搜档网
当前位置:搜档网 › 异步电动机矢量控制调速系统设计外文翻译

异步电动机矢量控制调速系统设计外文翻译

异步电动机矢量控制调速系统设计外文翻译
异步电动机矢量控制调速系统设计外文翻译

毕业设计(论文)

文献题目:The Design of the Vector Control System of Asynchronous Motor 专业:机械设计制造及其自动化

年级:09级

姓名:

学号:

指导教师:

职称:副教授

2013年4月20日

The Design of the Vector Control System of Asynchronous Motor

Min Zhang, Xinping Ding & Zhen Guo

College of Automation, Qingdao Technological University, Qingdao 266033, China

E-mail: z_m530@https://www.sodocs.net/doc/8f11954798.html,

Abstract: Among various modes of the asynchronous motor speed control, vector control has the advantages of fast response, stability, transmission of high-performance and wide speed range. For the need of the asynchronous motor speed control, the design uses 89C196 as the controller, and introduces the designs of hardware and software in details. The Design is completed effectively, with good performance simple structure and good prospects of development.

Keywords: Asynchronous motor, 89C196, Vector control

1. Introduction

AC asynchronous motor is a higher order, multi-variable, non-linear, and strong coupling object, using the concept of parameters reconstruction and state reconstruction of modern control theory to achieve decoupling between the excitation component of the AC motor stator current and the torque component, and the control process of AC motor is equivalent to the control process of DC motor, the dynamic performance of AC speed regulation system obtaining notable improvement, thus makes DC speed replacing AC speed possible finally. The current governor of the higher production process has been more use of Frequency Control devices with vector-control.

2. Vector Control

With the criterion of producing consistent rotating magneto motive force, the stator AC current A i ,B i ,C i by3S/2S conversion in the three-phase coordinate system, can be equivalent to AC current s d i ,s q i , in two-phase static coordinate system, through vector rotation transformation of the re-orientation of the rotor magnetic field, Equivalent to a synchronous rotation coordinates of the DC current e d i ,e q i . When observers at core coordinates with the rotation together, AC machine becomes DC machine. Of these, the AC induction motor rotor total flux r , it has become the equivalent of the DC motor flux, windings e d equivalent to the excitation windings of DC motor ,

e d i equivalent to the excitation current, windings e q equivalent to false static windings, e q i equivalent to the armature current proportional to torque. After the transformation above, AC asynchronous motor has been equivalent to DC motor. As a result, imitating the control method o

f DC motor, obtainin

g the control variable of DC motor, throug

h the corresponding coordinates anti-transformation, can control the asynchronous motor. As a result of coordinate transformation of the current (on behalf of magnetic momentum) space vector, thus, this control system achieved through coordinate transformation called the vector control system, referred to VC system.

According to this idea, could constitute the vector control system that can control r ψ and e q i

directly, as shown in Figure 1. In the figure a given and feedback signal through the controller

similar to the controller that DC speed control system has used, producing given signal *

e qs i o

f the

excitation current and given signal *e ds i of the armature current, after the anti-rotation transform VR -1 obtaining *e qs i and *

e ds i , obtains *

A i ,*

B i ,*

C i by 3S/2S conversion. Adding the three signals controlled by current and frequency signal 1ω obtained by controller to the inverter controlled by current, can output three-phase frequency conversion current that asynchronous motor needs for speed.

3. The Content and Thought of the Design

This system uses 80C196 as controller, consists of detection unit of stator three-phase current unit of keyboard input, LCD display modules, given unit of simulation speed detection unit of stator three-phase voltage, feedback unit of speed and output unit of control signals. System block diagram shown in Figure 2, the system applies 16 bits MCU 80C196 as control core, with some hardware analog circuits composing the vector control system of asynchronous motor. On the one hand, 80C196 through the A/D module of 80C196, speed gun and the given speed feedback signals has been obtained, obtaining given torque of saturated limiting through speed regulator, to obtain the given torque current; Use a given function generator to obtain given rotor flux, through observation obtaining real flux, through flux regulation obtaining given excitation current of given stator current, then the excitation current and the torque current synthesis through the K/P transformation, obtaining amplitude and phase stator current, after amplitude of stator current

compared to the testing current , control the size of stator current through current regulator.; on the other hand, the stator current frequency is calculated by the simultaneous conversion rate for the time constant of the control inverter, regularly with timer, through P1,submitting trigger word to complete the trigger of the inverter.

4. The Design of Hardware and Software

The hardware circuits of the system mainly consists of AC-DC-AC current inverter circuit, SCR trigger inverter circuit, rectifier SCR trigger circuit, the speed given with the gun feedback circuit, current central regulation circuit, protection circuit and other typical circuits. The design of software includes: speed regulator control and flux detection and regulation.

4.1 AC-DC-AC Current Converter Circuit

The main circuit uses AC-DC-AC Current Converter in the system as shown in Figure 3, and main features can be known as follows:

1) Main circuit with simple structure and fewer components. For the four-quadrant operation, when the brake of power happens, the current direction of the main circuit keeps the same, just changing the polarity of the voltage, rectifier working in the state of inverter, inverter working in the state of rectifier. The inverter can be easily entered, regenerative braking, fast dynamic response. The voltage inverter has to connect to a group of inverters in order to regenerative braking, bringing the electric energy back to power grids.

2) Since the middle using a reactor, current limit, is constant current source. Coupled with current Loop conditioning, current limit, so it can tolerate instantaneous load short-circuit, automatic protection, thereby enhancing the protection of over current and operational reliability

3) The current inverter can converter with force and the output current instantaneous value is controlled by current inverter, meeting the vector control requirements of AC motors. Converter capacitor charging and discharging currents from the DC circuit filter by the suppression reactor, unlike a greater inrush current in voltage inverter, the capacitor’s utilization is of high level.

4) Current inverter and the load motor form a whole, and the energy storage of the motor windings is also involved in the converter, and less dependent on the voltage inverter, so it has a certain load capacity.

4.2 Inverter SCR trigger drive circuit

The Inverter SCR trigger drive circuit as shown in Figure 4. Inverter trigger signal is controlled by P1 of 80C196, slip signal outputting through P1 via PWM regulation in the SCM through the photoelectric isolation to enlarge, to control the trigger of the inverter. The system uses P1.6 as control and uses P1.0~P1.5 to control six SCR inverters separately, so the trigger circuits is composed by six circuits above.

