搜档网
当前位置:搜档网 › 重庆选调生行测备考指导:巧解排列组合问题

重庆选调生行测备考指导:巧解排列组合问题

重庆选调生行测备考指导:巧解排列组合问题
重庆选调生行测备考指导:巧解排列组合问题

重庆选调生行测备考指导:巧解排列组合问题

作为储备干部培养的公务员之选调生已经陆续出公告,各省考试时间和内容有所不同,以行测、申论、综合知识为主;中公教育选调生课程也是结合考试大纲专业专项设置的。由于选调生考试内容比较广泛,复习方向不太好把握,所以对于广大考生来说复习难度也越来

助!

更多针对性问题解决您可以>>>在线咨询。

在选调生行测考试中,排列组合与概率问题作为数学运算中相对独立的一块,难度本身不小,在选调生考试中的出场率也颇高。而且这部分题型的难度逐渐在加大,这就需要考生在掌握基本方法的基础上对其熟练运用,加法原理和乘法原理看起来很简单,但很多考生容易在这里混淆不清,所以中公选调生考试网家要在这里给大家夯实基础。

加法原理和乘法原理是解决排列组合与概率问题的基础,也是最常用、最基本的原理,所以熟练掌握这两个原理至关重要。

加法原理:完成一件事情,有m类不同的方式,而每种方式又有多种方法可以实现。那么,完成这件事的方法数就需要把每一类方式对应的方法数加起来。例如:从A地到B地,坐火车有3种方法,坐汽车有5种方法,坐飞机有2种方法,那么从A地到B地一共应该有3+5+2=10种方法。这里从A地到B地有火车、汽车和飞机三类方式,可使用加法原理。

乘法原理:完成一件事请,需要n个步骤,每一个步骤又有多种方法可以实现。那么完成这件事的方法数就是把每一个步骤所对应的方法数乘起来。例如:从A地到B地坐飞机需要在C地转机,已知从A地到C地有4种方法,从C地到B地有3种方法。这里从A地到B 地,需要分两个步骤完成,第一步从A地到C 地,第二步从C地到B地,因此从A地到B 地有4×3=12种方法。总之,记住:分类用加法原理,分步用乘法原理。有的考生可能在面对具体题目时,不知道什么是分类、什么是分步。实际上,对于分类和分步,可以这样区分:在分类的情况下,完成一件事,每一类中的每一种方法都可以达到目的,即都可以完成这件事。在分步计数中,完成一件事,只有各个步骤都完成了,才算完成这件事。

我们回过头来看前面举的那个例子:从A地到B地,坐火车有3种方法,坐汽车有5

种方法,坐飞机有2种方法,那么我们只要任选一种方式,都可以从A地到达B地,所以这是一个分类的过程;而对于第二个例子,就必须要先到C地,才能到B地,也就是说A-B、B-C这两步你要都完成了,才能最终成功,所以这是一个分步的过程。

【例1】现有各不相同的饼干3个,面包4个,小马要从中选一个,有几种选法?

中公解析:很显然,可以按所选食物类别分为两类:(1)选饼干:有3种选法;(2)选面包:有4种选法。在这两类中任选一个,都能达到目的,所以用加法原理:共有3+4=7种。

【例2】从1~4这4个自然数中任取两个不同的数,可组成多少个两位数?

中公解析:要组成两位数,十位数、个位数,都需要选。可以先选十位数字,再选个位数字,显然,只有这两个过程都完成了,才能组成两位数。所以这是一个分步过程,要用乘法原理。

第一步,选十位数字,在1、2、3、4中选一个,有4种选法;

第二步,再选个位数字,可以在剩下的3个数中任意选,有3种选法。

根据乘法原理,满足条件的两位数共有:4×3=12个。

查看更多:选调生行测备考干货集锦;

选调生考试题库邀您一起刷题!

