搜档网
当前位置:搜档网 › 【名师一号】2015年高中物理 第十七章 波粒二象性 粒子的波动性双基限时练 新人教版选修3-5

【名师一号】2015年高中物理 第十七章 波粒二象性 粒子的波动性双基限时练 新人教版选修3-5

【名师一号】2015年高中物理 第十七章 波粒二象性 粒子的波动性双基限时练 新人教版选修3-5
【名师一号】2015年高中物理 第十七章 波粒二象性 粒子的波动性双基限时练 新人教版选修3-5

双基限时练(九) 粒子的波动性

1.在历史上,最早证明了德布罗意波存在的实验是 ( )

A.弱光衍射实验

B.电子束在晶体上的衍射实验

C.弱光干涉实验

D.以上都不正确

答案 B

2.下列各组现象能说明光具有波粒二象性的是( )

A.光的色散和光的干涉

B.光的干涉和光的衍射

C.泊松亮斑和光电效应

D.光的反射和光电效应

解析光的干涉、衍射、泊松亮斑是光的波动性的证据,光电效应说明光具有粒子性,反射和色散不能说明光具有波动性或粒子性,因此C正确.

答案 C

3.(多选题)对光的行为,下列说法正确的是( )

A.单个光子的行为表现为粒子性,大量光子的行为表现为波动性

B.光的波动性是光的一种特性,不是光子之间的相互作用引起的

C.光表现出波动性时,就不具有粒子性了,光表现出粒子性时,就不具有波动性了D.光的波粒二象性应理解为:在某种场合下光的波动性显著,在另外某种场合下,光的粒子性显著

答案ABD

4.下列说法中正确的是( )

A.质量大的物体,其德布罗意波长小

B.质量小的物体,其德布罗意波长小

C.动量大的物体,其德布罗意波长小

D.速度大的物体,其德布罗意波长小

答案 C

5.下列关于实物粒子的说法中正确的是( )

A.向前飞行的子弹不具有波动性

B.射击运动员很难命中靶子,是因为子弹具有波动性

C.飞行的子弹既具有粒子性又具有波动性

D .飞行的子弹具有波动性,但波长很长表现不出来

答案 C

6.(多选题)人类对光的本性的认识经历了曲折的过程,下列关于光的本性的陈述符合科学规律或历史事实的是( )

A .牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的

B .光的双缝干涉实验显示了光具有波动性

C .麦克斯韦预言光是一种电磁波

D .光具有波粒二象性

答案 BCD

7.一颗质量为10 g 的子弹,以200 m/s 的速度运动着,则由德布罗意理论计算,要使这颗子弹发生明显衍射现象,那么障碍物的尺寸应为( )

A .3.0×10

-10 m B .1.8×10-11 m C .3.0×10-34 m D .无法确定

解析 由p =mv ,λ=h p

可知德布罗意波长

λ=h mv = 6.63×10-3410×10-3×200 m =3.32×10-34 m ,所以障碍物的尺寸为 3.0×10-34 m ,符合发生明显衍射的条件.

答案 C

8.(多选题)以下说法正确的是( )

A .任何运动物体(质点)都伴随一种波,这种波叫做物质波

B .抖动绳子一端,绳上的波就是物质波

C .速度相同的质子和电子,质子物质波的波长比电子物质波的波长长,质子比电子的波长长

D .核外电子绕原子核运动时,并没有确定的轨道

解析 任何物体都具有波动性,故A 对;对宏观物体而言,其波动性难以观测,我们看到的绳波是机械波,不是物质波,故B 错.由于质子和电子速度相同,电子的动量比质子小,由λ=h p 知,电子的物质波波长长,故C 错.核外电子绕核运动规律是概率的问题,无确定的轨道,故D 对.

答案 AD

9.(多选题)光通过各种不同的障碍物后会产生各种不同的衍射条纹,衍射条纹的图样与障碍物的形状相对应,这一现象说明( )

A .光是电磁波

B .光具有波动性

C .光可以携带信息

D .光具有波粒二象性

解析 光能发生衍射,说明光具有波动性,故B 正确;衍射图样与障碍物的形状对应,说明了衍射图样中包含了障碍物的信息,故C 正确;光是电磁波,也具有波粒二象性,但不是衍射这一现象所说明的,故A 、D 错误.

答案 BC

10.有关光的本性,下列说法正确的是( )

A .光既有波动性,又具有粒子性,这是互相矛盾和对立的

B .光的波动性类似于机械波,光的粒子性类似于质点

C .大量光子才具有波动性,个别光子只具有粒子性

D .由于光既有波动性,又具有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性

解析 光既具有波动性,又具有粒子性,但它又不同于宏观观念中的机械波和粒子,波动性和粒子性是光在不同情况下的不同表现,是同一客体的两个不同侧面、不同属性,我们无法用其中的一种去说明光的一切行为,只能认为光具有波粒二象性.

答案 D

11.(多选题)为了观察晶体的原子排列,可以采用下列方法:

(1)用分辨率比光学显微镜更高的电子显微镜成像(由于电子的物质波波长很短,能防止发生明显衍射现象,因此电子显微镜的分辨率高);(2)利用X 射线或中子束得到晶体的衍射图样,进而分析出晶体的原子排列,则下列分析中正确的是( )

A .电子显微镜所利用的是,电子的物质波的波长比原子尺寸小得多

B .电子显微镜中电子束运动的速度应很小

C .要获得晶体的X 射线衍射图样,X 射线波长要远小于原子的尺寸

D .中子的物质波的波长可以与原子尺寸相当

解析 由题目所给信息“电子的物质波波长很短,能防止发生明显衍射现象”及发生衍射现象的条件可知,电子的物质波的波长比原子尺寸小得多,A 项正确;由信息“利用X 射线或中子束得到晶体的衍射图样”及发生衍射现象的条件可知,中子的物质波或X 射线的波长与原子尺寸相当,D 项正确,C 项错.

答案 AD

12.质量60 kg 的运动员,百米赛跑的成绩为10 s ,试估算运动员的德布罗意波的波长.(保留两位有效数字)

解析 由公式得:λ=h p =6.63×10-3460×10

m≈1.1×10-36 m. 答案 1.1×10-36 m

13.现用一电子显微镜测量线度为d 的某生物大分子的结构,为满足测量要求,将显微镜工作时电子的德布罗意波长设定为d n (n >1).已知普朗克常量为h ,电子质量为m 、电子电

量为e ,电子初速度不计,则显微镜工作时电子的加速电压应为多少?