The principles of drive circuit of SCR trigger inverter are as follows: when the PWM from P1 is high signal after and gate, photoelectric isolation is not on, composite pipe in a state of on-saturated, the left side of the transformer forming circuit, and that the power of the signal amplifies (current enlarges); when the PWM from P1 is low signal after and gate, photoelectric isolation is on, composite pipe in a state of cut-off, and the left side of the transformer can not form circuit; thus, composite pipe equivalent to a switch, and its frequency relied on the frequency of the PWM, so the left side of the transformer form AC signals, to trigger SCR inverter after transformer decompression, half-wave rectifier and filter.

4.3 Current Loop conditioning circuits

After the vector calculation, outputting given current through D/A module, testing feedback current by the current testing circuit, sending them to the simulator of the P1 regulator to regulate, can eliminate static difference and improve the speed of regulation. The output of the analog devices can be regarded as the phase-shifting control signals of the rectifier trigger. Current Loop conditioning circuits as shown in figure 5.

4.4 The control of speed regulator

Speed regulator uses dual-mode control. Setting a value T N of speed error, when the system is more than the deviation (more than 10 percent of the rated frequency), as rough location of the start, using on-off control, at this time, speed regulator is in the state of amplitude limit, equivalent to speed loop being open-loop, so the current loop is in the state of the most constant current regulation. Thus, it can play the overload ability of motor fully and make the process of regulation fastest possibly. When the system enters into a state of small deviation, the system uses PI linear control instead of on-off control. As result, absorbing the benefits of non-linear and linear, the system meets stability and accuracy. The speed regulator flowchart is as shown in figure 6.

4.5 Flux Regulation

Slip frequency vector control system can be affected by the motor parameters, so that the actual flux

and the given flux appear a deviation. This system is of observation and feedback in the amplitude of the magnetic flux, regulating flux of the rotor, actual flux with the changes of given flux.

Flux regulator is also the same as the speed regulator, using PI regulator. The discrete formula is:

n i S i m m m t n e T n e k n i n i /)}()({)1()(+?+-= (1) Plus a reminder to forecast for correction:

)1()(2--=n i n i I m m m (2) In the formula, m k is proportional coefficient, n t is integral coefficient, s T is sampling period, m I is the actual output value.

)1()(--=?n e n e e n (3)

)()(2*

2n n e n Φ-Φ= (4)

When it is in the state of low frequency (f<5HZ), 1r can not be ignored, the phase difference between 1V and 1E enlarges, and the formula 1V ≈'1V no longer sets up. Through the Approximate rotor flux observer and the formula 1101112/)(L I r I V L I m T m m --==Φω to observe the flux amplitude, only open-loop control of flux, that is, to calculate from a given flux, and that is m m L I /*

2Φ=.In addition, in order to avoid disorders, or too weak and too strong magnetic, limiting the output m i in preparation for the software, making it in the ranges from 75% to 115% rated value.

5. Design Summary

This text researches the vector control variable speed control system of the asynchronous motor design. The SCM 80C196 and the external hardware complete the asynchronous motor speed vector control system design efficiently, and meet the timing control requirements. The vector control system design thinks clearly, has a good speed performance and simple structure. It has a wide range of use and a good prospect of development from the analysis and design of the speed asynchronous motor vector control systems.

The innovations:

(1) Complete the data acquisition of the speed and voltage, output the control signal and save the devices effectively with the help of the 80C196 microcontroller owned A/D, D/A.

(2) Because the Current Source Inverter uses forced converter, the maximum operating frequency is free from the power grid frequency. And it is with wide speed range.

(3) This system uses constant flux to keep the constant flux stably. Use stator physical voltage amplitude to approximate the observed flux amplitude value. The magnetic flux overcomes the impact of the parameters changes. This way is simple and effective.

Figure 1. Vector Control System Principle

Figure 2. Scheme of System

Figure 3. AC-DC-AC Current inverter Circuit

Figure 4. Inverter SCR trigger drive circuit

Figure 5. Current Loop conditioning circuits

Figure 6. Flux regulation flowchart

References

Hisao Kubota and Kouki Matsuse. (1994). Speed Sensorless Field-Oriented Control of Induction Motor with

Rotor Resistance Adaptation. IEEE Trans. Ind. Appl., vo1.30, No.5,pp.1219-1224.

Li, Da, Yang, Qingdong, and Liu, Quan.(2007). The DSP permanent magnet synchronous linear motor vector control system. Micro-computer information, 09-2:195-196

Liu, Wei. (2007). The application design about vector control of current loop control. Micro-computer information, 07-1: 68-70

Zhao, Tao, Jiang, WeiDong, Chen, Quan, and Ren, Tao. (2006). The research about the permanent magnet motor drive system bases on the dual-mode control. Power electronics technology, 40

(5) :32-34

异步电动机矢量控制调速系统设计

张民,丁兴平,郭振

中国,青岛,青岛科技大学自动化学院, 266033,

E-mail: z_m530@https://www.sodocs.net/doc/8f11954798.html,

摘 要:异步电动机的各种调速方式中,矢量控制的调速方式响应快、稳定性好、传动性能高、调速范围宽。针对异步电动机的调速需要,设计以80C196为控制器的矢量控制调速系统,并详细介绍了系统的硬件设计和软件设计。该系统有效地完成了异步电动机矢量控制调速系统设计,调速性能好、结构简单,具有很好的发展前景。

关键词:异步电动机,89C196,矢量控制

1.引言

交流异步电动机是一个高阶、多变量、非线性、强藕合的被控对象,采用参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解藕,实现了将交流电动机的控制过程等效为直流电动机的控制过程,使交流调速系统的动态性能得到显著的改善和提高,从而使交流调速最终取代直流调速成为可能。目前对调速特性要求较高的生产工艺已较多地采用矢量控制型变频调速装置。

