搜档网
当前位置:搜档网 › 第节手性分子与对映体

第节手性分子与对映体

第节手性分子与对映体
第节手性分子与对映体

对映异构基本概念

第五章对映异构 本章要点: 1、概念:手性碳原子,手性分子,对映体,内外消旋体,…… 2、产生原因:根本原因、常见原因 3、构型表示:费歇尔投影式;D/L、R/S命名 4、对映异构体及数目判断 一、基本概念 1、旋光性——物质使平面偏振光旋过一定角度的特性;有左旋和右旋之分;物质具备旋光 性与否需要通过旋光仪进行测定。 2、旋光性物质——具有旋光性的物质,分左旋体(l或-)、右旋体(d或+)。 3、手性——实物与镜像关系,即只能重合不能重叠。 4、对映异构——构造相同的两个化合物,互呈“实物与镜像”关系,对映而不能重叠,它 们对平面偏振光的作用不同,生理活性也不同,称为对映异构体。因其旋 光性上的表现不同,又称旋光异构体。 5、对映异构体特征——构型上互为实物与镜像关系;旋光性上大小相等方向相反。 6、外消旋体——等量的左旋体+右旋体,混合后体系失去旋光性(外因使然),是混合物。 7、内消旋体——分子内存在对称因素使分子不具有旋光性(内因造成),是纯净物。 8、手性碳C——sp3杂化,连接四个不同基团的碳原子。 9、手性分子——分子内无对称因素(要求掌握对称面),常常是“有且只有一个手性碳”的 分子;手性分子具有旋光性、存在对映异构体。 10、对称面(σ)——把分子分成实物与镜像关系的面,即平分分子的平面,把分子分成完全 相等的两个部分,可以有一个或多个。

手性、手性分子、旋光异构体、对映体: b c d a b c d 实物 镜像 两者对平面偏振光作用不同,称为旋光异构体;两者只能重合不能重叠,互为镜像关系,具有手性,是手性分子;因具有镜像关系,又称对映体 对称面σ举例(可以有多个): C=C Cl H Cl H 对称面 对称面 C=C Cl H Cl H 对称面 Cl H Cl H 对称面 C 对 称面 二、分子具有手性的原因 根本原因——分子内无对称因素;常见原因——具有手性碳原子。 三、对映异构体的判断 手性分子具有对映异构体,故判断有否对映体只需判断是否是手性分子。 1、有且只有一个C ,一定是手性分子。 2、分子内找不到对称因素(掌握对称面),一定是手性分子。 注:有C 不一定是手性分子(内消旋体); 无C 不一定不是手性分子(丙二烯型,两端碳所连原子或基团不同时;其余类型略)。

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti 等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法

两个手性碳原子化合物的对映异构

含两个手性碳原子化合物的对映异构→ 含两个相同手性碳原子化合物的对映异构 分子中含有两个相同手性碳原子(两个手性碳原子上连有同样的四个不同的原子或原子团)的化合物,如酒石酸分子中的两个手性碳原子上都连有-OH、-H、-COOH、和CH (OH)COOH。 它的费歇尔投影式如下: (Ⅰ)和(Ⅱ)互为对映体,(Ⅲ)和(Ⅳ)是同一种物质。如果把(Ⅲ)在纸面上旋转180°就得到(Ⅳ): 这是因为(Ⅲ)的C-2和C-3间有一对称面,可以把整个分子分成两部分,其上下两部分互为实物与镜像关系,就是分子内存在互相对映的两部分。两个手性碳原子的旋光度一样,但旋光方向却相反,正好互相抵消而失去旋光性。这种化合物称为“内消旋体”(meso-form),常用 “m”表示,所以又称m-酒石酸。酒石 酸的立体异构体实际上只有三种,即 左旋体、右旋体和内消旋体。右旋酒 石酸和左旋酒石酸是互为对映体,它 们和内消旋体酒石酸是非对映体。等 量的右旋体和左旋体混合可组成外 消旋体。

内消旋体和外消旋体虽然都没有旋光性,但它们却有本质上的差别。前者是一个化合物,不能拆分成两部分。而后者是一种混合物(由等量对映体组成),可以用特殊方法拆分成两个旋光异构体。 乳酸含有一个手性碳原子,分子中无对称因素,有旋光性,是手性分子。内消旋体酒石酸分子中虽然含有两个手性碳原子,却没有旋光性,因分子内有对称因素(对称面),故不是手性分子。由此可见,含有一个手性碳原子的分子必定有手性。但是含有两个或更多个手性碳原子的分子却不一定有手性。所以,我们决不能说凡是含有手性碳原子的分子就一定具有手性。诚然,手性碳原子是使分子具有手性的原因,但决定一个分子是否有手性的根本原因是视其有无对称因素。 含两个手性碳原子化合物的对映异构→ 含两个不相同手性碳原子化合物的对映异构 乳酸含有一个手性碳原子,有一对对映体。一般地说,分子中含手性碳原子的数目越多,旋光异构体也越多。如分子中含有两个不相同的手性碳原子时,与它们相连的原子或基团,可有四种不同的空间排列形式,即存在四个旋光异构体。例如,三羟基丁醛(赤藓糖)是一种含有四个碳原子的糖类,分子中有两个不相同的手性碳原子。 它有四个对映异构体,其费歇尔投影式如下: 由上可知,含有一个手性碳原子的化合物有两个旋光异构体,含有两个不相同手性碳原子的化合物有四个旋光异构体。依此类推,含有不相同手性碳原子的旋光异构体的数目应为 2(n为不同手性碳原子的数目)。 在三羟基丁醛的四个旋光异构体中,(Ⅰ)和(Ⅱ)、(Ⅲ)和(Ⅳ)均存在实物和镜像关系,各构成一对对映体,对映体等量混合则各组成一个外消旋体。(Ⅰ)和(Ⅲ)或(Ⅳ),

