出该火车由A 到B 所需的最短时间为 。 解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最大时,所用时间最短,分段运动可用图像法来解。 根据题意作v —t 图,如图11—1所示。 由图可得1 1t v a = vt t t v s t v a 21)(21212 2=+== 由①、②、③解得2 121)(2a a a a s t += 例2:两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度为v 0,若前车突然以恒定 的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车。已知前车在刹车过程中所行的距离为s ,若要保证两辆车在上述情况中不相碰,则两车在做匀速行驶时保持的距离至少为 ( ) A .s B .2s C .3s D .4s 解析:物体做直线运动时,其位移可用速度——时间图像 中的面积来表示,故可用图像法做。 作两物体运动的v —t 图像如图11—2所示,前车发 生的位移s 为三角形v 0Ot 的面积,由于前后两车的刹车 加速度相同,根据对称性,后车发生的位移为梯形的面积 S ′=3S ,两车的位移之差应为不相碰时,两车匀速行驶 时保持的最小车距2s. 所以应选B 。 ① ② ③ 图11—2

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理竞赛经典方法 7对称法

七、对称法 方法简介 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。 赛题精析 例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s ,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示。求小球抛出时的初速度。 解析:因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A ′点水平抛出所做的运动。 根据平抛运动的规律:02x v t 1y gt 2 =???=?? 因为抛出点到落地点的距离为3s ,抛出点的高度为h ,代入后可解得: v 0 = 3s 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距

为d ,一个小球以初速度v 0从两墙正中间的O 点斜向上抛出,与A 和B 各发生一次碰撞后正好落回抛出点O ,求小球的抛射角θ。 解析:小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解。 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有: 02 0x v cos t 1y v sin t gt 2 =θ??? ?=θ?-??,落地时x 2d y 0=??=? 代入可解得:sin2θ = 20 2gd v 所以,抛射角θ =1 2 arcsin 20 2gd v 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。 由题意作图7—3 ,设顶点到中心的距离为s ,则由已知条件得: 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为: v ′= vcos30° =

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

高中物理问题教学法的行动研究

高中物理问题教学法的行动研究 一、课题的提出: (一)对课程改革和新课程的认识 2010开始贵州省实行新课程改革至今已有四个年头,面对全新的课程标准和教材,教师采取何种教学方式进行教学已成为教师迫切需要解决的问题。为了能较好的让全省高中教师能尽快掌握新课程标准新课程教材及新课程的教学理念,各地方教育局都相应的组了连续三年暑假教师的培训,虽然取得了一定的效果,但每次培训的时间较短(就一到两天的时间)一线老师还是不能完全理解和掌握新课改革的目的和教学理念及方法。 《基础教育改革纲要(试行)》指出:“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手……。”因此,新课程强调:教学是教与学的统一,教学是教与学的交往、互动,是师生双方相互交流、相互沟通、相互启发、相互补充的过程,教学中教师应是学生学习的促进者、引导者。这就要求教师要改变传统单向、单一的教学方式,探索符合《物理》新课程要求的教学方式。新教材注重学生在体验--探究的学习过程中丰富社会经验,强调健全人格的培养,体现了“育人为本”而不是“知识为本”的现代教育价值取向。在教学中教师应是学生学习的促进者、引导者……,学生的学习方式应具有多样性,在师生平等的前提下,教师指导学生进行主动地、富有个性地学习。 (二)对传统教学方式的反思 传统教学模式下的教师把学生视为知识的“容器”,以单向传授知识为主要目标,忽视学生对知识的探究过程和学生的主体地位,使学生在机械式的教学方式下,失去了对知识的主动思考过程、失去了思维发展及创新的机会,这直接导致了教师难教、学生厌学的被动局面。 在传统教学模式下一线老师们都普遍感觉到最令人困惑的现象有三个:

高中物理竞赛精彩试题及问题详解

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间120 分钟. 第Ⅰ卷(选择题共40 分) 一、本题共10 小题,每小题 4 分,共40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得2 分,有错选或不答的得0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说确的有 A.若甲的初速度比乙大,则甲的速度后减到0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M的笼子,笼有一只质量为m的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为F2(如图Ⅰ-3),关于F1和F2的大小,下列判断中正确的是 A.F1 = F2>(M + m)g B.F1>(M + m)g,F2<(M + m)g C.F1>F2>(M + m)g D.F1<(M + m)g,F2>(M + m)g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a、b、c代表电场中的三个等势面,相邻等势面之间的电势差相等,即U ab= U bc,实线为一带正电的质点仅在电场力作用下通过该区域时的运动轨迹,P、Q 图Ⅰ-3 图Ⅰ-4 图Ⅰ-2

高中物理竞赛解题方法之降维法例题

十三、降维法 方法简介 降维法是将一个三维图变成几个二维图,即应选两个合适的平面去观察,当遇到一个空间受力问题时,将物体受到的力分解到两个不同平面上再求解。由于三维问题不好想像,选取适当的角度,可用降维法求解。降维的优点是把不易观察的空间物理量的关系在二维图中表示出来,使我们很容易找到各物理量之间的关系,从而正确解决问题。 赛题精讲 例1:如图13—1所示,倾角θ=30°的粗糙斜面上放一物体,物体重为G ,静止在斜面上。现用与斜面底边平行的力F=G/2推该物体,物体恰好在斜面内做匀速直线运动,则物体与斜面间的动摩擦因数μ等于多少?物体匀速运动的方向如何? 解析:物体在重力、推力、斜面给的支持力和摩擦力四个力的作用下做匀速直线运动,所以受力平衡。但这四个力不在同一平面内,不容易看出它们之间的关系。我们把这些力分解在两个平面内,就可以将空间问题变为平面问题,使问题得到解决。 将重力沿斜面、垂直于斜面分解。我们从上面、侧面观察,图13—1—甲、图13—1—乙所示。 如图13—1—甲所示,推力F 与重力沿斜面的分力G 1的合力F ′为: G G F F 2 22 12 = += ' F ′的方向沿斜面向下与推力成α角, 则 ?=∴== 451 tan 1ααF G 这就是物体做匀速运动的方向 物体受到的滑动摩擦力与F ′平衡,即 2/2G F f = '= 所以摩擦因数:3 630cos 2/2=? ==G G F f N μ 例2:如图13—2所示,一个直径为D 的圆柱体,其侧面刻有螺距为h 的光滑的螺旋形凹槽,槽内有一小球,为使小球能自由下落,必须要以多大的加速度来拉缠在圆柱体侧面的绳子? 解析:将圆柱体的侧面等距螺旋形凹槽展开成为平面上的斜槽,如图13—2—甲所示,当圆柱体转一周,相当于沿斜槽下降一个螺距h ,当圆柱转n 周时,外侧面上一共移动的

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中物理采取图像问题教学法的具体做法

高中物理采取图像问题教学法的具体做法 物理科学具有鲜明的动态特点,而图像问题能够对物理的动态性进行更直观更明了的阐述,使物理教学不再只是枯燥的理论传授,可以激发学生的学习积极性,并且采取图像教学能够使学生的智力以及潜能得到充分的调动开发. 因此,在高中物理教学中需要采取图像问题教学方法,促使教学质量得到提升. 1 高中物理教学图像问题的相关概念 物理图像是指一种应用于物理教学中,用图像将物理现象及其规律描绘出来,从而使物理问题的相关原理得到展示的教学手段. 物理图像包含受力分析图、物质运动过程图、函数图象、模型图以及矢量合成与分解图等等许多种类. 这些图像主要的共同特点是可以将物理问题生动化、简单化以及形象化等,有利于学生更加直接地了解物理问题想要表达的内容,并且使问题的解决过程简单化. 2 在高中物理教学中架构图像的必要性 对于高中物理教学而言,图像法不仅是解题方法的一种,而且还是一种思维方式. 在教学中架构图像,重点在于"数形结合",这样能够提升学生的学习效果. 而其必要性主要表现在以下几个方面: 2. 1 有利于学生更好吸收课堂内容 在平时的教学过程中对物理概念或者规律等进行图像化处理,能够潜移默化地影响学生并使其树立图像意识. 而教师在架构图像时要注重将其与教学内容相连,并且要结合从易到难与逐步进行的观念,使其与学生的认知能力相符,从而帮助学生应用图像架构法更好地解决物理问题并对物理规律予以总结. 2. 2 能够利用图像特点开展形象化教学 图像法具有简洁、清晰、形象等特点,能够使函数关系更加明确,使物理问题的信息量展现得更加全面. 这样一来有利于教师开展形象化教学,从而帮助学生熟练掌握图像中所蕴含的物理知识点,例如截距、斜率等,同时还能够使学生拥有更加立体、清晰与灵活的思路. 应用图像架构来解决运动、变力做功方面的问题具有很好的效果.