2.矢量控制

以产生完全一致的旋转磁动势为准则,在三相坐标系下的定子交流电流A i ,B i ,C i 通过3S /2S 变换,可

以等效成两相静止坐标系下的交流电流s d i ,s

q i ,再通过按转子磁场定向的矢量旋转变换,可以等效成同步旋转坐标系下的直流电流e

d i ,

e q i 。当观察者站在铁心上与坐标系一起旋转时,交流机就变成了直流机。其中,交流异步电动机的转子总磁通r ψ,就变成了等效的直流电动机的磁通,e d 绕组相当于直流电机的励磁绕组,e d i 相当于励磁电流。e q 绕组相当于伪静止绕组,e

q i 相当于与转矩成正比的电枢电流。异步电动机经过如上的变换后就等效成了直流电动机。因而,可以模仿直流电机的控制方法,求得直流电机的控制量,再经过相应的坐标反变换,就能够控制异步电动机了。由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以,这样通过坐标变换实现的控制系统就叫作矢量控制系统,简称VC 系统。按照这种设想,可以构成直接控制r ψ和e q i 的矢量控制系统,如图1所示。图中给定和反馈信号经过类似于直流凋速系统所用的控制器,产生励磁电流的给定信号*e qs i 和电枢电流的给定信号*e ds i ,经过反旋转变换VR -1 得到*e qs i 和*

e ds i ,再经过2S /3S 变换得到*A i 、*B i 、*C i 。把这三个电流控制信号和由控制器得到的频率信号1ω加到电流控制的变频器上,即可输出异步电动机调速所需的三相变频电流。

3.设计内容及设计思想

本系统以单片机8OC196为控制器,由定子三相电流检测单元、键盘输入单元、LCD显示单元、模拟转速给定单元、定子三相电压检测单元、转速反馈单元、控制信号输出单元等部分组成。如图2所示,系统是以16位单片机80C196为控制核心,由一些硬件模拟电路组成异步电动机的矢量控制变频凋速系统。一方面,通过8OC196的A/D模块获得转速给定及测速反馈的速度信号,经过速度调节器获得饱和限幅的转矩给定,从而获得给定的转矩电流;利用函数发生器获得给定转子磁通,经磁通观测获得实际转子磁通,再经磁通调节获得定子电流给定励磁分量电流,然后经过K/P变换将给定的励磁电流和转矩电流合成,得到定子电流的幅值和相位,定子电流的幅值与电流互感器的检测电流相比较后通过电流调节器去控制定子电流的大小;另一方面,定子电流的频率是把计算得到的同步速度转换为控制逆变器的时间常数,用定时器定时,通过单片机上的P1口,送出触发字来完成逆变器的触发。

4.硬件电路及软件设计

本系统硬件电路主要由交一直一交电流型变频器电路、逆变晶闸管触发电路、整流晶闸管触发电路、速度给定与测速反馈电路、电流环调节电路、保护电路等典型电路组成;软件设计主要包括:速度调节器控制和磁通检测与调节两部分。

4.1交一直一交电流型变频器电路

系统的主回路采用图3所示的交一直一交变频器,由图可知它具有以下主要特点:

1)主回路结构简单,使用的元器件少。便于四象限运行,当再生发电制动时,主回路电流方向不变,只改变电压极性,整流器工作于逆变状态,逆变器工作于整流状态。可方便的进入逆变,进行再生制动,动态响应快。而电压型变频器必须另接一组逆变器才能进行再生制动,把电能回馈给电网。

2)由于中间采用的是电抗器,故具有限流作用,是恒流源。再加上本系统设有电流环调节、限流,所以可耐受负载瞬时短路,自动进行保护,从而提高了过流保护和运行可靠性。

3)此电流型逆变器带强迫换流,电流型逆变器所控制的是输出电流瞬时值,符合交流电动机矢量控制的要求。换流电容器的充放电电流由直流回路的滤波电抗器所抑制,不像电压型逆变器中有较大的浪涌电流,故换流电容器的利用率较高。

4)电流型逆变器与负载电动机形成一个整体,电动机绕组的储能也参与换流,故其换流能力依赖于负载电流,而较少依赖于逆变器电压,因此有一定的负载能力。

4.2逆变晶闸管触发驱动电路

逆变晶闸管触发驱动电路如图4所示。逆变触发信号由单片机8OC196的P1口控制,转差信号在单片机内经PWM调节后由P1 I:I输出,经光电隔离器隔离放大,去控制逆变晶闸管的触发端。本系统用P1.6作为控制端,用P1.O-P1.5作为另一端分别控制6个逆变晶闸管,故逆变晶闸管触发电路由6个如图4所示的电路组成。逆变晶闸管触发驱动电路原理如下:由P1口输出的PWM经与门后是高电平信号时,光电

隔离管不导通,复合管处于饱和导通状态,变压器左边形成回路,并且此信号经复合管功率放大(电流放大);当从P1口输出的PWM 经与门后为低电平时,光电隔离管导通,复合管基极电流几乎为零,复合管处于截止状态,变压器左边就不会形成回路;这样,复合管就相当于一个电子开关,这个开关的通断频率由PWM 的频率决定,从而使变压器左边形成交流信号,经变压器降压、半波整流、滤波后去触发逆变晶闸管。

4.3 电流环调节电路

由8OC196经过矢量计算,再由它的D /A 模块输出电流给定,由电流检测电路检测到反馈电流,同时把他们送人到模拟器件的Pl 调节器中进行调节,以消除静差并能提高调节速度。模拟器件的输出作为整流触发的移相控制信号。电流环调节电路如5图所示。

4.4 速度调节器控制

速度调节器采用双模控制。设定一个速度误差值NT ,当系统大于此偏差状态下(大于1O % 的额定频率),作为开始段粗定位,采用开关式的砰一砰控制,这时,转速调节器处于限幅状态,相当于转速环开环,使电流环处于最大恒值电流调节。因而,能够充分发挥电机的过载能力,使系统调节过程尽可能最快。当系统偏差已经进入很小的范围时,使系统由开关式的砰一砰控制,转换成PI 线性控制。这样,集中了非线性和线性控制的优点,使系统即满足稳定性又满足精确性。速度调节器功能流程图如图6所示。

4.5 磁通调节

采用转差型的矢量控制系统易受电机参数变化的影响,使实际磁通与给定磁通发生偏差。故本系统中对磁通幅值进行了观测和反馈,对转子的磁通进行调节,使实际磁通跟随给定磁通变化。磁通调节器也象速度调节器一样,使用PI 调节器。它的离散化公式为:

n i S i m m m t n e T n e k n i n i /)}()({)1()(+?+-= (1)

外加一个外催器进行预报校正:

)1()(2--=n i n i I m m m (2)

式中为m k 比例系数,n t 为积分系数,s T 为采样周期,m I 为实际输出值。

)1()(--=?n e n e e n (3)

)()(2*

2n n e n Φ-Φ= (4)