手性药物

我报告的题目是手性技术与手性药物。 首先让我和大家一起来回忆一下药物给人类带来空前灾难的反应停事件。1953年,联邦德国Chemie制药公司研究了一种名为“沙利度胺”的新药,该药对孕妇的妊娠呕吐疗效极佳,Chemie公司在1957年将该药以商品名“反应停”正式推向市场。两年以后,欧洲的医生开始发现,本地区畸形婴儿的出生率明显上升,此后又陆续发现12000多名因母亲服用反应停而导致的海豹婴儿!这一事件成为医学史上的一大悲剧。 后来研究发现,反应停是一种手性药物,是由分子组成完全相同仅立体结构不同的左旋体和右旋体混合组成的,其中右旋体是很好的镇静剂,而左旋体则有强烈的致畸作用。 到底什么是手性药物?用什么技术或方法能够分别获得左旋体和右旋体来进行研究和安全有效地使用呢? 这就是今天我要报告的主题——手性技术和手性药物。 要阐明这一主题,首先我们要认识什么是手性药物。手性药物分子有一个共同的特点就是存在着互为实物和镜像关系两个立体异构体,一个叫左旋体,另一个叫右旋体。就好比人的左手和右手,相似而不相同,不能叠合。 目前临床上常用的1850多种药物中有1045多种是手性药物,高达62%。像大家所熟知的紫杉醇、青蒿素、沙丁胺醇和萘普生都是手性药物。 手性是宇宙的普遍特征。早在一百多年前,著名的微生物学家和化学家巴斯德就英明地预见“宇宙是非对称的……,所有生物体在其结构和外部形态上,究其本源都是宇宙非对称性的产物”。 因此,科学家推断,由于长期宇宙作用力的不对称性,使生物体中蕴藏着大量手性分子,如氨基酸、糖、DNA和蛋白质等。绝大多数的昆虫信息素都是手性分子,人们利用它来诱杀害虫。很多农药也是手性分子,比如除草剂Metolachlor,其左旋体具有非常高的除草性能,而右旋体不仅没有除草作用,而且具有致突变作用,每年有2000多万吨投放市场,其中1000多万吨是环境污染物。Metolachlor自1997年起以单旋体上市,10年间少向环境投放约1亿吨化学废物。研究还发现,单旋体手性材料可以作为隐形材料用于军事领域。 左旋体和右旋体在生物体内的作用为什么有这么大的差别呢?由于生物体内的酶和受体都是手性的,它们对药物具有精确的手性识别能力,只有匹配时才能发挥药效,误配就不能产生预期药效。正如“一把钥匙开一把锁!”因此,1992年美国FDA规定,新的手性药物上市之前必须分别对左旋体和右旋体进行药效和毒性试验,否则不允许上市。2006年1月,我国SFDA也出台了相应的政策法规。 怎样才能将非手性原料转变成手性单旋体呢?从化学角度而言,有手性拆分和手性合成两种方法。经典化学反应只能得到等量左旋体和右旋体的混合物,手性拆分是用手性拆分试剂将混旋体拆分成左旋体和右旋体,其中只有一半是目标产物,另一半是副产物,而且需要消耗大量昂贵的手性拆分试剂。化学家一直在探索,是否有更经济的方法,将非手性原料直接转化为手性单旋体呢? 上世纪60年代初,科学家们开始研究在极少量的手性催化剂作用下获得大量的单旋体,这就是手性合成