高中物理竞赛内容标准

高中物理竞赛内容标准 一、理论基础 力学 物理必修1 本模块是高中物理的第一模块。在本模块中学生,学生将进一步学习物理学的内容和研究方法,了解物理学的思想和研究方法,了解物理学在技术上的应用和物理学对社会的影响。 本模块的概念和规律是进一步学习物理的基础,有关实验在高中物理中具有基础性和典型性。要通过这些实验学习基本的操作技能,体验实验在物理学中的地位及实践人类在认识世界中的作用。 本模块划分两个四主题: ·运动的描述 ·相互作用与运动规律 ·抛体运动与圆周运动 ·经典力学的成就与局限性 (一)运动的描述 1.内容标准 (1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 例1 了解亚里士多德、迪卡尔等关于力与运动的主要观点与研究方法。 例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。 (2)通过对质点的认识,了解物理学中物理模型特点,体会物理模型在探索自然规律中的作用。 例3 在日常生活中,物体在哪些情况下可以看做质点? (3)经历匀变速直线运动的实验过程,理解参考糸、位移、时间、时刻、路程、速度、相对速度、加速度的概念及物理量的标矢性,掌握匀变速直线运动的规律,体会实验在发现自然运动规律中作用。 例4 用实验方法和图像方法研究物体的运动。

例5 通过实例描述物体的变速运动,运动的矢量性。 例6 通过史实及实验研究自由落体运动。 (4)能用公式和图像描述匀变速直线运动,掌握微元法,积分法等数学思想在研究物理问题中的重要性。 (5)对过位移、速度、加速度的学习,理解矢量与标量在物理学中重要性。掌握矢量的合成和分解。 例7 通过实例研究物体竖直上抛运动,体会物体在共线条件下的矢量合成与分解。 2.活动建议 (1)通过研究汽车的运行来分析交通事故的原因。 (2)通过实验研究自由落体运动的影响因素。 (3)通过查阅物理学史,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。 (二)相互作用与运动规律 1.内容标准 (1)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。 例1 调查在日常生活和生产中所用弹簧的形状及使用目的。 例2 制作弹簧秤并用胡克定律解释。 (2)通过实验认识滑动摩擦、静摩擦的规律,理解静摩擦力、滑动摩擦力、摩擦角的概念。能用动摩擦因数计算滑动摩擦力。 例3 设计实验测量摩擦力。体会摩擦力与摩擦角的实际意义。 (3)通过实验,理解力的合成与分解,掌握共点的平衡条件,物体平衡的种类。用力的合成与分解分析日常生活中的问题。 例4 通过实验,研究两个共点力在不同夹角时与合力的关系。 例5 调查日常生活和生产中平衡的类型,分析平衡原理。