当在低频时(f<5HZ),由于1r 不可忽略,1V 和1E 相位相差增大,原近似地认为1V ≈'1V 不再成立。由近似的转子磁通观测器,由式子1101112/)(L I r I V L I m T m m --==Φω来观测磁通幅值,只能对磁通开环控制,即由给定磁通来计算,即m m L I /*

2Φ=。另外,为了使电机不至于失凋或过分弱磁及强磁,

i输出进行限幅,使之在额定值75%~115%内。

在软件编制中,对

m

5.设计总结

本文研究了异步电动机的矢量榨制变频调速系统的设计,采用了单片机80C196和外围硬件电路有效地完成了异步电动机矢量控制调速系统设汁,达到了适时地控制要求。从对异步电动机矢量控制凋速系统的分析和设计来看,矢量控制系统设汁思路清晰、调速性能好、结构简单,具有很广的用途和很好的发展前景。本文作者的的创新点:

1)利用80C196单片机本身的A/D、D/A分别完成转速和电压数据采集及对控制信号的输出,有效地节

省了元器件的使用。

2)电流型逆变器采用强迫换流,最高工作频率不受电网工频限制,调速范围宽。

3)系统的控制思想是采用恒磁通控制。以保持磁通的恒定,设计中采用定子物理量电压幅值来近似的观

测磁通幅值,以克服参数变化对磁通的影响。此方法实施简便有效。

图1 矢量控制系统原理结构图

图2 系统框图

图3 交一直一交电流型变频器电路

图4 逆变晶闸管触发驱动电路

图5 电流环调节电路

图6 磁通调节流程图

参考文献

[1]李大,杨庆东,刘泉基于DSP交流永磁同步直线电机矢量控制系统[J].微计算机信息,2007(09—2):195—196

[2]刘伟关于矢量控制电流环复合控制的应用设计[J]微计算机信息,2007(07—1):68—70

[3]赵涛,姜卫东,陈权,等.基于双模控制的永磁直流电机驱动系统的研究[J].电力电子技术,2006,40(5):32—34

[4]Hisao Kubota and Kouki Matsuse ”Speed Sensor less Field—Oriented Control of Induction Motor with Rotor ResistanceAdaptation lEEE Trans Ind Appl,vol 30.NO S, PP.1219—1224,1994.46-70

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

自动化系毕业设计外文翻译(中英文对照)

吉林化工学院信息与控制工程学院 毕业设计外文翻译 基于WINCC自动洗车监控系统设计 Design of Automatic Vehicle Cleaning Simulation System Based on WinCC 学生学号:08510234 学生姓名:李洪敏 专业班级:自动0904 指导教师:姜德龙 职称:教授 起止日期:2013.03.04~2013.03.19 吉林化工学院 Jilin Institute of Chemical Technology

一个成功的控制系统革新的策略 ——在升级的时候考虑这些指导方针 用最近的最新颖的系统升级一个主要的传统类型的控制系统是任何过程工业得到竞争力的关键。改良任何的系统主要目的是为了要有适当的连接性和互通性来增加灵活性和连续性的功能。 在这里提供的指导方针向指出了在一个如此富有挑战性的工程后面的主要问题。为了及时的和有成本效益的完成,要从概念上的计划上跟随它们。这些建议考虑了限制、假定和附加的研究来解决在整个工程中的一步步活动:设计、采购、构造和委任期间的全部预期问题。 为控制系统升级的需要。当升级一个传统的控制系统为一个集散控制系统(DCS)的时候,目标是: ●提供基于高度的分配机器智能的一个复杂的过程控制系统,供应有效的控 制和包罗万象的操作员接口。 ●保证那在低消耗下具有实时操作的新的集散控制系统(DCS)的高可靠性。 ●保证对工厂操作所必需的数据获取和程序数据设置的快速响应。有与任何 其他的最新颖的系统兼容的开放式结构。这允许过程控制和自动化系统整 合的最高程度,这些自动化系统有一个对各种厂商独立的并且公开分配的 接口的规格。 ●通过对工厂的关键区段/叁数的管理控制来提供工厂自动化。 ●可行性研究应该应该在升级现存的控制系统到集散控制系统(DCS)之前被 实行。所有的理由,无论是系统的、一些装置的或元件的,都要被证明。目 的包括: ●执行基于预先准备的关于对现存系统的恶化和荒废的报告的可行性研究。 ●检查现存的控制系统的线路板的寿命。它被通常估计从安装日期起是大约 15年。这可能造成依照每个控制/检测回路的临界一步步替换线路板的紧急 计划。 ●升级控制系统是艺术级的。通过有一个减少了硬件成份的高度可靠的系统, 丢弃陈旧的仪器,将会减少维护和操作的费用。 ●通过包括较多的厂商和征求最好的提议用最小的价格达成全部的需求。

控制系统基础论文中英文资料外文翻译文献

控制系统基础论文中英文资料外文翻译文献 文献翻译 原文: Numerical Control One of the most fundamental concepts in the area of advanced manufacturing technologies is numerical control (NC).Prior to the advent of NC, all machine tools were manual operated and controlled. Among the many limitations associated with manual control machine tools, perhaps none is more prominent than the limitation of operator skills. With manual control, the quality of the product is directly related to and limited to the skills of the operator . Numerical control represents the first major step away from human control of machine tools. Numerical control means the control of machine tools and other manufacturing systems though the use of prerecorded, written symbolic instructions. Rather than operating a machine tool, an NC technician writes a program that issues operational instructions to the machine tool, For a machine tool to be numerically controlled , it must be interfaced with a device for accepting and decoding the p2ogrammed instructions, known as a reader. Numerical control was developed to overcome the limitation of human operator , and it has done so . Numerical control machines are more accurate than manually operated machines , they can produce parts more uniformly , they are faster, and the long-run tooling costs are lower . The development of NC led to the development of several other innovations in manufacturing technology: 1.Electrical discharge machining. https://www.sodocs.net/doc/8f11954798.html,ser cutting. 3.Electron beam welding.