手性药物不对称合成90 (3)_附件

手性药物及其不对称合成 [摘要]近年来不对称合成法应用在手性药物及药物中间体的制备中,使手性药物得到了快速的发展,不少手性药物及其中间体已经实现了工业化生产。本文介绍了手性药物及获取手性药物的方法,对不对称合成法尤其是不对称催化法在手性药物工业制备中的应用进行了综述。 [关键词]手性药物;制备;不对称合成;不对称催化 Chiral Drugs and Asymmetric Synthesis Abstract: In recent years ,since the asymmetric synthesis has been used in preparation of the chiral drugs and pharmaceutical intermediates ,there has been fast development in preparation of chiral drugs ,some of which has been already synthesed in industry scale .What is chiral drugs and the ways to abtain the chiral drugs are introduced .The methods of asymmetric synthesis,especially asymmetric catalytic reaction used in synthesis chiral drugs are reviewed . Key words :chiral drugs ,preparation , asymmetric synthesis;asymmetric catalytic synthesis 1 引言 2001 年10 月10 日,瑞典皇家科学院决定将2001年度诺贝尔化学奖授予在催化不对称反应领域做出突出贡献的3 位科学家:威廉·诺尔斯,野依良治与巴里·夏普赖斯。他们利用手性催化剂大大提升了单一对映异构体的产率,为手性药物的制备以及其他行业的发展都做出了突出的贡献。【1】 2手性药物 : 手性药物(chiral drug)是指其分子立体结构和它的镜像彼此不能够重合的

手性与手性药物

手性与手性药物 【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 Abstract:Recently,clinical sigmificance of chiral drug attracts wide attention.Exploration of chiral drug was an heated discussion of internatiomal research.The paper expounded the concept of chirality and drug ,chiral actual meaning of research,and progresses on the research of chiral drug,showed that market foreground of chiral drug was extensive. Key words:Chirality;Chiral drug. 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。

在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为D-构型,氨基酸为L-构型,蛋白质和DNA的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对L一氨基酸和D一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者Jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年Pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,Thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺R型具有镇静作用,而S型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是S型还是R型,作为药物都有致畸作用。1984年荷兰药理学家Ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他

手性分子与手性药物1

有机化学 ——手性分子和手性药物 12应化一班 高钰(120911103) 胡傲(120911106) 文正(120911118) 鲍敏(120911126) 李梦园(120911132) 张艳(120911146) 郑丽(120911150)

手性分子 手性:实物和其镜像不能重叠的现象 手性碳:连有4个不同的原子或基团的碳原子(“*”)手性分子:不能与其镜像重合的分子 如何判断一个分子是否有手性? ●最直接法:画其对映体,看是否重合 ●观察有无手性碳: ●若分子中只含有一个手性碳,即为手性分子●若分子中含有2个以上手性碳,视情况分析●观察其结构中是否具有对称因素(对称面、对 称中心及其它对称因素);一般说来,如果分子既没有对称面有无对称中心,分子就具有手性。

最直接法 两者不能重合,是手性分子 两者能重合,不是手性分子

观察有无手性碳 有手性碳,是手性分子 有手性碳,但不是手性分子 有手性碳(两个及两个以上)的不一定是手性分子

对称性 (一)对称面:假想有一个平面它可以把分子分割成互为镜像的两半,这个平面就叫对称面。 (二)对称中心:在分子中取一点P,画通过P点的任一直线,若在与P点等距离的此直线两端为相同原子(团),则P点即为该分子的对称中心。 (三)对称轴:如果穿过分子画一条直线,分子以它为轴旋转一定角度后,可以获得与原来分子相同的形象,这一直线即为该分子的对称轴。

R/S构型标记法 (一)R/S构型标记法命名规则 1、根据次序规则,排列成序,a>b>c>d; 2、把最小的d基团放在最远,其它三个朝向自己; 3、观察a b c顺序,若呈顺时针为R-构型;呈逆时针为S-构型。(二)由费歇尔投影式确定R/S构型的方法

浅谈手性化合物与现代医学

浅谈手性化合物与现代医学 一、手性化合物简介 手性化合物(chiral compounds)是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物。判断分子有无手性的可靠方法是看有没有对称面和对称中心。 手性问题与我们的日常生活密切相关。天然存在的手性化合物品种很多,并且通常只含有一种对映体,手性问题还牵涉到农业化学、食品添加剂、饮料、药物、材料、催化剂等诸多领域。它的研究已经成为科学研究和很多高科技新产品开发的热点。在过去20年里,手性研究具有戏剧性的发展,已从过去的少数几个专家的学术研究发展到大面积科学研究的需要,在一些领域并已带来了巨大的经济效益。物质的手性已经变成越来越需要考虑的问题,其对我们的日常生活正在起到越来越重要的作用。 手性化合物主要从天然来源、不对称合成和外消旋体拆分3个方面得到。由天然来源获得手性化合物,原料丰富,价廉易得,生产过程简单,产品的纯度一般都较高,因此很多量大的产品都是从天然物中获得。在药物工业中由于对手性药物的要求不断增加,其大大激发了不对称有机合成的发展,使一些生物技术、生物催化剂也迅速扩展到该领域产生纯的的手性中间体和手性产品。 二、手性药物 由于自然界的生命体存在有手性,因而也就产生了手性药物。手性药物指分子结构中存在手性因素的药物。通常是指由具有药理活性的手性化合物组成的药物,或者是只含有效对映体或是以有效对映体为主的药物。按药效方面的简单划分,手性药物可能存在以下几种不同的情况:①只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用或活性很小。②一对对映体中的两个化合物具有等同或近乎等同的同一药理活性。③一对对映体具有完全不同的药理活性。 ④一对对映体之间一个有药理活性,另一个不但没有活性,甚至表现出一定的毒副作用。⑤一对对映体之间药理活性相近,但存在个体差异。⑥一对对映体中,一个有活性,另一个却发生拮抗作用。 三、手性药物未来展望 手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予在分子不对称催化反应中做出杰出贡献的三位科学家。目前,世界单一对映体手性药物的销售额持续增长。1998年销售额已达到964亿美元。2000年的销售额为1330亿美元,并估计2008年达到2000亿美元。手性药物以其疗效高、毒副作用小、用药量少的优点满足了市场的需求,因而成为未来新药研发的方向。

