搜档网
当前位置:搜档网 › 二项式定理练习题

二项式定理练习题

二项式定理练习题
二项式定理练习题

二项式定理练习题

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合

题目要求的. 1.在()

10

3

x -的展开式中,6

x 的系数为

( )

A .610

C 27- B .4

10C 27

C .6

10C 9-

D .4

10C 9

2. 已知a 4b ,0b a =>+, ()n b a +的展开式按a 的降幂排列,其中第n 项与第n+1项相等,那么正整数n 等于

( )

A .4

B .9

C .10

D .11

3.已知(n a a )1

3

2

+

的展开式的第三项与第二项的系数的比为11∶2,则n 是 ( )

A .10

B .11

C .12

D .13 4.5310被8除的余数是

( ) A .1 B .2 C .3 D .7 5. (1.05)6的计算结果精确到0.01的近似值是

( )

A .1.23

B .1.24

C .1.33

D .1.34

6.二项式n

4x 1x 2??? ?

?+ (n ∈N)的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项

数是

( ) A .1

B .2

C .3

D .4

7.设(3x 3

1+x 2

1)n

展开式的各项系数之和为t ,其二项式系数之和为h ,若t+h=272,则展开式的x 2

项的系

数是

( )

A .2

1

B .1

C .2

D .3

8.在62)1(x x -+的展开式中5

x 的系数为

( )

A .4

B .5

C .6

D .7

9.n

x x

)

(513

1+展开式中所有奇数项系数之和等于1024,则所有项的系数中最大的值是

( )

A .330

B .462

C .680

D .790 10.54)1()1(-+x x 的展开式中,4

x 的系数为

( )

A .-40

B .10

C .40

D .45

11.二项式(1+sinx)n 的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为

2

5

,则x 在[0,2π]内的值为

( )

A .

6π或3π B .6

π或65π

C .

3π或32π D .3

π或65π

12.在(1+x )5+(1+x )6+(1+x )7的展开式中,含x 4项的系数是等差数列 a n =3n -5的

( )

A .第2项

B .第11项

C .第20项

D .第24项

二、填空题:本大题满分16分,每小题4分,各题只要求直接写出结果. 13.9

2

)21(x

x -

展开式中9x 的系数是 . 14.若()

44104

x a x a a 3

x 2+???++=+,则()()2312420a a a a a +-++的值为__________.

15.若 32()n x x -+的展开式中只有第6项的系数最大,则展开式中的常数项是 . 16.对于二项式(1-x)1999

,有下列四个命题:

①展开式中T 1000= -C 1999

1000

x

999

②展开式中非常数项的系数和是1;

③展开式中系数最大的项是第1000项和第1001项; ④当x=2000时,(1-x)

1999

除以2000的余数是1.

其中正确命题的序号是__________.(把你认为正确的命题序号都填上)

三、解答题:本大题满分74分. 17.(12分)若n x

x )1

(6

6+

展开式中第二、三、四项的二项式系数成等差数列.

(1) 求n 的值;

(2)此展开式中是否有常数项,为什么?

18.(12分)已知(

1

24

x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.

19.(12分)是否存在等差数列{}n a ,使n n n 1n 2n 31n 20n 12n C a C a C a C a ?=+???++++对任意*

N n ∈都成立?

若存在,求出数列{}n a 的通项公式;若不存在,请说明理由.

20.(12分)某地现有耕地100000亩,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提

高10%。如果人口年增加率为1%,那么耕地平均每年至多只能减少多少亩(精确到1亩)?

21. (12分)设f(x)=(1+x)m +(1+x)n (m 、n N ∈),若其展开式中,关于x 的一次项系数为11,试问:m 、n

取何值时,f(x)的展开式中含x 2项的系数取最小值,并求出这个最小值.

22.(14分)规定!

)1()1(m m x x x C m

x +--=

,其中x ∈R ,m 是正整数,且10=x C ,这是组合数m

n

C (n 、m 是正整数,且m ≤n )的一种推广.

(1) 求3

15-C 的值;

(2) 设x >0,当x 为何值时,213

)(x x

C C 取得最小值?

(3) 组合数的两个性质;

①m n n m n C C -=. ②m

n m n m n C C C 11+-=+.

是否都能推广到m x C (x ∈R ,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若

不能,则说明理由.

参考答案

一、选择题

1.D 2.A 3.C 4.A 5.D 6.C 7.B 8.C 9.B 10.D 11.B 12.C

3.解:21

/11/2n n C C =,12n

=.