解析 由德布罗意公式λ=h p =d n 得p =nh d

电子在加速电场中由动能定理得Ue =12

mv 2 p 2

=2mE k ,所以p 22m =eU ,得U =p 22me =n 2h 2

2med 2. 答案 n 2h 2

2med 2 14.电子和光一样具有波动性和粒子性,它表现出波动的性质,就像X 射线穿过晶体时会产生衍射一样,这一类物质粒子的波动叫物质波.质量为m 的电子以速度v 运动时,这种物质波的波长可表示为λ=

h mv ,电子质量m =9.1×10-31 kg ,电子电荷量e =1.6×10-19 C ,普朗克常量h =6.63×10-34 J·s.

(1)计算具有100 eV 动能的电子的动量p 和波长λ.

(2)若一个静止的电子经2 500 V 电压加速:

①求能量和这个电子动能相同的光子的波长,并求该光子的波长和这个电子的波长之比. ②求波长和这个电子波长相同的光子的能量,并求该光子的能量和这个电子的动能之比.已知电子的静止能量mc 2=5.0×105 eV ,m 为电子的静质量,c 为光速.

解析 (1)p =2mE k =2×9.1×10

-31×100×1.6×10-19 kg·m/s ≈5.4×10-24 kg·m/s.

λ=h p =6.63×10-34

5.4×10

-24 m≈1.2×10-10 m. (2)①电子的动量

p ′=mv ′=2mE k ′=2m ·eU =2×9.1×10

-11×1.6×10-19×2 500 kg·m/s ≈2.7×10-23 kg·m/s.

电子的波长λ′=h p ′=6.63×10-34

2.7×10

-23 m≈2.4×10-11 m , 光子能量E =E k ′=hc λ=2 500 eV =4.0×10-16 J

光子波长λ=hc E =6.63×10-34×3×108

4×10

-16 m≈5.0×10-10 m , 则λλ′

≈20.8.

②光子能量ε=hc

λ′

≈8.3×10-15 J. 电子动能E k′=4.0×10-16 J,

所以ε

E k′

≈20.8.

答案(1)5.4×10-24kg·m/s 1.2×10-10 m (2)①5.0×10-10 m 20.8 ②8.3×10-15 J 20.8

光的波动性和粒子性

专题二光的波动性和粒子性 考情动态分析 该专题内容,以对光的本性的认识过程为线索,介绍了近代物理光学的一些初步理论,以及建立这些理论的实验基础和一些重要的物理现象.由于该部分知识和大学物理内容有千丝万缕的联系,且涉及较多物理学的研究方法,因此该部分知识是高考必考内容之一.难度适中.常见的题型是选择题,其中命题率最高的是光的干涉和光电效应,其次是波长、波速和频率.有时与几何光学中的折射现象、原子物理中的玻尔理论相结合,考查学生的分析综合能力.此外对光的偏振降低了要求,不必在知识的深度上去挖掘. 考点核心整合 1.光的波动性 光的干涉、衍射现象说明光具有波动性,光的偏振现象说明光波为横波,光的电磁说则揭示了光波的本质——光是电磁波. (1)光的干涉 ①光的干涉及条件 由频率相同(相差恒定)的两光源——相干光源发出的光在空间相遇,才会发生干涉,形成稳定的干涉图样.由于发光过程的量子特性,任何两个独立的光源发出的光都不可能发生干涉现象.只有采用特殊的“分光”方法——将一束光分为两束,才能获得相干光.如双缝干涉中通过双缝将一束光分为两束,薄膜干涉中通过薄膜两个表面的反射将一束光分为两束而形成相干光. ②双缝干涉 在双缝干涉中,若用单色光,则在屏上形成等间距的、明暗相间的干涉条纹,条纹间距 L Δx和光波的波长λ成正比,和屏到双缝的距离L成正比,和双缝间距d成反比,即Δx= d λ.若用白光做双缝干涉实验,除中央亮条纹为白色外,两侧为彩色条纹,它是不同波长的光干涉条纹的间距不同而形成的. ③薄膜干涉 在薄膜干涉中,薄膜的两个表面反射光的路程差(严格地说应为光程差)与膜的厚度有关,故同一级明条纹(或暗条纹)应出现在膜的厚度相同的地方.利用这一特点可以检测平面的平整度.另外适当调整薄膜厚度.可使反射光干涉相消,增强透射光,即得增透膜. (2)光的衍射 ①条件 光在传播过程中遇到障碍物时,偏离原来的直线传播路径,绕到障碍物后面继续传播的现象叫光的衍射.在任何情况下,光的衍射现象都是存在的,但发生明显的衍射现象的条件应是障碍物或孔的尺寸与光波的波长相差不多. ②特点 在单缝衍射现象中,若入射光为单色光,则中央为亮且宽的条纹,两侧为亮度逐渐衰减的明暗相间条纹;若入射光为白光,则除中央出现亮且宽的白色条纹外,两侧出现亮度逐渐衰减的彩色条纹. (3)光的偏振 在与光波传播方向垂直的平面内,光振动沿各个方向均匀分布的光称为自然光,光振动沿着特定方向的光即为偏振光. 自然光通过偏振片(起偏器)之后就成为偏振光.光以特定的入射角射到两种介质界面上时,反射光和折射光也都是偏振光. 偏振现象是横波特有的现象,所以光的偏振现象表明光波为横波.