手性化合物合成方法

在有机合成中产生手性化合物的方法有4种: 1.使用手性的底物 2.使用手性助剂 3.采用手性试剂 4.使用不对称催化剂 常常需要使用天然产物,如:氨基酸、生物碱、羟基酸、萜、碳水化合物、蛋白质等。 1.使用手性的底物 这种方法局限于比较有限的天然底物 如图,该化合物的硼氢化反应中,由于羟基的作用产生另外新的立体中心(反应从分子的背后发生) 以下两个反应,第一个是由于羧基的控制得到相应的手性产物..另一个则是由于反应中间体烯醇阴离子的构象决定了构型 2.使用手性助剂 如图,在第一步使用LDA去质子化时,为了使得上边的醇锂和下边的烯醇锂相距最远,Z-异构体占优势,在下一步与EtI的反应中得以产生了立体中心。 类似地,用烯醇锆替代烯醇锂(使用LDA,ZrCp2Cl2)确保烯醇的构型,再和醛反应产生不对称中心。 这些反应多数通过手性助剂的金属原子和底物中已有手性的O、N等原子络合,之后再加入其他试剂实现不对称中心的形成。这其中手性唑啉环是一个非常不错的手性助剂,它水解后可以生成一个羧基(潜在官能团) 另外一个试剂是手性的3-烷基哌嗪-2,5-二酮(一个环状二肽,可由两个氨基酸环合生成),如图 在羰基的α位进行不对称烷基化使用的是以下两种试剂A和B(B称为SAMP),如图,对环己酮的反应中采用A得到S异构体而采用B得到R异构体.

在氨基的α位进行不对称烷基化使用的试剂如下二图,用胺和它们作用后再用LDA、MeI甲基化,最后用N2H4脱去助剂得到产物. 还有一些有趣的反应如脯氨酸的α烷基化,涉及到一个立体化学的"存储"问题,经历了一个消失和再产生的过程:: 手性亚砜的作用:分离得到手性亚砜试剂和卤代烷作用后在下一步反应中诱导手性基团的产生,Al/Hg可以方便地除去亚砜基团。 3.采用手性试剂 通过铝锂氢化物与手性二胺或氨基醇作用可以得到一个用于不对称还原的试剂。如图。 利用α-蒎烯和9-BBN作用得到的试剂是一个很好的不对称还原试剂.如图 不对称硼氢化反应也是一个很好的构造立体化学中心的反应。这里需要利用α-蒎烯(图中的反应是针对三取代烯烃的,对于双取代烯烃应采用条件温和的双取代硼烷)

手性分子与旋光性

手性分子和旋光性 一、手性分子与非手性分子 不具有对称面和对称中心的分子有一个重要的特点,就是实体和镜象不能重叠,其关系正和左、右手的关系相似,因此现在普遍地称这类分子为手 它可以写出结构式(i)和(ii),(i)和(ii)与左、右手一样具有实体和镜象的关系,因此乳酸是一个手性分子。实体和镜象互称为对映体。一对对映体从表观上看,它们是“非常对称”的,这种实体和镜象不能重叠的而表观上或结构上又“非常对称”的关系可看作是一种“特殊的对称”。 从对称因素考虑,乳酸只有一个C 简单对称轴,任何一个物体或分子旋转360° 1 (n=1)时,都可复原。为了和许多其它只具有C n>1简单对称轴的手性分子区别开来,所以把这种手性分子称为不对称分子,而后者称为非对称分子。 乳酸分子还有一个特点,它的一个碳原子和四个不同的基团相连,这种碳原子称为不对称碳原子或手性碳原子,氮、磷、硫原子也可连接不同的基团,这种原子,均可称为手性中心。现在已知绝大多数手性分子(不对称分子)含有一个或多个不对称碳原子,但并不能因此就将含有手性碳原子作为产生手性分子的绝对条件,产生手性分子的必要与充分条件是实体和镜象不能重叠。