5.解:(1.05)6

=

()?

??+?+?+?+=+3

362261606605.0C 05.0C 05.0C C 05.01 =1+0.3+0.0375+0.0025+…≈1.34.

6.解:r

316x

C 2T r 8r 81r --+=,r=0,1,…,8. 设k 4

r 316=-,得满足条件的整数对(r,k) 只有(0,4),(4,1),(8,-2).

7.解:由,2722

4n

n =+得162n =,n=4,r

8x

C 3

T r 4r

41

r +-+=, 取r=4.

8.解:设62)1(x x -+

=[]6

2

2)(1x x -+的展开式的通项为,1

+r T

则r r r x x C T )(261-=+(r=0,1,2,…,6).

二项式

r x x )(2-展开式的通项为

n r n r n n n r n r n n x C x x C t +-+-=-=)1()()1(21(n=0,1,2,…,r)

62)1(x x -+的展开式的通项公式为∑=++-=r

n n r n r r n r x C C T 0

61,)1(

令r+n=5,则n=5-r .0,60,0r n r ≤≤≤≤≥r=3,4,5,n=2,1,0.

62)1(x x -+展开式中含5x 项的系数为: .6)1()1()1(0

5560144623362=-+-+-C C C C C C

9.解:显然奇数项之和是所有项系数之和的一半,令x =1 即得所有项系数之和,.11,210242

101

=∴==-n n 各项的

系数为二项式系数,故系统最大值为6

11C 或5

11C ,为462.

10.解:54)1()1(-+x x =45444)1()1()1()1()1()1(+-=-+-+x x x x x x

=+-x x ()

1(5

2)12+x =)1464()1(25++++-x x x x x x

4x 的系数为.45)1(6)1(1525335=-+?+-C C C

二、填空题 13.2

21-

; 14.1; 15.64

71010T C C ===210; 16.①④. 三、解答题

17.解:(1)n = 7 (6分)(2)无常数项(6分)

18.解:由01237,n n n C C C ++=(3 分)得11(1)372

n n n ++-=(5分)

,得8n =.(8分)455585

135(2)4

16

T C x x ==,该项的

系数最大,为3516

.(12分)

19.解:假设存在等差数列

n a d )1n (a 1-+=满足要求(2分)

=+???++++n n 1n 2n 31n 20n 1C a C a C a C a ()()

n n 2n 1n n n 1n 0n 1

nC C 2C d C C C a +???++++???++(4分)=n

12a ?()

1

n n 11n 1n 11n 01n 2

nd 2a C C C nd -----?+?=+???+++(8分) 依题意n 1n n 12n 2nd 2a ?=?+?-,()02d n a 21=-+对*N n ∈恒成立,(10分),0a 1

=∴2d =, 所求的等差数列存在,

其通项公式为)1n (2a n -=.(12分)

20.解:设耕地平均每年减少x 亩,现有人口为p 人,粮食单产为m 吨/亩,(2分)依题意

()(

)()

(),%101p

10

m %11p x

1010%221m 4

10

4+?≥+?-?+?(6分)

化简:

()?

?

????+?-?≤22.101.011.1110x 103

(8分)

()

?

?

???????+?+?+-=2

210110301.0C 01.0C 122.11.1110(10分) 3 1.1101 1.1045 4.11.22??

≈-?≈????

4x ≤∴(亩)

答:耕地平均每年至多只能减少4亩.(12分)

21.解:展开式中,关于x 的一次项系数为,

11n m C C 1n 1m =+=+(3分)关于x 的二次项系数为()()[]55

n 11n 1n n 1m m C C 2212n 2m +-=-+-=+,(8分)当n=5或6时,含x 2项的系数取最小值25,此时m=6,n=5或 m=5,n=6. (12分)

22.解:(1)680!

3)17)(16)(15(315

-=---=-C . (4分) (2) )32(616)2)(1()(2

213

-+=--=x

x x x x x C C x x

. (6分) ∵ x > 0 , 222

≥+

x

x . 当且仅当2=x 时,等号成立. ∴

当2=x 时,2

13)

(x x

C C 取得最小值. (8分)

(3)性质①不能推广,例如当2=x

时,12C 有定义,但1

22

-C 无意义; (10分)

性质②能推广,它的推广形式是m x m x m x C C C 1

1+-=+,x ∈R , m 是正整数. (12分) 事实上,当m =1时,有1

1

011+=+=+x x x C x C C . 当m ≥2时.)!1()2()1(!)1()1(1----++--=+-m m x x x m m x x x C C m x

m x

??