高中物理带电粒子在电场中的运动技巧很有用及练习题.doc

高中物理带电粒子在电场中的运动技巧 ( 很有用 ) 及练习题 一、高考物理精讲专题带电粒子在电场中的运动 1. 如图所示,竖直面内有水平线 MN 与竖直线 PQ 交于 P 点, O 在水平线 MN 上, OP 间 距为 d ,一质量为 m 、电量为 q 的带正电粒子,从 O 处以大小为 v 0、方向与水平线夹角为 θ= 60o 的速度,进入大小为 E 1 的匀强电场中,电场方向与竖直方向夹角为 θ= 60o ,粒子 到达 PQ 线上的 A 点时,其动能为在 O 处时动能的 4 倍.当粒子到达 A 点时,突然将电场 改为大小为 E 2,方向与竖直方向夹角也为 θ= 60o 的匀强电场,然后粒子能到达 PQ 线上的 B 点.电场方向均平行于 MN 、 PQ 所在竖直面,图中分别仅画出一条电场线示意其方向。 已知粒子从 O 运动到 A 的时间与从 A 运动到 B 的时间相同,不计粒子重力,已知量为 m 、 q 、 v 0、 d .求: (1)粒子从 O 到 A 运动过程中 ,电场力所做功 W ; (2)匀强电场的场强大小 E 1、 E 2; (3)粒子到达 B 点时的动能 E kB . 3 2 (2)E 1 = 3m 02 3m 2 14m 02 【答案】 (1)W mv 0 4qd E 2 = (3) E kB = 2 3qd 3 【解析】 【分析】 (1) 对粒子应用动能定理可以求出电场力做的功。 (2) 粒子在电场中做类平抛运动,应用类平抛运动规律可以求出电场强度大小。 (3) 根据粒子运动过程,应用动能计算公式求出粒子到达 B 点时的动能。 【详解】 (1) 由题知:粒子在 O 点动能为 E = mv 0 粒子在 A 点动能为: E =4E ko ,粒子从 O 到 A ko 1 2 kA 2 运动过程,由动能定理得:电场力所做功: W=E kA -E ko = 3 mv 02 ; 2 (2) 以 O 为坐标原点,初速 v 0 方向为 x 轴正向,

2019届高中物理第十七章波粒二象性第3节粒子的波动性讲义含解析

粒子的波动性 1.光的波粒二象性 光既具有波动性,又具有粒子性,即光具有波粒二象性。2.光子的能量和动量 (1)能量:ε=hν。 (2)动量:p=h λ 。 (3)意义:能量ε和动量p是描述物质的粒子性的重要物理量;波长λ和频率ν是描 述物质的波动性的典型物理量。因此ε=hν和p=h λ 揭示了光的粒子性和波动性之间的密切 关系,普朗克常量h架起了粒子性与波动性之间的桥梁。 [辨是非](对的划“√”,错的划“×”) 1.光既具有粒子性,又具有波动性。(√) 2.光的干涉说明光具有波动性,光的多普勒效应说明光具有粒子性。(√) [释疑难·对点练] 对光的波粒二象性的理解 (1)光既表现出波动性又表现出粒子性,要从微观的角度建立光的行为图案,认识光的波粒二象性。

(2)大量光子易显示波动性,而少量光子易显示出粒子性;波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。 (3)要明确光的波动性和粒子性在不同现象中的分析方法。 [试身手] 1.(多选)对光的认识,以下说法中正确的是( ) A .个别光子的行为易表现为粒子性,大量光子的行为易表现为波动性 B .光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C .光表现出波动性时,就不具有粒子性了,光表现出粒子性时,就不具有波动性了 D .光的波粒二象性应理解为:在某种场合下光的波动性表现明显,在另外某种场合下,光的粒子性表现明显 解析:选ABD 个别光子的行为易表现为粒子性,大量光子的行为易表现为波动性。光与物质相互作用,表现为粒子性,光的传播表现为波动性,光的波动性与粒子性都是光的本质属性,故A 、B 、D 正确。 1.粒子的波动性 (1)德布罗意波: 每一个运动的粒子都与一个对应的波相联系,这种与实物粒子相联系的波称为德布罗意波,也叫物质波。 (2)物质波的波长、频率关系式: 波长:λ=h p ;频率:ν=ε h 。 2.物质波的实验验证 (1)实验探究思路: 干涉、衍射是波特有的现象,如果实物粒子具有波动性,则在一定条件下,也应该发生干涉或衍射现象。 (2)实验验证: 1927年戴维孙和汤姆孙分别利用晶体做了电子束衍射实验,得到了电子的衍射图样,证实了电子的波动性。 (3)说明: ①人们陆续证实了质子、中子以及原子、分子的波动性,对于这些粒子,德布罗意给出的ν=εh 和λ=h p 关系同样正确; ②宏观物体的质量比微观粒子的质量大得多,运动时的动量很大,对应的德布罗意波的

高三物理粒子的波动性

普通高中课程标准实验教科书—物理(选修3-5)[人教版] 第十七章波粒二象性 新课标要求 1.内容标准 (1)了解微观世界中的量子化现象。比较宏观物体和微观粒子的能量变化特点。体会量子论的建立深化了人们对于物质世界的认识。 (2)通过实验了解光电效应。知道爱因斯坦光电效应方程以及意义。 (3)了解康普顿效应。 (4)根据实验说明光的波粒二象性。知道光是一种概率波。 (5)知道实物粒子具有波动性。知道电子云。初步了解不确定性关系。 (6)通过典型事例了解人类直接经验的局限性。体会人类对世界的探究是不断深入的。 例1 通过电子衍射实验,初步了解微观粒子的波粒二象性,体会人类对于物质世界认识的不断深入。 2.活动建议 阅读有关微观世界的科普读物,写出读书体会。 新课程学习 17.3 崭新的一页:粒子的波动性

★新课标要求 (一)知识与技能 1.了解光既具有波动性,又具有粒子性。 2.知道实物粒子和光子一样具有波粒二象性。 3.知道德布罗意波的波长和粒子动量关系。 (二)过程与方法 1.了解物理真知形成的历史过程。 2.了解物理学研究的基础是实验事实以及实验对于物理研究的重要性。 3.知道某一物质在不同环境下所表现的不同规律特性。 (三)情感、态度与价值观 1.通过学生阅读和教师介绍讲解,使学生了解科学真知的得到并非一蹴而就,需要经过一个较长的历史发展过程,不断得到纠正与修正。 2.通过相关理论的实验验证,使学生逐步形成严谨求实的科学态度。 3.通过了解电子衍射实验,使学生了解创造条件来进行有关物理实验的方法。 ★教学重点 实物粒子和光子一样具有波粒二象性,德布罗意波长和粒子动量关系。 ★教学难点