二、对映体和光活性 实体和镜象不能重叠的分子成为一对对映体。这二者的物理性质及化学性质,如溶解度、熔点、密度、焓等,都是相同的。它们的化学反应性能也是相同的,只有在特殊的环境下,如在手性溶剂或试剂存在下,才表现出差异,生物体内的大多数反应是在手性的环境下进行的。但一对对映体对偏振光的作用不同,一个可以把偏振光向左旋,另一个则把偏振光向右旋,而非手性分子对偏振光没有这种作用,因此手性分子又称为光活性分子。光活性并不是手性分子的唯一特征,个别手性分子显示不出旋光性来,因此用手性这个名词,就更恰当一些。偏振光是检查手性分子的一种最常用的方法,因此需要对它略加讨论。 普通的光线含有各种波长的射线,是在各个不同的平面上振动的,图3-1(i)代表一束光线朝着我们的眼睛直射过来,它包含有在各个平面上(如A,B,C,D…)振动的射线,假若使光线通过一个电气石制的棱镜,又叫尼可尔(Nicol)棱镜,一部分射线就被阻挡不能通过,这是因为这种棱镜具有一种特殊的性质,只有和棱镜的晶轴平行振动的射线才能全部通过。假若这个棱镜的晶轴是直立的,那么只有在这个垂直平面上振动的射线才可通过,这种通过棱镜的光叫做平面偏光。图3-1(ii)表示凡在虚线平面上振动的射线都将受到全部地或者部分地阻挡。图3-1(iii)表示通过棱镜的光线是仅含有在箭头所示平面上振动的偏光。 用两块电气石制的棱镜放在眼睛和一个光源之间,若两个棱镜的轴彼此平行,则通过第一个棱镜的射线也可通过第二个棱镜,我们看到的是透明的图3-2(i),若两个棱镜的轴互相垂直,通过第一个棱镜的射线就不能通过第二个棱镜,此时看到两镜相交处是不透明的[图3-2(ii)]。电气石棱镜对于光的作用可以用一本书和一

手性分子与手性药物

. . . . . 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. . . . . 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. . . . . 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. . . . . 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. . . . . Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

手性化合物

手性化合物 手性化合物是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物 什么是手性? 当我们伸出双手,双手手心向上时,可以看出左右手是对称的,但是将双只手叠合,无论如何也不能全部重叠,总有一部分是不能重合在一起的;如果我们将左手置于一面平面镜前,手心对着镜子,可以看到镜子里的左手的像和右手手心对着自己一样,即左手的像和右手可以完全重叠。象这样左手和右手看来如同物与像,但又不能叠合在一起,互相成为“镜像”关系,就称之为“手性”。 有机化合物是含碳的化合物,一个碳原子的最外层上有四个电子,若以单键成键时,可以形成四个共价单键,共价键指向四面体的顶点,当碳原子连接的四个基团各不相同时,与这个碳原子相连接的四个基团有两种空间连接方式,这两种方式如同左右手,互为“镜像”,也是不能完全叠合在一起的,因此,这样的分子叫做“手性分子”。这种构成手性关系的分子之间,把一方叫做另一方的“对映异构体”。许多有机化合物分子都有“对映异构体”,即是具有“手性”。构成生物体的许多有机化合物都有“手性”。如α-氨基酸,在碳连接有一个羧基、一个氨基、一个烃基和一个氢原子(或一个不同于前边的烃基)*,这时你想将其中三个相同颜色的球重叠,但是余下的那个颜色的球总不能重叠。由这些手性氨基酸组成的蛋白质也就与“手性”有密切的关系,因此,生命生理活动中的许多现象与“手性”密不可分。 如何检验物质具有手性? 手性物质具有一特殊性质——旋光性,将纯净的手性物质的晶体,或是将纯净的手性物质配成一定浓度的溶液,用平面偏振光1照射,通过手性物质的偏振光平面会发生一定角度的旋转,这称为旋光性。这种偏振光的平面旋转可左可右,以顺时针方向旋转的对映体,称为右旋分子,用“+”或“d”表示;以逆时针方向旋转的对映体,称为左旋分子,用“-”或“l”;如果将互为对映体的手性物质等物质的量混合后,以偏振光照射,而偏振光不发生旋转,称为外消旋体或外消旋混合物,外消旋体是由于左旋分子和右旋分子发生的偏振光旋转

手性分子与手性药物

. 有机化学—— 手性分子与手性药物 材料与化学工程系 12级应化(1)班

. 我们吃的如甘蔗汁制的或甜莱汁制的糖,它们的分子都是右旋的。 人体内氨基酸分子都是左旋的,而淀粉的分子都是右旋的,传递遗传信息的脱氧核糖核酸(DNA),95%以上呈右旋。 星系的运动都呈圆形、椭圆形或涡旋形运动,多是“左旋”。 多数藤本植物如牵牛花、扁豆等的茎蔓是右旋的。 海螺的螺壳都是右旋的,出现左旋螺壳的概率是百万分之。 左旋 右旋 自然界中的手性