????++--+--=11)!1()2()1(m m x m m x x x !)1)(2()1(m x m x x x ++--= m

x C 1+=.

(14分)

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++ 等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求9 1()x x -的展开式中3 x 的系数及二项式系数

二项式定理高考题(带答案)

年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则,所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为, % 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________.【答案】 决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D.

【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为 __________. ' 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解: 的展开式为: ,当 ,时,,当 , 时,,据 此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 ¥ A .80- B .40- C .40 D .80 【答案】C

(完整word)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理 一、选择题 1.二项式(a +b )2n 的展开式的项数是( ) A .2n B .2n +1 C .2n -1 D .2(n +1) 2.(x -y )n 的二项展开式中,第r 项的系数是( ) A .C r n B . C r +1n C .C r -1n D .(-1)r -1C r -1n 3.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27 C 410 C .-9C 610 D .9C 410 4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 5.在? ?? ??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3 B .5 C .8 D .10 6.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207 7.(2009·北京)在? ?? ??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6 8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于 ( ) A .-1 B.12 C .1 D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是 ( ) A.112<x <15 B.16<x <15 C.112<x <23 D.16<x <25 10.在? ????32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项 二、填空题 11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________. 12.(1+x )2(1-x )5的展开式中x 3的系数为________. 13.若? ?? ??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________. 三、解答题 15.求二项式(a +2b )4的展开式. 16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数. 17.已知在(3x -123x )n 的展开式中,第6项为常数项.

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

二项式定理11种题型解题技巧

二项式定理知识点及11种答题技巧 1.二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N * -=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和:

二项式定理-高考题(含答案)

二项式定理高考真题 一、选择题 1.(2012·四川高考理科·T1)相同7(1)x 的展开式中2x 的系数是( D ) (A )42(B )35(C )28(D )21 2.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B ) (A )80 (B )40 (C )20 (D )10 3.(2012·天津高考理科·T5)在5 212x x 的二项展开式中,x 的系数为( D ) (A)10 (B)-10 (C)40 (D)-40 4.(2011.天津高考理科.T5)在62() 2x x 的二项展开式中,2x 的系数为( C ) (A )15 4(B )15 4(C )3 8(D )3 8 5.(2012·重庆高考理科·T4)8 21x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)435 (D)105 6.(2012·重庆高考文科·T4)5)31(x 的展开式中3x 的系数为( A ) (A)270 (B)90 (C)90 (D)270 7. (2013·大纲版全国卷高考理科·T7)8411+x y 的展开式中22x y 的系数是( D ) A.56 B.84 C.112 D.168

8.(2011·新课标全国高考理科·T8)51 2a x x x x 的展开式中各项系数的和为2,则该展开式中 常数项为( D )(A )-40 (B )-20 (C )20 (D )40 9. (2011·重庆高考理科·T4)n x)31((其中n N 且6n )的展开式中5x 与6x 的系数相等,则n ( B ) (A)6 (B) 7 (C)8 (D)910.(2011·陕西高考理科·T4)6(42)x x (x R )展开式中的常数项是(C ) (A )20(B )15(C )15 (D )20 二、填空题 11. (2013·天津高考理科·T10)61 x x 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11)181 3x x 的展开式中含15x 的项的系数为 17 . 13.(2011·全国高考理科·T13)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为 0 . 14.(2011·四川高考文科·T13)91)x (的展开式中3x 的系数是 84 (用数字作答). 15.(2011·重庆高考文科·T11)6)21(x 的展开式中4x 的系数是 240 . 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x (,则 1110a a = 0 . 17.(2011·广东高考理科·T10)72()x x x 的展开式中,4x 的系数是___84___ (用数字作答) 18.(2011·山东高考理科·T14)若62a x x 的展开式的常数项为60,则常数a 的值为 4 .