浅谈光的粒子性

一、浅谈光的粒子性 序 人类的认识往往是在曲折中前进的,对光的认识也是如此。最初,人们对光的本质的认识有两种观点,一种认为光是一种波,而另一种观点认为光是一种粒子,即有光的粒子说和波动说两种说法并存。牛顿认为光是一种匀质硬性小球,这种观点能够较好地解释光的反射、折射及光的直线传播现象。但随着光的干涉、衍射现象的发现,使光的波动说又占了上风;而光电效应的发现,使光的粒子说又重新登上了历史的舞台。但麻烦随之而来,因为光的粒子说无法解释干涉、衍射现象,而光的波动说也无法解释光电效应。于是,有聪明人把波动性和粒子性这两种截然不同的特性揉在一起,创造出了所谓的光的波粒二象性,并且自以为对物质的认识又前进了一大步,这还不算,他们又进而推广认为一切物质都有波粒二象性,这恐怕也是没有办法的办法。就在人们为波粒二象性这种新提法而洋洋自得的时候,殊不知,却丧失了一次认识光子内部结构的极好机会。而此后,人们若要揭示光的本性,就要承受更大的压力,排除更多的干扰,做更多不必要的工作。本文将从光的干涉、衍射现象入手,全面揭示光的本性--粒子性…… 1、光的本性――粒子性 光的本性是什么?这个问题似乎无需讨论。物理学家会告诉你,光具有波粒二象性,是一种物质波;实际上一切物体都具有波动性,只不过宏观物质的物质波较短,更多时候其表现出粒子性而已。这样

的回答不禁使人想起一个幽默: 有人问:“地球为什么是圆的?” 答曰:“因为它在转” 又问:“地球为什么在转?” 答曰:“因为它是圆的” 光是什么?━━光是一种物质波。 光为什么是物质波?━━因为它有波粒二象性。 光为什么有波粒二象性呢?━━因为它是一种物质波。 我们痛心地发现,这个简单的近乎无聊的逻辑被人滥用到了令人吃惊的程度,在当今物理学中,似乎不谈物质波、相对论就显得落伍、水平不高什么的。那么,物质波是什么东西呢?恐怕只有极少数的聪明人才知道!我从来就认为光是一种粒子。这种观点可以解释光的直线传播、反射等等现象,但是光子说的确“无法解释光的干涉、衍射现象”。长久以来,我一直在思考如何解释这个问题,而光的干涉现象、衍射现象无疑是建立光子说的最大障碍。所以要想建立光子说,必须首先突破干涉现象、衍射现象的瓶颈。如何认识光的干涉现象、衍射现象呢?我们认为需要从两个方面入手,一方面是光子内部结构问题,另一方面是引力场的问题,这两方面要统筹考虑。。牛顿的光子说仅仅把光子看作一种简单的匀质硬性小球,这实际上是对光子的内部复杂结构认识不足,我们认为,光子并不是“匀质硬性小球”,它有极其复杂的内部结构,而光的干涉现象和衍射现象实际上是我们通过引力场认识光子内部结构的极好机会。

第3节 粒子的波动性

第3节 粒子的波动性 [随堂巩固] 1.(光的波动性)下列各组现象能说明光具有波粒二象性的是 A .光的色散和光的干涉 B .光的干涉和光的衍射 C .泊松亮斑和光电效应 D .光的反射和光电效应 解析 光的干涉、衍射、泊松亮斑是光的波动性的证据,光电效应说明光具有粒子性,光的反射和色散不能说明光具有波动性或粒子性。故选项C 正确。 答案 C 2.(物质波的理解)下列说法中正确的是 A .物质波属于机械波 B .只有像电子、质子、中子这样的微观粒子才具有波动性 C .德布罗意认为,任何一个运动着的物体,小到电子、质子,大到行星、太阳都具有一种波和它对应,这种波叫作物质波 D .宏观物体运动时,看不到它的衍射或干涉现象,所以宏观物体运动时不具有波动性 解析 物质波是一切运动着的物体所具有的波,与机械波性质不同,宏观物体也具有波动性,只是干涉、衍射现象不明显,只有选项C 正确。 答案 C 3.(德布罗意波长的计算)电子经电势差为U =220 V 的电场加速,在v

[限时检测] [限时45分钟] 题组一光的波粒二象性 1.对于光的波粒二象性的说法中,正确的是 A.一束传播的光,有的光是波,有的光是粒子 B.光子与电子是同样一种粒子,光波与机械波是同样一种波 C.光的波动性是由于光子间的相互作用而形成的 D.光是一种波,同时也是一种粒子,光子说并未否定电磁说,在光子能量ε=hν中,频率ν仍表示的是波的特性 答案 D 2.(多选)波粒二象性是微观世界的基本特征,以下说法正确的有 A.光电效应现象揭示了光的粒子性 B.热中子束射到晶体上产生衍射图样说明中子具有波动性 C.黑体辐射的实验规律可用光的波动性解释 D.动能相等的质子和电子,它们的德布罗意波长也相等 解析光电效应现象、黑体辐射的实验规律都可以用光的粒子性解释,选项A正确,选项C错误;热中子束射到晶体上产生衍射图样说明中子具有波动性,选项B正确;由德布罗意波长公式λ=h 和p2=2m·E k知动能相等的质子和电子动量不同,德布罗意波长不相等,选 p 项D错误。 答案AB 3.(多选)下列有关光的说法中正确的是 A.光电效应表明在一定条件下,光子可以转化为电子 B.大量光子易表现出波动性,少量光子易表现出粒子性 C.光有时是波,有时是粒子 D.康普顿效应表明光子和电子、质子等实物粒子一样也具有能量和动量