. 长瓣兜兰花两侧长瓣的螺旋是左右对称的,右侧是左旋,左侧是右旋。——《科学》

. 化学概念中的手性 什么是手性 ⒈手性分子: 具有手性的分子称为手性分子,手性分子都具有旋光性;不具有手性的分子称为非手性分子,无旋光性。由于含一个不对称碳原子的化合物具有手性,这与其呈现手性特征的中心碳原子有关,因此这个中心碳原子称为手性中心,称其不对称碳原子为手性碳原子。 手性:实物与自身镜象不能重合的现象。 左手和右手不能叠合 左右手互为镜象 手性碳——手性分子的特征 所谓手性碳原子,是指饱和碳原子上连有四个完全不同的原子或原子团,常用“*”号予以标注。 F F C Br * 子 手性碳标记 F CH 3C H C H 2C H 3 OH * CH 3C H C H C H 3 Cl Br * * 非手性分子

. Ⅲ的结构具有对称中心,为非手性分子,与Ⅰ和Ⅱ均不成镜像,互为非对映异构体。 翻转180o,完全重合 3II 3I Ⅰ和Ⅱ互为对映异构体 ⒉含有一个手性碳原子的分子往往具有手性。含有多个手性碳原子的分子 不一定都具有手性。 例如:2,3-丁二醇的三种立体结构 互为镜像,不能重合,均为手性分子。 小结:

顺反异构、对映异构

对应异构:两种物质互为镜像,就跟人的左右手间的关系一样,外形相似但不能重合。 我们知道,生命是由碳元素组成的,碳原子在形成有机分子的时候,4个原子或基团可以 通过4根共价键形成三维的空间结构。由于相连的原子或基团不同,它会形成两种分子结构。这两种分子拥有完全一样的物理、化学性质。比如它们的沸点一样,溶解度和光谱也 一样。但是从分子的组成形状来看,它们依然是两种分子。这种情形像是镜子里和镜子外 的物体那样,看上去互为对应。由于是三维结构,它们不管怎样旋转都不会重合,就像我 们的左手和右手那样,所以又叫手性分子。 定义立体异构的一种,由于双键不能自由旋转引起的,一般指烯烃的双键,也有C=N 双键,N=N双键及环状等化合物的顺反异构。 顺式异构体:两个相同原子或基团在双键同一侧的为顺式异构体,也用 cis- 来表示。 反式异构体:两个相同原子或基团分别在双键两侧的为反式异构体,也用 trans- 来表示。 图中Pt(NH3)2Cl2应该没有顺反异构 2产生条件 ⑴分子不能自由旋转(否则将变成另外一种分子) ⑵双键上同一碳上不能有相同的基团;注:同分异构是分子式相同,结构式不同,顺 反异构是空间构象不同。但顺反异构属于同分异构。若双键上两个碳原子上连有四个 完全不同的原子或基团,按“顺序规则”分别比较每个碳原子上连接的两个原子或基团,若两个较优基团在π键平面同侧者为Z型异构体,在异侧者为E型异构体。 顺反异构体的性质 顺反异构体,原子或原子团的连接顺序以及双键的位置相同,只是空间排列方式不同。因此化学性质基本相同,但在生物体内的生物活性不同,物理性质有一定的差异:一般,反式有较高的熔点,较低的溶解度,且较为稳定。

手性分子药物与人类健康

手性分子药物与人类健康 班级:药学三班 姓名:王威 学号:20121240310

【摘要】 目的 阐明药物手性的概念及其药理活性。 方法 综述手性分子的研究历史和药物手性对药理作用的影响。结果 手性药物有着不同的药理活性,对人体产生各种生理效应,对其进行合理的分离纯化可以减小药物毒副作用,增强药效,同时能够带来巨大的经济效益。 结论 通过对手性药物药理活性的研究能更深入地理解或积极地预期一些药物相互作用,为临床合理用药提供依据。

【关键词】手性药物; 药理活性 近年来,药物手性的临床意义已引起了人们的注意,手性药物的开发已成为国际热点。目前,世界正在开发的1200种新药中有3/3是手性药物。手性药物有的以消旋体(racemate)形式上市,有些以单一对映体(enantiomer)上市。手性药物发展的潜势是十分巨大的。手性药物带来了巨大的经济效益,其市场范围包括手性药物制剂,手性原料药和手性中间体。2000年全世界的手性药物销售额突破了1200亿美元,其中制剂就有900亿美元[1]。因此,研究手性药物为临床合理使用手性药物及研制开发优对映体新药,具有重要的意义。 1、手性药物相关问题简述 分子结构基团在空间排列不同的化合物称为立体异构体,其中在空间上不能重叠,互为镜像关系的立体异构体称为对映体,这一对化合物就像人的左右手一样,称为具有手性;当药物分子中碳原子上连接有4个不同的基团时,该碳原子被称为手性中心(也称不对称中心),相应的药物被称作手性药物(chiral drug)。对映体之间,除了使偏振光偏转(旋光性)的程度相同而方向相反外,其他理化性质相同。因此,对映体又称光学异构体[2]。