看完行测,还想看看申论高分技巧,想要参考优秀范文,直观的了解与学习申论作文的写法,点击查看选调生申论范文汇总。

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

行测排列组合例题

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)=4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。根据公式 P (3,3)=3!3216(33)!1 ??==- ( 计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r 变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P (3,2)=3!3216(32)!1 ??==- ( 计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法?

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

高考排列组合典型例题

高考排列组合典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

排列组合典型例题 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千 位数是“0”排列数得:)(283914 A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439 =+=-?+A A A A 个.

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

行测排列组合例题

行测排列组合例题Last revision on 21 December 2020

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)= 4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法 解答:

假设我们已经找出了两种排列方法(黄、白、蓝)和(蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。根据公式 P(3,3)= 3!321 6 (33)!1 ?? == - (计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法解答 这仍然属于排列问题,只不过r变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P(3,2)= 3!321 6 (32)!1 ?? == - (计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4黄、白、蓝三个球,任意取出两个,有几种取法 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

行测排列组合例题整理

排列组合基础知识讲座 首先看一道简单的例题 例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答: 题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。由于和位置有关,所以这是排列问题。 (注意:虽然题目问的是有多少种组法,但仍然属于排列问题) 排列公式的定义如下 !()!r n n P n r =- r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 P (5,3)=5!5432160(53)!21 ????==-? 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。根据公式 P (4,2)=4!432112(42)!21 ???==-? 因此共有12种组法。 下面我们一起来看考试当中出现的一个题目: 例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法? 解答: 假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。很明显这属于排列问题。在这里,总共的元素个数是3 ,所以n=3,从所有元素中

取出3个进行排列,所以r=3。根据公式 P (3,3)=3!3216(33)!1 ??==- ( 计算的时候注意0!=1) 因此共有6种排法。 如果我们把这个题目改一改,变成 例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答 这仍然属于排列问题,只不过r 变成了2。在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。根据公式 P (3,2)=3!3216(32)!1 ??==- ( 计算的时候注意1!=1) 因此还是有6种排法。 下面我们这个题目再变一下 例4 黄、白、蓝三个球,任意取出两个,有几种取法? 解答: 假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。由于和取出的球的排列位置无关,因此这属于组合问题。 组合公式的定义如下 ()!!!r n n C r n r =- r n C 也可写成C (n,r )其中n 表示总共的元素个数,r 表示进行组合的元素个数,!表示阶乘,例如6!=654321?????,5!= 54321????,但要特别注意1!=0!=1。假设n=5,r=3,则 C (5,3)=5!54321302!(53)!(21)(21) ????==-??? 另外,为便于计算,还有个公式请记住 r n r n n C C -=

行测排列组合习题

错位重排问题又称伯努利-欧拉错装信封问题,是组合数学史上的一个著名问题。此问题的模型为: 编号是1、2、…、n的n封信,装入编号为1、2、…、n的n个信封,要求每封信和信封的编号不同,问有多少种装法? 对这类问题有个固定的递推公式,记n封信的错位重排数为Dn,则D1=0,D2=1, Dn=(n-1)( Dn-1+ Dn-2)。这样,就能根据这个递推公式推出所有数的错位重排,解题时又快又准 1.张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个节目,有多少种安排方法? A,20 B.12 C,6 D,4 2. 某单位今年新近3个工作人员,可以分配到3个部门,但是每个部门之多只能接收2个人,问有几种不同分配方案 A.18 B.20 C.24 D28 3.班委改选,由8人竞选班长、学习委员、生活委员、文娱委员和体育委员五种职务。最后每种职务都有一个人担当,则共有多少种结果?( ) A.120 B.40320 C.840 D.6720 4. 乒乓球比赛共有14名选手参加,先分成两组参加单循环比赛,每组7人,然后根据积分由两组的前三名再进行单循环比赛,决出冠亚军,请问共需要多少场? A.54 B.56 C.57 D.60 5. 林辉在自助餐店就餐,他准备挑选三种肉类中的一种肉类,四种蔬菜中的二种不同蔬菜,以及四种点心中的一种点心。若不考虑食物的挑选次序,则他可以有多少不同选择方法? ( ) A. 4 B. 24 C. 72 D. 144 6.从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法 A.240 B.310 C.720 D.1080 7.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( ) A280种B240种C180种 D96种 8.五人排队甲在乙前面的排法有几种? A.60 B.120 C.150 D.180 9.若有甲、乙、丙、丁、戊五个人排队,要求甲和乙两个人必须不站在一起,且甲和乙不能站在两端,则有多少排队方法?