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

二项式定理 高考题(含答案)

二项式定理 高考真题 一、选择题 1.(2012·四川高考理科·T1)相同7(1)x +的展开式中2 x 的系数是( D ) (A )42 (B )35 (C )28 (D )21 2.(2011·福建卷理科·T6)(1+2x )5的展开式中,x 2的系数等于( B ) (A )80 (B )40 (C )20 (D )10 3.(2012·天津高考理科·T5)在5212x x ??- ?? ?的二项展开式中,x 的系数为 ( D ) (A)10 (B)-10 (C)40 (D)-40 4.(2011.天津高考理科.T5)在6 的二项展开式中,2x 的系数为 ( C ) (A )154- (B )154 (C )38- (D )38 5.(2012·重庆高考理科·T4)821??? ? ?+x x 的展开式中常数项为( B ) (A)1635 (B)835 (C)4 35 (D)105 6.(2012·重庆高考文科·T4)5)31(x -的展开式中3x 的系数为( A ) (A)270- (B)90- (C)90 (D)270 7. (2013·大纲版全国卷高考理科·T7)()()8411++x y 的展开式中22 x y 的系数是 ( D )

A.56 B.84 C.112 D.168 8.(2011·新课标全国高考理科·T8)5 12a x x x x ????+- ???????的展开式中各项系数的和为2,则该展开式中常数项为( D ) (A )-40 (B )-20 (C )20 (D )40 9. (2011·重庆高考理科·T4)n x )31(+(其中n N ∈且6≥n )的展开式中5x 与6x 的系数相等,则=n ( B ) (A)6 (B)7 (C)8 (D)9 10.(2011·陕西高考理科·T4)6(42)x x --(x ∈R )展开式中的常数项是 (C ) (A )20- (B )15- (C )15 (D )20 二、填空题 11.(2013·天津高考理科·T10)6x ?- ? 的二项展开式中的常数项为 15 . 12.(2011·湖北高考理科·T11) 18 x ?- ? 的展开式中含15x 的项的系数为17. 13.(2011·全国高考理科·T13))20的二项展开式中,x 的系数与x 9的系数之差为0. 14.(2011·四川高考文科·T13) 91)x +(的展开式中3x 的系数是84(用数字作答). 15.(2011·重庆高考文科·T11)6)21(x +的展开式中4x 的系数是240. 16.(2011·安徽高考理科·T12)设2121221021)1x a x a x a a x ++++=- (,则 1110a a +=0. 17.(2011·广东高考理科·T10)72()x x x -的展开式中,4x 的系数是___84___ (用数字作答)

最新二项式定理练习题(含答案)

二项式定理 1 单选题 2 (x+1)4的展开式中x的系数为3 A.2 B. 4 C. 6 D.8 4 答案 5 B 6 解析 7 分析:根据题意,(x+1)4的展开式为T r+1=C 4 r x r;分析可得,r=1时,有x 8 的项,将r=1代入可得答案.9 解答:根据题意,(x+1)4的展开式为T r+1=C 4 r x r; 10 当r=1时,有T 2=C 4 1( x)1=4x; 11 故答案为:4. 12 故选B. 13 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 14 2 (x+2)6的展开式中x3的系数是 15 A.20 B.40 C.80 D. 160 16 答案 17 D 18 解析 19 分析:利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中20 x3的系数. 21 解答:设含x3的为第r+1, 22 则Tr+1=C6rx6-r?2r, 23

24 令6-r=3, 25 得r=3, 26 故展开式中x3的系数为C63?23=160. 27 故选D. 28 点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工29 具 30 3在(1+数学公式)4的展开式中,x的系数为 31 A.4 B.6 C.8 D.10 答案 32 33 B 34 解析 35 分析:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;分析可36 得,r=2时,有x的项,将x=2代入可得答案. 37 解答:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r; 当r=2时,有T3=C42(数学公式)2=6x; 38 39 故选B. 40 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 4(1+x)7的展开式中x2的系数是 41 42 A.21 B.28 C.35 D.42 43 答案 A 44 45 解析

二项式定理典型例题

二项式定理典型例题-- 例1 在二项式n x x ?? ? ??+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 例2 求62)1(x x -+展开式中5x 的系数. 分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开. 解:方法一:[]6 262)1()1(x x x x -+=-+ -+++-+=4 4256)1(15)1(6)1(x x x x x 其中含5x 的项为55145355566C 15C 6C x x x x =+-. 含5 x 项的系数为6. 例3 求证:(1)1212C C 2C -?=+++n n n n n n n ;