手性合成手性识别手性拆分及在医药学中应用_张来新

收稿日期:2016-02-29 基金项目:陕西省重点实验室科学研究计划基金资助项目(2010JS067); 陕西省教育厅自然科学基金资助课题(04JK147);宝鸡文理学院自然科学基金资助课题(zk12014) 作者简介:张来新(1955-),男,汉族,陕西周至人,教授,硕士研究生 导师,主要从事大环化学研究及天然产物分离提取。 DOI :10.16247/https://www.sodocs.net/doc/8817553955.html,ki.23-1171/tq.20160753 Sum 250No.07 化学工程师 Chemical Engineer 2016年第07 期 手性是人类赖以生存的自然界的属性之一,也是生命体系中最重要的属性之一。作为生命体三大 物质基础的蛋白质、核酸及糖类均是由具有手性的结构单元组成的。如组成蛋白质的氨基酸除少数例外,大多是手性的L-氨基酸; 组成多糖和核酸的天然单糖大都是手性的D-构型。因此,生物体内所有的生化反应、生理反应无一不表现出高度的手性立体特异性,而外源性物质进入体内所发生的生理生化反应过程也具有高度的立体选择性。医药学所有的手性药物是指分子结构中含有手性中心或不对称中心的药物,它包括单一的立体异构体、两个或两个以上立体异构体的混合物。手性化合物除了通常所说的含手性中心的化合物外,还包括含手性轴、手性平面、螺旋手性等因素的化合物。由于药物作用的靶点(如受体、酶或通道)结构上的高度立体 特异性,手性药物的不同立体异构与靶点的相互作 用有所不同,从而产生不同的药理活性,故表现出立体专一性和立体选择性。同样,药物进入体内后与机体内具有高度立体特异性的代谢酶及血浆蛋白或转运蛋白等相互作用,手性药物的不同异构体在体内也将表现出不同的药代动力学特征,并具有 立体专一性和立体选择性。但值得注意的是,有些手性化合物在体内甚至可能发生构型变化而改变 其药效或产生毒副作用。 由于手性药物是医药行业的主体和前沿阵地,故2001年诺贝尔化学奖就授予了分子手性催化剂的主要贡献者。自然界中有众多手性化合物,这些不同构型的化合物具有一对对映异构体。当一个手性化合物进入生命时,它的两个对眏异构体通常会表现出不同的生物生理活性。对于手性药物,一个异构体可能是有效的,而另一个异构体可能是无效的甚至是有害的(如青霉素),这就需要对对眏体进行拆分。手性制药就是利用化合物的拆分原理,开发出药效高、副作用小的药物。在临床治疗方面,服用一对对眏体中的一种单一构型的纯手性药物可以排除由无效或不良对眏体的另一种而引起的毒副作用,不仅如此,还可以减少药剂用量和人体对 手性合成手性识别手性拆分 及在医药学中应用 * 张来新*,陈 琦 (宝鸡文理学院化学化工学院,陕西宝鸡721013) 摘要:简要介绍了手性物质的合成、手性识别、手性拆分及在医药学上的应用。详细综述了:(1)手性合成手性识别手性拆分及在医药学中的应用;(2)新型金属手性超分子配合物的合成及应用;(3)手性杯芳冠醚的合成分子识别及应用。并对手性化学的发展进行了展望。 关键词:手性合成;手性识别;手性拆分;应用中图分类号:O658 文献标识码:A Chiral synthesis,chiral recognition,chiral separation and their applications to medeicine * ZHANG Lai-xin ,CHEN Qi (Chemistry &Chemical Engineering Department,Baoji University of Arts and Sciences,Baoji 721013,China ) Abstract :This paper introduces synthesis of chiral materials,chiral recognition,chiral separation,and their applications to medicine.Emphases are put on three parts :(1)chiral synthesis,chiral recognition,chiral separa -tion,and their applications to medicine ;(2)synthesis and applications of new metal chiral supramolecular com -plexes ;(3)synthesis,molecular recognition,and applications of chiral calix crown ethers.Future developments of charal chemestry are prospected in the end. Key words :chiral synthesis ;chiral recognition ;chiral separation ;application

手性药物发展趋势_附件

手性药物的发展趋势 手性药物在新药的设计、研究、开发、上市是一个主要的课题[1–4]。立体化学结构是药理学的一个重要方面[1]。在过去的几十年中,药典的主导力量是外消旋体,但是自从1980年新技术的出现,允许显著数量的纯对映体的药剂,人们对药物作用的立体化学的认识和兴趣有所增加[2-4]。 立体选择性生物分析的进步,导致了立体选择性药效学和药代动力学的重要性的新的认识,使对映体对整体药物作用的相对贡献出现了差异。当一种对映体负责感兴趣的活性,与其成对的对应体可能是无效的,拥有一些感兴趣的活性,可能是活性对映体的拮抗剂,也可能是希望的或不希望的单独的活动[3-5]。考虑到这些可能性,似乎是纯立体化学药物的主要优势,比如说总给药剂量减少,治疗窗增大,减少主体间变异以及剂量-反应关系间更精准的估计[3,4]。这些因素导致在企业和一些监管机构越来越偏爱单一对映体。手性药物的监管始于美国,1992年美国出版了一本正式的方针关于手性药物的发展,这份文件的题目是新立体异构体药物的政策声明[6]。紧接着,1994年欧盟发表了手性活性药物的研究[7]开始了对手性药物的监管。申请人必须认识到新药中手性药物的存在,企图分离立体异构体,评估不同的立体异构体对感兴趣的活性的不同的贡献,并且做出理性的选择对上市的立体异构体的形式。 单一对映体形式的手性药物的全球销售额持续增长。单一对映体剂型的药的市场份额在逐年增长,从1996年的27%(744亿美元),到1997年的29%,1998年的30%,1999年的32%,2000年的34%,2001年的38%,到2002年其市场份估计到了39%(1519亿美元)[8-13]。 排名前十的单一对映体药物(每年销售额大于10亿美元)是:阿托伐他汀