排列&组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

排列组合专题总结复习及经典例题详解 .docx

排列组合专题复习及经典例题详解 1.学目 掌握排列、合的解策略 2.重点 (1)特殊元素先安排的策略: (2)合理分与准确分步的策略; (3)排列、合混合先后排的策略; (4)正反、等价化的策略; (5)相捆理的策略; (6)不相插空理的策略. 3.点 合运用解策略解决. 4.学程 : (1)知梳理 1.分数原理(加法原理):完成一件事,有几法,在第一法中有m1种不同的方法,在第 2 法中有m2种不同的方法??在第n 型法中有m n种不同的方法,那么完成件事共有N m1m2... m n种不同的方法. 2.分步数原理(乘法原理):完成一件事,需要分成n 个步,做第 1 步有m1种不同的方法,做第 2 步有m2种不同的方法??,做第n 步有m n种不同的方法;那么完成件事共有 N m1 m2...m n种不同的方法. 特提醒: 分数原理与“分”有关,要注意“ ”与“ ”之所具有的独立性和并列性; 分步数原理与“分步”有关,要注意“步”与“步”之具有的相依性和性,用两个原理行正确地分、分步,做到不重复、不漏. 3.排列:从 n 个不同元素中,任取m(m≤n) 个元素,按照一定的序排成一列,叫做从n 个不同元素中取出 m个元素的一个排列,m n叫做排列,m n 叫做全排列. 4.排列数:从 n 个不同元素中,取出m(m≤n) 个元素的所有排列的个数,叫做从n 个不同元素中取出 m个元素的排列数,用符号P n m表示. 5.排列数公式:P n m n(n1)( n2)...( n m1) (n n!( m n,n、 m N)m)! 排列数具有的性: P n m1P n m mP n m 1 特别提醒: 规定 0!=1

排列组合典型例题.

排列组合典型例题 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ; 能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 . 复习巩固 1. 分类计数原理 (加法原理 完成一件事,有 n 类办法,在第 1类办法中有 1 m 种不同的方法,在第 2类办法中有 2 m 种不同的方法,…,在第 n 类办法中有 n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2. 分步计数原理(乘法原理 完成一件事,需要分成 n 个步骤,做第 1步有

1 m 种不同的方法,做第 2步有 2 m 种不同的方法,…,做第 n 步有 n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。 3. 确定每一步或每一类是排列问题 (有序还是组合 (无序问题 , 元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一 . 特殊元素和特殊位置优先策略 例 1. 由 0,1,2,3,4,5可以组成多少个没有重复数字五位奇数 . 解 :由于末位和首位有特殊要求 , 应该优先安排 ,

排列组合经典例题

除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。 直接法 特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择,其余2位有四个可供选择,由乘法原理:=240 2.特殊位置法 (2)当1在千位时余下三位有=60,1不在千位时,千位有种选法,个位有种,余下的有,共有=192所以总共有192+60=252 间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数个,其中0在百位的有个,这是不合题意的。故共可组成不同的三位数-=432(个) 插空法当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有=100中插入方法。 捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有种排法,而男生之间又有种排法,又乘法原理满足条件的排法有:×=576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种() 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有()(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有其余的就是19所学校选28天进行排列) 阁板法名额分配或相同物品的分配问题,适宜采阁板用法 例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。 分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种 练习1.(a+b+c+d)15有多少项? 当项中只有一个字母时,有种(即a.b.c.d而指数只有15故。 当项中有2个字母时,有而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即

最新排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集,所 有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类, 又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。 随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。 5.隔板法: 不可分辨的球即相同元素分组问题

相关主题