电气工程及其自动化专业光伏单相逆变器并网控制技术研究 开题报告 文献综述 外文翻译

摘要 随着“绿色环保”概念的提出,以解决电力紧张,环境污染等问题为目的的新能源利用方案得到了迅速的推广,这使得研究可再生能源回馈电网技术具有了十分重要的现实意义。如何可靠地、高质量地向电网输送功率是一个重要的问题,因此在可再生能源并网发电系统中起电能变换作用的逆变器成为了研究的一个热点。 本文以全桥逆变器为对象,详细论述了基于双电流环控制的逆变器并网系统的工作原理,推导了控制方程。内环通过控制LCL滤波中的电容电流,外环控制滤波后的网侧电流。大功率并网逆变器的开关频率相对较低,相对于传统的L 型或LC 型滤波器,并网逆变器采用LCL 型输出滤波器具有输出电流谐波小,滤波器体积小的优点,在此基础上本系统设计了LCL滤波器。本文分析比较了单相逆变器并网采用单闭环和双闭环两种控制策略下的并网电流,并对突加扰动情况下系统动态变化进行了分析。 在完成并网控制系统理论分析的基础上,本文设计并制作了基于TMS320LF2407DSP的数字化控制硬件实验系统,包括DSP 外围电路、模拟量采样及调理电路、隔离驱动电路、保护电路和辅助电源等,最后通过MATLAB仿真软件进行验证理论的可行性,实现功率因数为1的并网要求。 关键词并网逆变器;LCL滤波器;双电流环控制;DSP

Abstract With the concept of”Green and Environmental Protection”was proposed.All kinds of new energy exploitation program are in the rapid promotion,which is in order to solve the power shortage,pollution and other issues.It makes exploring renewable energy feedback the grid technology has a very important practical significance.How to deliver power into the grid reliably and quality is an important problem,the inverter mat Can transform the electrical energy in the system of the renewable resource to be fed into the grid is becoming one of the hot points in intemational research. Based on the bridge inverter the analysis of the working principle and the deduction of the control equation have been presented. The strategy integrates an outer loop grid current regulator with capacitor current regulation to stabilize the system. The current regulation is used for the outer grid current control loop. The frequency of switching is slower in the high power grid-connected inverter. Compared with tradition type L or type LC, output filter and output current’s THD of type LCL are all smaller.So on this basis, the system uses the LCL filter. This paper compares the net current of the single-phase inverter and net single loop and double loop under two control strategies, and the case of sudden disturbance of the dynamic change of the system. In complete control system on the basis of theoretical analysis, design and production of this article is based on TMS320LF2407DSP’s digital control hardware test system, including the DSP external circuit, analog sampling and conditioning circuit, isolation, driver circuit, protection circuit and auxiliary power, etc., via MATLAB software to validate the feasibility of the theory.Achieve power factor is 1 and network requirements. Keywords Grid-connected inverter;LCL filter; Double current loop control; DSP

太阳能光伏发电外文翻译

毕业设计(论文)外文资料翻译 系:电气工程学院 专业:电气工程及其自动化专业 姓名:刘哲瑄 外文出处:University of Technology, Mauritius University of Mauritius B SeetanahAJ Khadaroo 学号: 2011316020526 : 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 太阳能发电技术 ——光伏发电系统控制器 1 太阳能充放电控制器现状 1.1太阳能光伏发电 太阳能作为新能源有着巨大的优势,所以世界各国都在努力研发新技术进行获取比较成熟的是太阳能光伏发电技术。太阳能光伏发电现已成为新能源和可再生能源的重要组成部分,也被认为是当前世界最有发展前景的新能源技术。目前太阳能光伏发电装置已广泛应用于通讯、交通、电力等各个方面。 在进行太阳能光伏发电时,由于一般太阳能极板输出电压不稳定,不能直接将太阳能极板应用于负载,需要将太阳能转变为电能后存储到一定的储能设备中,如铅酸蓄电池。但只有当太阳能光伏发电系统工作过程中保持蓄电池没有过充电,也没有过放电,才能使蓄电池的使用寿命延长,效率也得以提高,因此必须对工作过程加以研究分析而予以控制,这种情况下太阳能充电控制器应运而生。 1.2充电控制器的作用及现状 太阳能充电控制器具备充电控制、过充保护、过放保护、防反接保护及短路保护等一系列功能,解决了这一难题,这样控制器在这个过程中起着枢纽作用,它控制太阳能极板对蓄电池的充电,加快蓄电池的充电速度,延长蓄电池的使用寿命。同时太阳能充放电控制器还控制蓄电池对负载的供电,保护蓄电池和负载电路,避免蓄电池发生过放现象,由此可见,控制器具有举足轻重的作用。 目前市场上有各种各样的太阳能控制器,但这些控制器主要问题对于蓄电池的保护不够充分,不合适的充放电方式容易导致蓄电池的损坏,使蓄电池的使用寿命降低。目前,控制器常用的蓄电池充电法包括三种;恒流充电法、阶段充电法和恒压充电法。但是这些方法由于充电方式单一加上控制策略不够完善,都存在一定的

集散控制系统

直接数字控制系统 现场总线控制系统 实时控制 传输速率 计算机控制系统 集散控制系统 现场总线 组态 串行传输 通信协议 监督计算机控制系统 分级控制系统 模拟通信 数字通信 并行传输 开放系统互连参考模型 数字滤波: 实时 三、单项选择题 1. TDC3000系统进行NCF组态时,每个系统可以定义()个单元。 (A)24 (B)100 (C)36 (D)64 2. TDC3000系统进行NCF组态时,每个系统可以定义()个区域。 (A)24 (B)10 (C)36 (D)64 3. TDC3000系统运行中,HM 如出现故障,可能会影响()。