高中物理-粒子的波动性练习

高中物理-粒子的波动性练习 我夯基我达标 1.下列哪组现象能说明光具有波粒二象性() A.光的色散和光的干涉 B.光的干涉和光的衍射 C.光的反射和光电效应 D.泊松亮斑和光电效应 思路解析:光的色散、光的反射可从波动性与粒子性两方面分别予以理解,故A、C选项错误.光的干涉、衍射现象只说明了光的波动性,B选项错误.泊松亮斑能说明光具有波动性,光电效应说明具有粒子性,故D选项正确. 答案:D 2.对光的认识,下列说法正确的是() A.个别光子的行为表现出粒子性,大量光子的行为表现出波动性 B.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的 C.光表现出波动性时,就不具有粒子性,光表现出粒子时,就不再具有波动性 D.光的波粒二象性应理解为:在某种场合下光的波动性表现得明显,在另外的某种场合下,光的粒子性表现得明显 思路解析:本题考查的是光的波粒二象性,光是一种概率波,少量光子的行为往往易显出粒子性,而大量光子的行为往往显示出其波动性,A选项正确.光的波动性不是由于光子之间的相互作用引起的,而是光的一种属性,这已被弱光照射双缝后在胶片上的感光实验所证实,B选项正确.粒子性和波动性是光同时具备的两种属性,C选项错误,D选项正确. 答案:ABD 3.下列说法正确的是() A.光的波粒二象性学说就是牛顿的微粒说加上惠更斯的波动说组成的 B.光的波粒二象性彻底推翻了麦克斯韦电磁理论 C.光子说并没有否定电磁说,在光子的能量E=hν中,ν(频率)就是波的特征量 D.光波不同于宏观观念中的那种连续的波,它是表明大量光子运动规律的一种概率波 思路解析:光的波粒二象性认为光是一份一份的光子构成的,光子是一种没有静止质量的能量团,与牛顿的微粒说中的实物粒子有本质区别;光同时还是一种概率波,可以用波动规律来解释,但与惠更斯的波动说中的光是一种机械波有本质区别,因而A错而D对.在光的波粒二象性中,光子能量E=hν中,ν表示了波的特征,因而并没有否定麦克斯韦的电磁说,B错C对. 答案:CD 4.对于光的波粒二象性的说法中,正确的是() A.一束传播的光,有的光是波,有的光是粒子 B.光子与电子是同一种粒子,光波与机械波是同样一种波 C.光的波动性是由于光子间的相互作用而形成的 D.光是一种波,同时也是一种粒子,光子说并未否定电磁说,在光子的能量E=hν中,频率ν仍表示的是波的特性 思路解析:根据波粒二象性,光同时具有波动性和粒子性,A选项错误.不同于宏观观念的粒子和波,故B选项错误.光的波动性是光子本身固有的性质,不是光子之间相互作用引起的,C选项错误.光子的能量与其对应的能量成正比,而频率是反映波动特征的物理量,因此E=hν揭示了光的粒子性和波动性之间的密切联系,光子说并未否定电磁说,故D选项正确. 答案:D

高二物理:带电粒子的加速和偏转

§1.6 示波器的奥秘 带电粒子在电场中的运动 1.了解带电粒子在电场中的运动——只受电场力,带电粒子做匀变速运动。 2.重点掌握初速度与场强方向垂直的带电粒子在电场中的运动(类平抛运动)。 3.知道示波管的主要构造和工作原理。 1.带电粒子的加速 ⑴运动状态分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做匀加(减)速直线运动. ⑵用功能观点分析:粒子动能的变化量等于电场力做的功(电场可以是匀强或非匀强电场). 若粒子的初速度为零,则由动能定理有:________________________, 解得v=___________ 若粒子的初速度为v0,则: 由动能定理有:_________________________________ 解得v=___________ 3.带电粒子的偏转(限于匀强电场) ⑴运动状态分析:带电粒子以速度v0垂直于电场线方向飞人匀强电场时,受到恒定的与初速度方向成900角的电场力作用而做____________________________运动。 ⑵偏转问题的分析处理方法,类似于平抛运动的分析处理,应用运动的合成和分解的知识方法: 沿初速度方向为匀速直线运动,运动时间:___________________=t 沿电场力方向为初速为零的匀加速直线运动: ______________=a 离开电场时偏移量:___________________________=y , 离开电场时的偏转角:_____________________ tan =θ ⑶对粒子偏角的讨论.(适合A 层班学生自主学习) 在图A-9-41-1中,设带电粒子质量为m 、带电荷量为 q ,以速度0v 垂直于电场线射入匀强偏转电场,偏转电压 为1U .若粒子飞出电场时的偏角为θ,则0tan v v y = θ.式中01v l md qU at v y ?== ,0v v x =得d mv qlU 201 tan =θ ① a.若不同的带电粒子是从静止经过同一加速电压 U0 加速后进入偏转电场的,则由动能定理有 2002 1mv qU = ② 由①②式得:d U lU 012tan =θ ③ 由③式可知,粒子的偏角与粒子m q 、 无关,仅决定于加速电场和偏转电场.即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场后,它们在电场中的偏转角度总 图A-9-41-1

2019届高三物理二轮复习光的粒子性题型归纳

2019届高三物理二轮复习光的粒子性题型归纳 类型一、光的本性的认识 例1、关于光的本性,下列说法中正确的是() A、关于光的本性,牛顿提出微粒说,惠更斯提出波动说,爱因斯坦提出光子说,它们 都说明了光的本性 B、光具有波粒二象性是指:既可以把光看成宏观概念上的波,也可以看成微观概念上 的粒子 C、光的干涉、衍射现象说明光具有波动性,光电效应说明光具有粒子性 D、光的波粒二象性是将牛顿的波动说和惠更斯的粒子说真正有机地统一起来 【思路点拨】理解光的本性,波动性的特征及代表人物,粒子性的特征及代表人物。 【答案】C 【解析】光具有波粒二象性,这是现代物理学关于光的本性的认识,光的波粒二象性不同于牛顿提出的微粒说和惠更斯的波动说,是爱因斯坦的光子说和麦克斯韦的电磁说的统一。光的干涉、衍射现象说明光具有波动性,光电效应说明光具有粒子性,故ABD错误,C对。【总结升华】光既有波动性,又具有粒子性,即光具有波粒二象性,这就是光的本性。 举一反三 【变式1】根据爱因斯坦的“光子说”可知() A. “光子说”本质就是牛顿的“微粒说” B. 光的波长越大,光子的能量越小 C. 一束单色光的能量可以连续变化 D. 只有光子数很多时,光才具有粒子性 【答案】B 【解析】爱因斯坦的“光子说”与牛顿的“微粒说”本质不同,选项A错误。由 c E h λ =可 知选项B正确。一束单色光的能量不能是连续变化,只能是单个光子能量的整数倍,选项C 错误。光子不但具有波动性,而且具有粒子性,选项D错误。 【变式2】关于光的波粒二象性的说法中,正确的是() A. 有的光是波,有的光是粒子 B. 光子与电子是同样的一种粒子 C. 光的波长越长,其波动性就越显著;波长越短,其粒子性就越显著 D. 光子的数量越少波动性就越显著;光子的数量越多粒子性就越显著