高中物理竞赛 解题 方法

高中奥林匹克物理竞赛解题方法 五、极限法 方法简介 极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论。极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确。因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果。 赛题精讲 例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立 弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度 系数为k ,则物块可能获得的最大动能为 。 解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理, 小球所受合力为零的位置速度、动能最大。所以速最大时有 mg =kx ① 图5—1 由机械能守恒有 22 1)(kx E x h mg k +=+ ② 联立①②式解得 k g m m g h E k 2 221?-= 例2:如图5—2所示,倾角为α的斜面上方有一点O ,在O 点放一至 斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点 的时间最短。求该直轨道与竖直方向的夹角β。 解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关, 求时间t 对于β角的函数的极值即可。 由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为 βcos g a = 该质点沿轨道由静止滑到斜面所用的时间为t ,则 OP at =22 1 所以β cos 2g OP t = ① 由图可知,在△OPC 中有 图5—2

) 90sin()90sin(βαα-+=- OC OP 所以) cos(cos βαα-=OC OP ② 将②式代入①式得 g OC g OC t )]2cos([cos cos 4)cos(cos cos 2βαααβαβα-+=-= 显然,当2,1)2cos(αββα= =-即时,上式有最小值. 所以当2α β=时,质点沿直轨道滑到斜面所用的时间最短。 此题也可以用作图法求解。 例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计 空气阻力,若斜面足够长,如图5—3所示,则小球抛出后, 离开斜面的最大距离H 为多少? 解析:当物体的速度方向与斜面平行时,物体离斜面最远。 以水平向右为x 轴正方向,竖直向下为y 轴正方向, 则由:gt v v y ==θtan 0,解得运动时间为θtan 0g v t = 该点的坐标为 θθ2202200tan 221tan g v gt y g v t v x ==== 由几何关系得:θθtan cos /x y H =+ 解得小球离开斜面的最大距离为 θθsin tan 220?=g v H 。 这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便。 例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m 的墙外, 从喷口算起, 墙高为4.0m 。 若不计空气阻力,取 2/10s m g =,求所需的最小初速及对应的发射仰角。 解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的 直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角。 图5— 3 图5—4