(A) 控制功能运行 (B) 流程图操作 (C) 键盘按键操作 (D) 以上3种情况都有 4. TDC3000系统运行中,在HM 不可以进行如下操作()。 (A) 格式化卡盘 (B) 流程图文件复制 (C) 删除系统文件 (D) 删除用户文件 5. TDC3000系统中,HPMM 主要完成以下功能()。 (A) 控制处理和通讯 (B) 控制点运算 (C) 数据采集处理 (D) 逻辑控制 6. TDC3000系统中,每个HPM 可以有()卡笼箱。 (A) 8个 (B) 6个 (C) 3个 (D) 没有数量限制 7. TDC3000系统中,当IOP卡件(如AI卡)的状态指示灯闪烁时,表示此卡件存在()。 (A) 通信故障 (B) 现场输入/输出参数超量程报警(C) 软故障(D) 硬件故障 8. TDC3000系统中,若有一组AO卡为冗余配置,当其中一个AO卡状态指示灯灭时,其对应FTA 的输出应为()。 (A) 输出为100,对应现场为20mA (B) 正常通信 (C) 输出为设定的安全值 (D) 输出为0,对应现 场为4mA 9.TDC3000系统中,HLAI为高电平模拟量输入卡,不可以接收()信号。 (A) 24VDC信号(B) 4-20mA信号(C) 1-5V信号 (D) 0-100mv信号 10. TDC3000系统中,若有一组DI卡为冗余配置,则其对应的FTA应为()。 (A) 不冗余配置(B) 冗余配置(C) 由工艺重要性确定是否冗余配置 (D) 由控制工程师确定是否冗 余配置 11. TDC3000/TPS系统中,每个LCN系统可以定义()个AREA区域。 (A) 36 (B) 100 (C) 20 (D) 10 12.TDC3000/TPS系统中,操作员的操作权限是通过()的划分来限制的。 (A) UNIT单元(B) HPM硬件 (C) AREA区域 (D) 由工艺流程岗位 13. TDC3000/TPS系统中,每个AREA区域可以定义()个操作组。 (A) 390 (B) 400 (C) 450 (D) 20 14. TDC3000/TPS系统中,操作员在操作组画面上不可以进行下列()操作。

基于单片机的步进电机控制系统设计外文翻译

毕业设计(论文)外文资料翻译 学院:机械工程学院 专业:机械设计制造及其自动化 姓名: 学号:XXXXXXXXXX 外文出处:《Computational Intelligence and (用外文写)Design》 附件: 1.外文资料翻译译文;2.外文原文。 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 基于微型计算机的步进电机控制系统设计 孟天星余兰兰 山东理工大学电子与电气工程学院 山东省淄博市 摘要 本文详细地介绍了一种以AT89C51为核心的步进电机控制系统。该系统设计包括硬件设计、软件设计和电路设计。电路设计模块包括键盘输入模块、LED显示模块、发光二极管状态显示和报警模块。按键可以输入设定步进电机的启停、转速、转向,改变转速、转向等的状态参数。通过键盘输入的状态参数来控制步进电机的步进位置和步进速度进而驱动负载执行预订的工作。运用显示电路来显示步进电机的输入数据和运行状态。AT89C51单片机通过指令系统和编译程序来执行软件部分。通过反馈检测模块,该系统可以很好地完成上述功能。 关键词:步进电机,AT89C51单片机,驱动器,速度控制 1概述 步进电机因为具有较高的精度而被广泛地应用于运动控制系统,例如机器人、打印机、软盘驱动机、绘图仪、机械式阀体等等。过去传统的步进电机控制电路和驱动电路设计方法通常都极为复杂,由成本很高而且实用性很差的电器元件组成。结合微型计算机技术和软件编程技术的设计方法成功地避免了设计大量复杂的电路,降低了使用元件的成本,使步进电机的应用更广泛更灵活。本文步进电机控制系统是基于AT89C51单片机进行设计的,它具有电路简单、结构紧凑的特点,能进行加减速,转向和角度控制。它仅仅需要修改控制程序就可以对各种不同型号的步进电机进行控制而不需要改变硬件电路,所以它具有很广泛的应用领域。 2设计方案 该系统以AT89C51单片机为核心来控制步进电机。电路设计包括键盘输入电路、LED显示电路、发光二极管显示电路和报警电路,系统原理框图如图1所示。 At89c51单片机的P2口输出控制步进电机速度的时钟脉冲信号和控制步进电机运转方向的高低电平。通过定时程序和延时程序可以控制步进电机的速度和在某一

光伏电站 毕业设计 开题报告

毕业设计(论文)开题报告 题目新疆哈密东南山口 50Mwp光伏电站设计 专业电力 班级 学生 指导教师 2015 年

一、毕业设计(论文)课题来源、类型 课题来源:由于本人家乡新疆哈密地区光照条件十分优越,故拟在哈密东南山口地区建一个容量为50Mwp的并网光伏电站,经在网上查阅相应的资料后,已搜到相关设计标准和设计流程,可以作为一个研究课题。 类型:理论研究 二、选题的目的及意义 2.1太阳能的优势 太阳能作为一种新型的绿色可再生能源,与其他新能源相比利用最大,是最理想的可再生能源。因为它具有以下的特点: (1)数量巨大:每年到达地球表面能供人类利用的太阳辐射相当于一颗原子弹爆炸时所发出的能量; (2)时间长久:用之不竭,太阳按目前功率辐射能量其时间约可持续100亿年; (3)普照大地:取之不尽,不需要开采和运输; (4)清洁无污染:无任何物质的排放,既不会留下污染物,也不会向大气中排放废气。 2.2光伏发电的优势 太阳能的开发利用主要有光热利用、光伏利用、光化学利用等三种形式。目前,以太阳能电池技术为核心的太阳能光伏利用成为太阳能开发利用中最重要的应用领域,因为光伏发电具有以下明显优点:

(1)结构简单,体积小且轻。能独立供电的太阳能电池组件和方阵结构都比较简单,输出50W的晶体硅太阳能电池组件,体积约为450mm×985mm×45mm,质量为7kg。 (2)容易安装运输,建设周期短。只要将太阳能电池支撑并面向太阳即可发电,宜于制成小功率移动电源; (3)维护简单,使用方便。如遇风雨天,只需检查太阳电池表面是否被粘污、接线是否可靠、蓄电池电压是否正常即可。大型光伏电站使用计算机控制运行,运行费用很低。 (4)清洁、安全、无噪声。光伏发电本身不向外界排放废物,没有机械噪声,是一种理想的能源。 (5)可靠性高,寿命长,并且应用范围广。晶体硅太阳能电池的寿命可以长达20至35年,在光伏系统中,只要设计合理、选型适当,蓄电池的寿命可以达到10多年;太阳能几乎无处不在,太阳能电池在中国大部分范围内都能作为独立的电源。 2.3阳能开发潜力 在中国,太阳能资源较好的地区占国土面积2/3以上,主要集中在西部地区,尤其是西北和青藏高原,年平均日照在2200小时以上,中国陆地每年接收的太阳辐射量约合24000亿吨标准煤。太阳能发电虽受昼夜、晴雨、季节的影响,但可以分散的进行,所以它适于各家各户分别进行发电,而且可以连接到供电网络上,使得各个家庭在电力富裕时可将其卖给电力公司,不足时又可以从电力公司买入。分布式光伏发电并网系统将可能是今后住宅和办公用电的主要模式。太阳能发电有更加激动人心的计划。一