高中物理-粒子的波动性练习

高中物理-粒子的波动性练习 A组 1.人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述符合科学规律或历史事实的是() A.牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的 B.光的双缝干涉实验显示了光具有波动性 C.麦克斯韦预言了光是一种电磁波 D.光具有波粒二象性 解析:牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然选项A错;干涉、衍射是波的特性,光能发生干涉说明光具有波动性,选项B正确;麦克斯韦根据光的传播不需要介质,以及电磁波在真空中的传播速度与光速近似相等从而认为光是一种电磁波,后来赫兹用实验证实了光的电磁说,选项C正确;光具有波动性与粒子性,称为光的波粒二象性,选项D正确. 答案:BCD 2.用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在,如图所示是不同数量的光子照射到感光胶片上得到的照片.这些照片说明() A.光具有粒子性 B.光具有波动性 C.光既有粒子性,又有波动性 D.光的波动性不是光子之间的相互作用引起的 解析:少量光子通过双缝后照片上呈现不规则分布的亮点显示了光的粒子性,大量光子通过双缝后照片上获得了双缝干涉条纹,说明光具有波动性;光子先后依次通过双缝,说明光的波动性不是光子之间的相互作用引起的.故选项C、D正确. 答案:CD 3.下列有关光的波粒二象性的说法中,正确的是() A.有的光是波,有的光是粒子 B.光子与电子是同样的一种粒子 C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著 D.大量光子的行为往往显示出粒子性 解析:一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,有些行为(如光电效应)表现出粒子性,所以,不能说有的光是波,有的光是粒子,选项A错误. 虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以,不能说光子与电子是同样一种粒子,选项B错误. 光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性.光的波长越长,衍射性越好,即波动性越显著,光的波长越短,其光子能量越大,个别或少数光子的作用就足以引起光接收装置的反应,所以其粒子性就很显著.故选项C正确,D错误. 答案:C 4.下列说法正确的是()

高中物理带电粒子在磁场中的运动知识点汇总

难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供: R v m qvB 2 = ②轨道半径公式: qB mv R = ③周期: qB m 2v R 2T π=π= ,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的 物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础, 有时需要建立运动时间t 和转过的圆心角α之间的关系( T 2t T 360t πα=α= 或)作为辅助。圆心的确定,通常有以下 两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。 (2)半径的确定和计算:利用平面几何关系,求出该圆的可能半径或圆心角。并注意以下两个重要的特点: 图9-1 图9-2 图9-3

3 粒子的波动性

粒子的波动性学案 1.利用光子说对光电效应的解释,下列说法正确的是( ) A.金属表面的一个电子只能吸收一个光子 B.电子吸收光子后一定能从金属表面逸出,成为光电子 C.金属表面的一个电子吸收若干个光子,积累了足够的能量才能从金属表面逸出 D.无论光子能量大小如何,电子吸收光子并积累了能量后,总能逸出成为光电子 2.光电效应的规律中,经典波动理论不能解释的有 ( ) A。入射光的频率必须大于被照射金属的极限频率时才能产生光电效应 B.光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大 C入射光照射到金属上时,光电子的发射几乎是瞬时的,一般不超过10—9s D.当入射光频率大于极限频率时,光电子数目与入射光强度成正比 3.如图所示,电路中所有元件完好,但光照射到光电管上,灵敏电流计中没有电流通过,其原因可能是 ( ) A。入射光太弱 B.入射光波长太长 C.光照时间短 D。电源正负极接反 4.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子最大初动能Ek 随入射光频率v变化的E k—v图象,已知钨的逸出功是3.28eV,锌的逸出功是3.34eV,若将两者的图象分别用实线与虚线画在同一个E k—v图上,则下图中正确的是 ( ) 5.用绿光照射金属钾时恰能发生光电效应,在下列情况下仍能发生光电效应的是( ) A。用红光照射金属钾,而且不断增加光的强度 B.用较弱的紫外线照射金属钾 C。用黄光照射金属钾,且照射时间很长 D。只要入射光的波长小于绿光的波长,就可发生光电效应 6.在做光电效应演示实验时,,把某金属板连在验电器上,第一次用弧光灯直接照射金属板,验电器的指针张开一个角度,第二次在弧光灯和金属板之间插入一块普通玻璃,再用弧光灯照射,验电器的指针不张开。由此可以判定,使金属板产生光电效应的是弧光灯中的 ( ) A。可见光成分 B.红外线成分 C. 无线电波成分 D.紫外线成分 7.下表给出了一些金属材料的逸出功。 现用波长为400nm的单色光照射上述材料,能产生光电效应的材料最多有几种(普朗克常量h=6.6x10—34j·s,光速c=3.0x108m/s) ( ) A.2种 B.3种 C.4种 D.5种 8.用绿光照射一光电管,能产生光电效应,欲使光电子从阴极射出时的最大初动能增大,[ ] A.改用红光照射 B.增大绿光的强度 C.增大光电管的加速电压 D.改用紫光照射 9.已知金属铯的逸出功为1.9eV,在光电效应实验中,要使铯表面发出的光电子的最大动能为1.0eV,则入射光的波长应为 m。 10.已知某金属表面接受波长为λ和2λ的单色光照射时,释放出光电子的最大初动能分别为30eV 和10eV,求能使此种金属表面产生光电效应的入射光的极限波长为 多少? 11.如图所示,阴极K用极限波长λ。=0.66 μm的金属铯制成的, 用波长λ=0.50μm的绿光照射阴极K,调整两个极板电压,当A 板电压比阴极高出2.5V时,光电流达到饱和,电流表示数为0.64 μA,求: (1)每秒钟阴极发射的光电子数和光电子飞出阴极时的最大初 动能; (2)如果把照射阴极绿光的光强增大为原来的2倍,每秒钟阴极发射的光电子数和光电子飞出阴极的最大初动能。 第1页共2页第2页共2页