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

问题教学法在高中物理教学中的应用探讨

问题教学法在高中物理教学中的应用探讨 发表时间:2018-12-21T11:36:47.087Z 来源:《成长读本》2018年12月总第37期作者:许元辉[导读] 高中物理作为一门抽象性强的学科, 其知识体系较为复杂, 对学生的思维逻辑性要求较高 许元辉云南省腾冲市第五中学 摘要:高中物理作为一门抽象性强的学科, 其知识体系较为复杂, 对学生的思维逻辑性要求较高, 使用传统的“灌输式”教学方法已无法满足学生的需求。问题教学法以学生为主体, 一方面, 提升了学生的学习兴趣;另一方面, 还开发了学生的发散性思维, 训练了学生的思维深度,整体上提高了教师教学的质量。 关键词:问题教学法; 高中物理教学; 应用; 在物理课堂中应用问题教学法开展教学, 首先应遵循一定的原则, 既要照顾到学生的思考方式与和思维模式, 还要注意在引入问题教学法时不要太突然, 要循序渐进, 以免影响下一步的教学。学生在教师的引导下, 通过对物理教材的思考与研究, 进而去寻找教师所提出的问题的答案, 在探究答案的过程中一步步的掌握知识, 这不仅仅是一个学习知识的过程, 还能够开发学生的智力, 提高学生的能力, 更利于学生的全面发展。 一、把握好提问的时机 教师在课堂上对于学生的提问也要把握好时机。在课堂的导入阶段, 适当的小问题可以将学生零散的心思集中于课堂上来, 有助于教师知识点的教授, 也有助于增强学生对于问题的好奇心, 进而产生对课堂知识的渴求。教师在进行教学时需要提问学生,但是要把握好提问的时机,如果在学习知识之前给学生提一些重难点的问题,可能学生会感觉到很难,就会让学生产生畏难情绪,如果在课堂进行的中间阶段将学生进行重难点提问,这可能会让学生感觉到很疲倦,可这并不是本堂课最重要的任务, 则很有可能打乱教师的授课计划;若在重难点之后提问, 长时间精神的高度集中会使学生产生厌倦, 对问题也没有了兴趣, 无法完成教师布置的任务会打击到学生, 也对今后的课堂教学产生不利的作用。在本堂课结束时进行发问可以帮助学生整理本堂课所学知识, 理清知识脉络, 还可以对下节课所要学的知识进行简单的发问, 鼓励学生在空闲时间围绕问题对下节课知识进行预习。 二、提问应循序渐进 高中物理教材中有众多实验, 教师在进行实验演示时应引导学生, 让学生在观察实验的过程中同时进行思考。在学习自由落体运动这一章节时, 教师拿出两种外形相同但重量不同物体, 向学生进行提问:我会让学生猜一下究竟哪一个会先落地?然后教师向学生进行实验演示,让学生观察结论与实验结果是否相同。接着教师进行新一轮实验, 改变以上两种物体的外形, 再将两种物体从同一高度自由落下, 向学生进行相同的提问, 学生这时的好奇心就被调动起来了,教师再进行进一步的提问, 影响物体下落速度的影响因素有哪些?最后, 教师将一片羽毛和一片铁片放在真空管中进行自由落体实验, 让学生观察实验, 完成本节课的知识教授。这样的提问方式是逐步深入的,使学生的思维在跟着教师走的同时也能自己思考问题, 找寻答案。教师还要适时追问, 在不脱离本堂课内容的前提下, 针对核心问题积极追加问题, 能够让学生更好理解所学知识, 在面对问题时能够举一反三的解决问题。 三、善于将问题变形 高中物理中的许多习题只是变换或增减其中某些条件后, 就成为了另一种类型的题目, 在发现这一特点后, 教师在授课时就应有意识的将问题“变形”, 拓展学生的思维, 让学生懂得条件的重要性, 对问题有更加深入的认知与理解。就像高二课程中有关单摆的学习, 在学生掌握了单摆周期公式, 教师可以将条件进行变形,让学生从不同角度思考问题,要让学生树立举一反三的意识,不能仅限于将题目解答出来就可以,要习惯从不同角度思考问题。在多次问题变形后, 不但让学生掌握了单摆这一章节的知识, 并且巩固了电磁场的知识。 四、正确引导学生进行自主探究 教师在教学的过程中, 不但要教授学生知识, 还要正确引导学生进行自主探究。对于物理这一学科的学习, 学生们通过亲自实践获得的知识往往超过从教材中获得的知识, 所以为了获得良好的教学效果, 教师应鼓励学生积极进行自主探究。学生可以通过小组讨论的方式来理解物理知识, 在光的折射这一章节中, 我会主张让学生自己亲手实践,我会让学生将筷子放在装满水的杯子里,从外面看筷子好像是折断了一样,出现了错位的现象;将物体放进水中, 物体看起来会变大好几倍, 在这些简单的实践中, 学生发现了生活中的物理现象, 这增加了生活的乐趣, 还使学生掌握了物理知识。小组与小组之间还应多加交流与合作, 互相分享自己获得的新知识, 但是学生总体的物理知识不足, 有些问题仍需要教师的解答, 教师在其中的辅助与引导有助于学生对知识的理解与掌握。 结束语 为了将问题教学法的作用发挥到极致, 教师在设计问题时一定要注意教材知识与问题的紧密结合, 这样才能增强学生对于物理知识的渴求度, 培养学生的能力, 提高学生的素质, 锻炼学生的发散性思维, 教师的教学效果也会有显著的提升。在今后的高中物理教学中, 教师应以问题教学法为主要教学方法, 以便更好地设计问题进行教学, 达到最优的效果。 参考文献 [1]贺向向,李卫东,刘艳峰.高中物理习题教学中学生思维品质的培养[J].物理教师,2018,(9):5-8. [2]张港华.思维导图在高中物理综合复习中的运用[J].中学物理(高中版),2018,(7):32-33.

相关主题