太阳能光伏发电系统(PVsyst运用)

扬州大学能源与动力工程学院本科生课程设计 题目:北京市发电系统设计 课程:太阳能光伏发电系统设计 专业:电气工程及其自动化 班级:电气0703 姓名:严小波 指导教师:夏扬 完成日期: 2011年3月11日

目录 1光伏软件Meteonorm和PVsyst的介绍---------------------------------------------3 1.1 Meteonorm--------------------------------------------------------------------------3 1.2 PVsyst-------------------------------------------------------------------------------4 2中国北京市光照辐射气象资料-------------------------------------------------------11 3独立光伏系统设计----------------------------------------------------------------------13 3.1负载计算(功率1kw,2kw,3kw,4kw,5kw)-----------------------------13 3.2蓄电池容量设计(电压:24V,48V)----------------------------------------13 3.3太阳能电池板容量设计,倾角设计--------------------------------------------13 3.4太阳能电池板安装间隔计算及作图。-----------------------------------------16 3.5逆变器选型--------------------------------------------------------------------------17 3.6控制器选型--------------------------------------------------------------------------17 3.7系统发电量预估--------------------------------------------------------------------18

集散控制系统参考文献

[1] MCGS用户指南. 北京昆仑通态自动化软件科技有限公司[M],2006. [2] MCGS参考手册. 北京昆仑通态自动化软件科技有限公司[M],2006. [3] 刘建民,陈建军.螺杆式空压机运行及维护技术问答[M].北京:中国电力出版社,2010. [4] 张培友.空压机智能监控节能改造研究[D].济南:山东科技大学硕士学位论文,2004. [5] 包建华,张兴奎. 基于MCGS组态软件的空气压缩机组监控软件开发[J], 2007 [6] 黄中原,刘健. 基于组态王的空压机远程监控系统研究[M].浙江大学,2006 [7] 吉永成. 用PLC对数台空气压缩机的控制[M]. 机械工业出版社,2002 [8] 活塞式压缩机产品介绍,山东生建集团 [9] 螺杆式压缩机产品介绍,北京复盛机械有限公司 [10] 苏娟,叶佳卓,杨贵.一种基于单片机的空气压缩机监控系统[[J] .测控技术与设备,2003, 5(29): 16-17 [11] 王立坤.基于PLC的空压机试验台的研究与开发[D].北京交通大学硕士学位论文,2008 [12] 邢子文.螺杆压缩机—理论、设计及应用「M].北京:机械工业出版社,2000: 1-5 [13] 王迪生,杨乐之.活塞式压缩机结构[M].北京:机械工业出版社,1988: 10-15 [14] 张芳玺,彭学院,张成兵.基于PLC的机车空压机性能测控系统研制[J].压缩机技术,2005年第6期,Pag. l -3 [15] 万毅.矿山空压机站智能监控系统的设计与实现[J].南京理工大学硕士论文,2007 [16]徐少明,金光熹.空气压缩机实用技术.北京:机械工业出版社,1994 [17]廖常初. FX 系统PLC 编程及应用.北京: 机械工业出版社,2007. [18]王兆义,杨新志.小型可编程控制器实用技术. 2 版.北京: 机械工 业出版社,2006. [19] 曹辉《可编程序控制器系统原理及应用》电子工业出版社,2003 [20] 路林吉.江龙康等《可编程序控制器原理及应用》清华大学出版社,2002

速度控制系统设计外文翻译

译文 流体传动及控制技术已经成为工业自动化的重要技术,是机电一体化技术的核心组成之一。而电液比例控制是该门技术中最具生命力的一个分支。比例元件对介质清洁度要求不高,价廉,所提供的静、动态响应能够满足大部分工业领域的使用要求,在某些方面已经毫不逊色于伺服阀。比例控制技术具有广阔的工业应用前景。但目前在实际工程应用中使用电液比例阀构建闭环控制系统的还不多,其设计理论不够完善,有待进一步的探索,因此,对这种比例闭环控制系统的研究有重要的理论价值和实践意义。本论文以铜电解自动生产线中的主要设备——铣耳机作为研究对象,在分析铣耳机组各构成部件的基础上,首先重点分析了铣耳机的关键零件——铣刀的几何参数、结构及切削性能,并进行了实验。用电液比例方向节流阀、减压阀、直流直线测速传感器等元件设计了电液比例闭环速度控制系统,对铣耳机纵向进给装置的速度进行控制。论文对多个液压阀的复合作用作了理论上的深入分析,着重建立了带压差补偿型的电液比例闭环速度控制系统的数学模型,利用计算机工程软件,研究分析了系统及各个组成环节的静、动态性能,设计了合理的校正器,使设计系统性能更好地满足实际生产需要 水池拖车是做船舶性能试验的基本设备,其作用是拖曳船模或其他模型在试验水池中作匀速运动,以测量速度稳定后的船舶性能相关参数,达到预报和验证船型设计优劣的目的。由于拖车稳速精度直接影响到模型运动速度和试验结果的精度,因而必须配有高精度和抗扰性能良好的车速控制系统,以保证拖车运动的稳速精度。本文完成了对试验水池拖车全数字直流调速控制系统的设计和实现。本文对试验水池拖车工作原理进行了详细的介绍和分析,结合该控制系统性能指标要求,确定采用四台直流电机作为四台车轮的驱动电机。设计了电流环、转速环双闭环的直流调速控制方案,并且采用转矩主从控制模式有效的解决了拖车上四台直流驱动电机理论上的速度同步和负载平衡等问题。由于拖车要经常在轨道上做反复运动,拖动系统必须要采用可逆调速系统,论文中重点研究了逻辑无环流可逆调速系统。大型直流电机调速系统一般采用晶闸管整流技术来实现,本文给出了晶闸管整流装置和直流电机的数学模型,根据此模型分别完成了电流坏和转速环的设计和分析验证。针对该系统中的非线性、时变性和外界扰动等因素,本文将模糊控制和PI控制相结合,设计了模糊自整定PI控制器,并给出了模糊控制的查询表。本文在系统基本构成及工程实现中,介绍了西门子公司生产的SIMOREGDC Master 6RA70全数字直流调速装置,并设计了该调速装置的启动操作步骤及参数设置。完成了该系统的远程监控功能设计,大大方便和简化了对试验水池拖车的控制。对全数字直流调速控制系统进行了EMC设计,提高了系统的抗干扰能力。本文最后通过数字仿真得到了该系统在常规PI控制器和模糊自整定PI控制器下的控制效果,并给出了系统在现场调试运行时的试验结果波形。经过一段时间的试运行工作证明该系统工作良好,达到了预期的设计目的。 提升装置在工业中应用极为普遍,其动力机构多采用电液比例阀或电液伺服阀控制液压马达或液压缸,以阀控马达或阀控缸来实现上升、下降以及速度控制。电液比例控制和电液伺服控制投资成本较高,维护要求高,且提升过程中存在速度误差及抖动现象,影响了正常生产。为满足生产要求,提高生产效率,需要研究一种新的控制方法来解决这些不足。随着科学技术的飞速发展,计算机技术在液压领域中的应用促进了电液数字控制技术的产生和发展,也使液压元件的数字化成为液压技术发展的必然趋势。本文以铅电解残阳极洗涤生产线中的提升装置为研究