(2))12(1 1C 11C 31C 21C 1210 -+=++++++n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质 n n n n n n 2C C C C 210 =++++ . 解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-? =k n k n n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =?=+++=-----11111012)C C C (n n n n n n n 右边. (2))! ()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 11C 1 1)!()!1()!1(11+++=-++?+=k n n k n k n n . ∴左边112111C 1 1C 11C 11++++++++++= n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 例4 展开5 2232??? ? ?-x x . 例5 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开. 解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即 ∑=-?+=++=++100101010 10)(])[()(k k k k z y x C z y x z y x . 这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k y x -+10)(展开, 不同的乘积k k k z y x C ?+-1010) ((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由k y x -+10)(决定,

二项式定理知识点总结复习过程

二项式定理知识点总 结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(*∈N n )等号右边的多项式 叫做()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设 x b a ==,1,则()n n n k n k n n n n n x C x C x C x C x +++++=+-ΛΛ101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式;另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.314-n 例2.(1)求7(12)x +的展开式的第四项的系数;

二项式定理(基础+复习+习题+练习)

课题:二项式定理 考纲要求: 1.能用计数原理证明二项式定理 2.会用二项式定理解决与二项展开式有关的简单问题. 教材复习 1.二项式定理及其特例: ()101()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, ()21(1)1n r r n n n x C x C x x +=++ ++ + 2.二项展开式的通项公式:r r n r n r b a C T -+=1210(n r ,,, = 3.常数项、有理项和系数最大的项: 求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. 4.二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式 系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和. 5.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量 的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图) 6.()1对称性. 与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=).直线2 n r = 是图象的对称轴. ()2增减性与最大值: 当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值 ()3各二项式系数和:∵1(1)1n r r n n n x C x C x x +=++ ++ +, 令1x =,则012 2n r n n n n n n C C C C C =+++ ++ +

二项式定理典型例题

二项式定理典型例题-- 典型例题一 例1 在二项式n x x ??? ? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 17页 系数和为n 3. 典型例题四 例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

排列组合与二项式定理知识点

排列组合与二项式定理知识点

第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:n m 种) 二、排列. 1. ⑴对排列定义的理解. 定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列. 如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数. 从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示. ⑷排列数公式: ) ,,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 注意:!)!1(!n n n n -+=? 规定0! = 1 111--++=?+=m n m n m n m m m n m n mA A C A A A 1 1 --=m n m n nA A 规定10 ==n n n C C

2. 含有可重元素...... 的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排 列个数等于! !...!!2 1 k n n n n n =. 例如:已知数字3、2、2,求其排列个数3 ! 2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列 个数1!3!3==n . 三、组合. 1. ⑴组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. ⑵组合数公式: )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -= +--==Λ ⑶两个公式:①;m n n m n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合. (或者从n+1个编号不同的小球中,n 个白球一

(完整版)二项式定理高考题(带答案)

1.2018年全国卷Ⅲ理】的展开式中的系数为 A. 10 B. 20 C. 40 D. 80 【答案】C 【解析】分析:写出,然后可得结果 详解:由题可得,令,则, 所以 故选C. 2.【2018年浙江卷】二项式的展开式的常数项是___________. 【答案】7 【解析】分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果. 详解:二项式的展开式的通项公式为 , 令得,故所求的常数项为 3.【2018年理数天津卷】在的展开式中,的系数为____________. 【答案】

决问题的关键. 4.【山西省两市2018届第二次联考】若二项式中所有项的系数之和为,所有项的系数的绝对值之和为,则的最小值为() A. 2 B. C. D. 【答案】B 5.【安徽省宿州市2018届三模】的展开式中项的系数为__________. 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果. 详解:的展开式为:,当,时,,当,时,

,据此可得:展开式中项的系数为 . 6.【2017课标1,理6】621 (1)(1)x x + +展开式中2x 的系数为 A .15 B .20 C .30 D .35 【答案】C 【解析】 试题分析:因为666 22 11(1)(1)1(1)(1)x x x x x + +=?++?+,则6(1)x +展开式中含2x 的项为2226115C x x ?=,621(1)x x ?+展开式中含2x 的项为44 262115C x x x ?=,故2x 前系数为 151530+=,选C. 情况,尤其是两个二项式展开式中的r 不同. 7.【2017课标3,理4】()()5 2x y x y +-的展开式中x 3y 3的系数为 A .80- B .40- C .40 D .80 【答案】C 【解析】 8.【2017浙江,13】已知多项式() 1x +3 ()2x +2=5432112345x a x a x a x a x a +++++,则 4a =________,5a =________.