高二物理《带电粒子在匀强磁场中的运动》示范教案

高二物理《带电粒子在匀强磁场中的运动》示范教案 三维教学目标 1、知识与技能 (1)理解洛伦兹力对粒子不做功; (2)理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速圆周运动; (3)会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,知道它们与哪些因素有关; (4)了解回旋加速器的工作原理。 2、过程与方法:通过带电粒子在匀强磁场中的受力分析,灵活解决有关磁场的问题。 3、情感、态度与价值观:通过本节知识的学习,充分了解科技的巨大威力,体会科技的创新与应用历程。 教学重点:带电粒子在匀强磁场中的受力分析及运动径迹。 教学难点:带电粒子在匀强磁场中的受力分析及运动径迹。 教学方法:实验观察法、讲述法、分析推理法。 教学用具:洛伦兹力演示仪、电源、投影仪、投影片、多媒体辅助教学设备。 教学过程: (一)引入新课 提问1:什么是洛伦兹力? 答:磁场对运动电荷的作用力。 (二)进行新课 1、带电粒子在匀强磁场中的运动 介绍洛伦兹力演示仪,如图3.6-1所示。引导学生预测电子束的运动情况。 (1)不加磁场时,电子束的径迹; (2)加垂直纸面向外的磁场时,电子束的径迹; (3)保持出射电子的速度不变,增大或减小磁感应强度,电子束的径迹; (4)保持磁感应强度不变,增大或减小出射电子的速度,电子束的径迹。 演示:学生观察实验,验证自己的预测是否正确。 现象:在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强

磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形。磁场越强,径迹的半径越小;电子的出射速度越大,径迹的半径越大。 指出:当带电粒子的初速度方向与磁场方向垂直时,电子受到垂直于速度方向的洛伦兹力的作用,洛伦兹力只能改变速度的方向,不能改变速度的大小。因此,洛伦兹力对粒子不做功,不能改变粒子的能量。洛伦兹力对带电粒子的作用正好起到了向心力的作用。所以,当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动。 问题1带电粒子在匀强磁场中做匀速圆周运动,其轨道半径r 和周期T 为多大呢?一带电量为q ,质量为m ,速度为v 的带电粒子垂直进入磁感应强度为B 的匀强磁场中,其半径r 和周期T 为多大?如图3.6-2所示。 推导:粒子做匀速圆周运动所需的向心力F =m r v 2是由粒子所受的洛伦兹力提供的,所以 qvB =m r v 2 由此得出: r = qB m v ……① 由于周期T =v r π2 ,代入①式得: T =qB m π2……② 总结:由①式可知,粒子速度越大,轨迹半径越大;磁场越强,轨迹半径越小,这与演示实验观察的结果是一致的。由②式可知,粒子运动的周期与粒子的速度大小无关。磁场越强,周期越短。 教师:介绍带电粒子在汽泡室运动的径迹照片,让学生了解物理学中研究带电粒子运动的方法3.6-3。

粒子的波动性 说课稿 教案

粒子的波动性 【教学目标】 (一)知识与技能 1.通过实验了解光电效应的实验规律。 2.知道爱因斯坦光电效应方程以及意义。 3.了解康普顿效应,了解光子的动量 (二)过程与方法 经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律。 (三)情感、态度与价值观 领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 【教学重点】光电效应的实验规律 【教学难点】爱因斯坦光电效应方程以及意义 【教学过程】 (一)引入新课 提问:回顾前面的学习,总结人类对光的本性的认识的发展过程? (多媒体投影,见课件。) 教师讲述: 光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。 世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候, —光电效应现象。对这一现象及其他相关问题的研究, 使得人们对光的又一本质性认识得到了发展。 (二)进行新课 知识点一:光的波粒二象性 1.光的波粒二象性: 光既具有波动性,又具有粒子性。 2.光子的能量:ε=hv 3.光子的动量:p=h/λ 注意:物理量ε和p描述光的粒子性,物理量v和λ描述光的波动性,h架起了粒子性与波动性的桥梁。 知识点二:粒子的波动性 1.德布罗意波:任何一个运动着的物体,小到电子、质子,大到行星、太阳,都有一种波与它对应,这种与实物粒子相联系的波称为德布罗意波,也称物质波。 2.波的频率:v=ε/h 波的波长:λ=h/p 说明:ε为粒子的能量,p为粒子的动量 知识点三:物质波的实验验证 1927年戴维孙和G。P。汤姆孙分别利用晶体做了电子束衍 射的实验,得到了类似下图的衍射图样,从而证实了电子波动性。 他们为此获得了1973年的诺贝尔物理学奖。 拓展点一:光的波粒二象性的理解

科学家同时观察到光的粒子性与波动性

科学家同时观察到光的粒子性与波动性(图) 上面的想象图演示的是单光子穿过干涉仪时的情景,干涉仪的输出端装有量子分光镜。图中远处可以看到正弦振荡的波形,表示的是单光子干涉,是一种波动现象。而在图片近处,观察不到振荡,说明只表现出粒子的特性。在两种极端之间,单光子的行为连续不断地从波的形式向粒子形式转变,图中显示了这两种状态 的重叠。 受艺术家毛里茨·科内利斯·埃舍尔作品的启发绘制的艺术图,显示了光在粒子态和波形态之间的连续变 化。

受艺术家毛里茨·科内利斯·埃舍尔作品的启发绘制的艺术图,显示了光在粒子态和波形态之间的连续变 化。 阿尔贝托·佩鲁佐(左)和彼得·夏伯特(右),研究论文的并列第一作者。 实验中用以检测波粒二象性的量子光子芯片。单光子通过光纤进入环路,在输出端被极其敏感的探测器检测到。

新浪科技讯北京时间11月8日消息,长久以来,人们都知道光既可以表现出粒子的形式,也可以呈现波动的特征,这取决于光子实验测定时的方法。但就在不久之前,光还从未同时表现出这两种状态。 关于光是粒子还是波的争论由来已久,甚至可以追溯到科学最初萌芽的时候。艾萨克·牛顿提出了光的粒子理论,而詹姆斯·克拉克·麦克斯韦的电磁学理论认为光是一种波。到了1905年,争论出现了戏剧性的变化。爱因斯坦提出光是由称为“光子”的粒子组成,借此解释了光电效应。他也因此获得了诺贝尔物理学奖。光电效应的发现对物理学影响深远,并为后来量子力学的发展作出了重大贡献。 量子力学在对微小粒子,如原子和光子的行为预测上,具有惊人的准确性。然而,这些预测非常违反直觉。比如,量子理论认为类似光子的粒子可以同时在不同的地方出现,甚至是同时在无穷多的地方出现,就像波的行为一样。这种被称为“波粒二象性”的概念,也适用于所有的亚原子粒子,如电子、夸克甚至希格斯玻色子等。波粒二象性是量子力学理论系统的基础,诺贝尔奖获得者理查德·费曼将其称为“量子力学中一个真正的奥秘”。 刊于《科学》杂志上的两组独立研究,利用不同的方法对光从波形态向粒子态的转变进行了测定,以揭示光的本质面貌。两组研究都来源于理论物理学家约翰·惠勒于上个世纪80年代进行