手性与手性药物

【摘要】近年来,手性药物的临床意义引起人们的广泛关注,手性药物的开发已成为国际研究的热点。本文对手性和药物手性的概念、研究的实际意义以及手性药物研究现状进行阐述,说明手性药物具有广阔的市场前景。 【关键词】手性;手性药物 1 手性 手性是自然界的普遍特征。构成自然界物质的一些手性分子虽然从原子组成来看是一摸一样,但其空间结构完全不同,他们构成了实物和镜像的关系,也可比喻成左右手的关系,所以叫做手性分子[1]。在生命的产生和演变过程中,自然界往往对一种手性有所偏爱,如自然界中,糖的构型为d-构型,氨基酸为l-构型,蛋白质和dna的螺旋构象又都是右旋的,等等。因此,分子手性在自然界生命活动中起着极为重要的作用。人类的生命本身就依赖于手性识别。如人们对l一氨基酸和d一糖类能够消化吸收,而其对映体对人类没有营养价值,或有副作用。 人们对手性的研究可以追溯到1874年第一位化学诺贝尔奖获得者jhvan[2]。当时他就提出了具有革命性的理论化学分子为三维结构,一些化合物存在两种构像,且两者互为镜像。1886年,科学家报道了氨基酸类对映体引起人们味赏感受的差别。1956年pfeifer根据对映体之间药理活性的差异,总结出:一个药物的有效剂量越低,光学异构体之间药理活性的差异就越大。即在光学构体中,活性高的异构体与活性低的异构体之间活性比例越大,作用于某一受体或酶的专一性越高,作为一个药物它的有效剂量就越低。20世纪50年代中期,反应停(沙利度胺,thalidomide)作为镇静剂,有减轻孕妇清晨呕吐的作用而被广泛应用。结果在欧洲导致1.2万例胎儿致残,即海豹婴。于是1961年该药从市场上撤消。后来发现沙利度胺r型具有镇静作用,而s型却是致畸的罪魁祸首。研究人员进一步研究发现沙利度胺任一异构体在体内都能转变为相应对映体,因此无论是s型还是r型,作为药物都有致畸作用。1984年荷兰药理学家ariens极力提倡手性药物以单一对映体上市,抨击以消旋体形式进行药理研究以及上市。他的一系列论述的发表,引起药物部门广泛的重视。2001年诺贝尔化学奖授予了3位美日科学家,表彰他们在手性催化氢化反应和手性催化氧化反应领域所做出的重大贡献。目前,研究和发展新的手性技术,借此获得光学纯的手性药物,已成为许多实验室和医药公司追求的目标。 2 药物的手性 据统计,1800个药物,具有手性中心的就有1026种,占57%。现在市场上只有61种药物是以单对映体形式存在,其余均为外消旋体(左、右旋各半)混合形式。研究表明,不同的对映体在人体内的药理,代谢过程,毒性和疗效存在着显著差异[2-5],大致有以下几个类别: 2.1 对映体之间有相同或相近的某一活性 2.2 一个对映体具有显著的活性但其对映体活性很低或无活性 一般认为若某一对映体只有外消旋体的1%的药理活性,则可以认为其无活性。因为这微小的活性可能来源于掺杂于该单一对映体中微量的活性单一对映体。例如氯苯吡胺(扑尔敏,ehlorpheniramine)右旋体的抗组胺作用比左旋体强100倍。抗菌药氧氟沙星的s-(-)-异构体是抗菌活性体,而r-(+)-异构体则无活性。属于这一类的药物还有是氯霉素、芬氟拉明、吲哚美辛等。 2.3 对映体有相同、但强弱程度有差异 某一活性抗癌药环磷酰胺(ey-elophosphamide),其手性中心不是在通常的碳原子,而在磷原子。其(s)-异构体活性是(r)-异构体的2倍,然而,对映体毒性几乎相同。有时一个异构体具有较强的副作用,也应予考虑。如氯胺酮(ketamine)是以消旋体上市的麻醉镇痛剂,但具有致幻等副作用,进一步的药理研究证实(s)-异构体活性是(r)-异构体的三分之一,却伴随着较强的副作用。

相关主题