排列组合与二项式定理的综合练习题

排列组合与二项式定理的综合应用 1.()()5121x x -+的展开式中3x 的系数为( ) A .10 B .-30 C .-10 D .-20 2.若()()72801281212x x a a x a x a x +-=++++…,则0127a a a a ++++…的值为( ) A .2- B .3- C .253 D .126 3.()()512x x +-的展开式中2x 的系数为( ) . A .25 B .5 C .-15 D .-20 4.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( ) A .40种 B .60种 C .100种 D .120种 5.从5名学生中选出4名分别参加A ,B ,C ,D 四科竞赛,其中甲不能参加C ,D 两科竞赛,则不同的参赛方案种数为( ) 6.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( ) A.828 9A A B.82810A A C.8287A A D.8286A A 7.小孔家有爷爷、奶奶、姥爷、姥姥、爸爸、妈妈,包括他共7人,一天爸爸从果园里摘了7个大小不同的梨,给家里每人一个.小孔拿了最小的一个,爷爷、奶奶、姥爷、姥姥4位老人之一拿最大的一个,则梨子的不同分法共有( ) A .96种 B .120种 种 D .720种 8.已知身穿红,黄两种颜色衣服的各两人,身穿蓝衣服的有1人,现将五人排成一列,要求穿相同颜色衣服的人不能相邻,则不同的排法有( ) 种 种 种 种 9.3n x ?+??的展开式中,各项系数之和为A ,各项的二项式系数之和为B ,且72A B +=,则展开式中常数项为( ) 10.从1,3,5,7,9中任取3个数字,从2,4,6,8中任取两个数字,一共可以组成没有重复数字的五位偶数的个数为( ) A .2880 B .7200 C . 1440 D .60 11.某中学四名高二学生约定“五一”节到本地区三处旅游景点做公益活动,如果每个景点至少一名同学,且甲乙两名同学不在同一景点,则这四名同学的安排情况有( ) A .10种 B .20种 C .30种 D .40种 12.51 ()(21)ax x x +-的展开式中各项系数的和为2,则该展开式中常数项为( )

二项式定理知识点总结

二项式定理知识点总结 1.二项式定理公式: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=+++++∈L L , 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。 各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是0 1 2 ,,,,,,. r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N * +=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即 0,n n n C C =·1 k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:0242132111222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???= ?=L ④奇数项的系数和与偶数项的系数和: 00112220120120011222021210 01230123()()1, (1)1,(1)n n n n n n n n n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----L L L L n n L n n n L 024135(1)(1),() 2 (1)(1),() 2 n n n n n n a a a a a a a a a a a a ----++-++++=+---+++=n n n n L n n n n n n n n n n L n n n n n n n ⑤二项式系数的最大项: 如果二项式的幂指数n 是偶数时,则中间一项的二项式系数21 2n n n C T +=取得最大值。

二项式定理高考试题及其答案总

二项式定理历年高考试题荟萃(一) 一、选择题 ( 本大题共 58 题) 1、二项式的展开式中系数为有理数的项共有………() A.6项 B.7项 C.8项 D.9项 2、对于二项式(+x3)n(n∈N),四位同学作出了四种判断:…() ①存在n∈N,展开式中有常数项; ②对任意n∈N,展开式中没有常数项; ③对任意n∈N,展开式中没有x的一次项; ④存在n∈N,展开式中有x的一次项. 上述判断中正确的是 (A)①与③(B)②与③(C)②与④(D)④与① 3、在(+x2)6的展开式中,x3的系数和常数项依次是…………() (A)20,20 (B)15,20(C)20,15 (D)15,15 4、(2x3-)7的展开式中常数项是……………………………………………………… () A.14 B.- 14 C.42 D.-42 5、已知(x-)8展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是……………………………………………………………() (A)28 (B)38 (C)1或 38 (D)1或28

6.若(+)n展开式中存在常数项,则n的值可以是…………() A.8 B.9 C.10 D.12 7 .(2x+)4的展开式中x3的系数是……………………………………() A.6 B.12 C.24 D.48 8、(-)6的展开式中的常数项为…………………………………() A.15 B.- 15 C.20 D.-20 9、(2x3-)7的展开式中常数项是…………………………………………() A.14 B.- 14 C.42 D.-42 10、若(+)n展开式中存在常数项,则n的值可以是………………() A.8 B.9 C.10 D.12 11、若展开式中含项的系数与含项的系数之比为-5,则n等 于 A.4 B.6 C.8 D.10 12、的展开式中,含x的正整数次幂的项共有() A.4项 B.3项 C.2项 D.1项

相关主题