3 粒子的波动性

3粒子的波动性 基础巩固 1.(多选)说明光具有粒子性的现象是() A.光电效应 B.光的干涉 C.光的衍射 D.康普顿效应 答案AD 2.(多选)为了验证光的波粒二象性,在双缝干涉实验中将光屏换成照相底片,并设法减弱光的强度,下列说法正确的是() A.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间足够长,底片上将出现双缝干涉图样 B.使光子一个一个地通过双缝干涉实验装置的单缝,如果时间很短,底片上将出现不太清晰的双缝干涉图样 C.大量光子的运动显示光的波动性 D.个别光子的运动显示光的粒子性,光只有波动性,没有粒子性 解析光的波动性是统计规律的结果,对于个别光子,我们无法判断它落到哪个位置;大量光子遵循统计规律,即大量光子的运动或曝光时间足够长,显示出光的波动性。 答案AC 3.(多选)下列物理实验中,能说明粒子具有波动性的是() A.通过研究金属的遏止电压与入射光频率的关系,证明了爱因斯坦光电效应方程的正确性 B.通过测试多种物质对X射线的散射,发现散射射线中有波长变大的成分 C.通过电子双缝实验,发现电子的干涉现象 D.利用晶体做电子束衍射实验,证实了电子的波动性 解析干涉和衍射是波特有的现象,由于X射线本身就是一种波,而不是实物粒子,故X射线散射中有波长变大的成分,并不能证实物质波理论的正确性,即A、B不能说明粒子的波动性,证明粒子的波动性只能是C、D。答案CD 4.下列关于物质波的说法正确的是() A.实物粒子具有粒子性,在任何条件下都不可能表现出波动性 B.宏观物体不存在对应波的波长 C.电子在任何条件下都能表现出波动性 D.微观粒子在一定条件下能表现出波动性 答案D 5.下列说法正确的是() A.质量大的物体,其德布罗意波长短 B.速度大的物体,其德布罗意波长短 C.动量大的物体,其德布罗意波长短 D.动能大的物体,其德布罗意波长短 解析由物质波的波长λ=,得其只与物体的动量有关,动量越大其波长越短。 答案C 6.(多选)利用金属晶格(大小约10-10 m)作为障碍物观察电子的衍射图样,方法是使电子通过电场加速后,让电子束照射到金属晶格上,从而得到电子的衍射图样。已知电子质量为m,电荷量为e,初速度为0,加速电压为U,普郎克常量为h,则下列说法正确的是() A.该实验说明了电子具有波动性

高中物理带电粒子在磁场中的运动技巧(很有用)及练习题

高中物理带电粒子在磁场中的运动技巧(很有用)及练习题 一、带电粒子在磁场中的运动专项训练 1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。挡板PQ 垂直MN 放置,挡板的中点置于N 点。在挡板的右侧区域存在垂直纸面向外的匀强磁场。在左侧虚线上紧靠M 的上方取点A ,一比荷 q m =5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。 (1)求电场强度E 的大小; (2)求磁感应强度B 的大小; (3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。 【答案】(1) 16/N C (2) 21.610T -? (3) 43.910s -? 【解析】 【详解】 (1)带正电的粒子在电场中做类平抛运动,有:L=v 0t 2 122L qE t m = 解得E=16N/C (2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0 tan v qE t m θ= 可得θ=450粒子射入磁场时的速度大小为2v 0 粒子在磁场中做匀速圆周运动:2 v qvB m r = 由几何关系可知2r L = 解得B=1.6×10-2T

讲义 - 光的波动性和粒子性

龙文教育学科教师辅导讲义 教师:______ 学生:______ 时间:_____年_____月____日____段 1929年,德布罗意因对实物粒子波动性的揭示而获得诺贝尔物理学奖.在授奖仪式上,瑞典物理学家卡尔·乌辛把德布罗意介绍给全体与会者,并发表了如下的讲话: “有一首每个瑞典人都很熟悉的诗是这样开头的:‘我的生活——就是波’.诗人也可以这样来表达他的思想:‘我——就是波’.他最好这样表达,这样,他的诗句也将包含着对物质性质最深刻认识的先觉.从现在起,这样的认识已是我们都能接受的了……” 3年高考平台 一、选择题 1.研究光电效应规律的实验装置如图16-1所示,以频率为ν的光照射光电管阴极K 时,有光电子产生.由于光电管K 、A 间加的是反向电压,光电子从阴极K 发射后将向阳极A 作减速运动.光电流i 由图中电流计G 测出,反向电压U 由电压表V 测出.当电流计的示数恰好为零时,电压表的示数称为反向截止电压U 0.在下列表示光电效应实验规律的图像中,错误的是( ) 图16-1 图16-2 答案:B 2.现有a 、b 、c 三束单色光,其波长关系为λa >λb >λc .用b 光束照射某种金属时,恰能发生光电效应.若分别用a 光束和c 光束照射该金属,则可以断定( ) A.a 光束照射时,不能发生光电效应 B.c 光束照射时,不能发生光电效应 C.a 光束照射时,释放出的光电子数目最多 D.c 光束照射时,释放出的光电子的最大初动能最小 答案:A 二、非选择题 3.(1)人们发现光电效应具有瞬时性和对各种金属都存在极限频率的规律.请问谁提出了何种学说很好地解释了上述规律?已知锌的逸出功为3.34 eV ,用某单色紫外线照射锌板时,逸出光电子的最大速度为106 m/s ,求该紫外线的波长λ(电子质量m e =9.11×10-31 kg ,普朗克常量h=6.63×10-34 J ·s,1 eV=1.60×10-19 J ). (2)风力发电是一种环保的电能获取方式.图16-3为某风力发电站外观图.设计每台风力发电机的功率为40 kW.实验测得风的动能转化为电能的效率约为20%,空气的密度是1.29 kg/m 3,当地水平风速约为10 m/s ,问风力发电机的叶片长度约为多少才能满足设计要求?

相关主题