太阳能光伏系统蓄电池充电中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文对照外文翻译 Design of a Lead-Acid Battery Charging and Protecting IC in Photovoltaic System 1.Introduction Solar energy as an inexhaustible, inexhaustible source of energy more and more attention. Solar power has become popular in many countries and regions, solar lighting has also been put into use in many cities in China. As a key part of the solar lighting, battery charging and protection is particularly important. Sealed maintenance-free lead-acid battery has a sealed, leak-free, pollution-free, maintenance-free, low-cost, reliable power supply during the entire life of the battery voltage is stable and no maintenance, the need for uninterrupted for the various types

of has wide application in power electronic equipment, and portable instrumentation. Appropriate float voltage, in normal use (to prevent over-discharge, overcharge, over-current), maintenance-free lead-acid battery float life of up to 12 ~ 16 years float voltage deviation of 5% shorten the life of 1/2. Thus, the charge has a major impact on this type of battery life. Photovoltaic, battery does not need regular maintenance, the correct charge and reasonable protection, can effectively extend battery life. Charging and protection IC is the separation of the occupied area and the peripheral circuit complexity. Currently, the market has not yet real, charged with the protection function is integrated on a single chip. For this problem, design a set of battery charging and protection functions in one IC is very necessary. 2.System design and considerations The system mainly includes two parts: the battery charger module and the protection module. Of great significance for the battery as standby power use of the occasion, It can ensure that the external power supply to the battery-powered, but also in the battery overcharge, over-current and an external power supply is disconnected the battery is to put the state to provide protection, the charge and protection rolled into one to make the circuit to simplify and reduce valuable product waste of resources. Figure 1 is a specific application of this Ic in the photovoltaic power generation system, but also the source of this design. Figure1 Photovoltaic circuit system block diagram Maintenance-free lead-acid battery life is usually the cycle life and float life factors affecting the life of the battery charge rate, discharge rate, and float voltage. Some manufacturers said that if the overcharge protection circuit, the charging rate can be achieved even more than 2C (C is the rated capacity of the battery), battery manufacturers recommend charging rate of C/20 ~ C/3. Battery voltage and temperature, the temperature is increased by 1 °C, single cell battery voltage drops 4 mV , negative temperature coefficient of -4 mV / ° C means that the battery float voltage. Ordinary charger for the best working condition at 25 °C; charge less than the ambient temperature of 0 °C; at 45 °C may shorten the battery life due to severe overcharge. To make the battery to extend the working life, have a certain solar battery array Charge controller controller Discharge controller DC load accumulator

太阳能光伏电池论文中英文资料对照外文翻译文献综述

光伏系统中蓄电池的充电保护IC电路设计 1.引言 太阳能作为一种取之不尽、用之不竭的能源越来越受到重视。太阳能发电已经在很多国家和地区开始普及,太阳能照明也已经在我国很多城市开始投入使用。作为太阳能照明的一个关键部分,蓄电池的充电以及保护显得尤为重要。由于密封免维护铅酸蓄电池具有密封好、无泄漏、无污染、免维护、价格低廉、供电可靠,在电池的整个寿命期间电压稳定且不需要维护等优点,所以在各类需要不间断供电的电子设备和便携式仪器仪表中有着广泛的应用。采用适当的浮充电压,在正常使用(防止过放、过充、过流)时,免维护铅酸蓄电池的浮充寿命可达12~16年,如果浮充电压偏差5%则使用寿命缩短1/2。由此可见,充电方式对这类电池的使用寿命有着重大的影响。由于在光伏发电中,蓄电池无需经常维护,因此采用正确的充电方式并采用合理的保护方式,能有效延长蓄电池的使用寿命。传统的充电和保护IC是分立的,占用而积大并且外围电路复杂。目前,市场上还没有真正的将充电与保护功能集成于单一芯片。针对这个问题,设计一种集蓄电池充电和保护功能于一身的IC是十分必要的。 2.系统设计与考虑 系统主要包括两大部分:蓄电池充电模块和保护模块。这对于将蓄电池作为备用电源使用的场合具有重要意义,它既可以保证外部电源给蓄电池供电,又可以在蓄电池过充、过流以及外部电源断开蓄电池处于过放状态时提供保护,将充电和保护功能集于一身使得电路简化,并且减少宝贵的而积资源浪费。图1是此Ic在光伏发电系统中的具体应用,也是此设计的来源。 免维护铅酸蓄电池的寿命通常为循环寿命和浮充寿命,影响蓄电池寿命的因

素有充电速率、放电速率和浮充电压。某些厂家称如果有过充保护电路,充电率可以达到甚至超过2C(C为蓄电池的额定容量),但是电池厂商推荐的充电率是C/20~C/3。电池的电压与温度有关,温度每升高1℃,单格电池电压下降4 mV,也就是说电池的浮充电压有负的温度系数-4 mV/℃。普通充电器在25℃处为最佳工作状态;在环境温度为0℃时充电不足;在45℃时可能因严重过充电缩短电池的使用寿命。要使得蓄电池延长工作寿命,对蓄电池的工作状态要有一定的了解和分析,从而实现对蓄电池进行保护的目的。蓄电池有四种工作状态:通常状态、过电流状态、过充电状态、过放电状态。但是由于不同的过放电电流对蓄电池的容量和寿命所产生的影响不尽相同,所以对蓄电池的过放电电流检测也要分别对待。当电池处于过充电状态的时间较长,则会严重降低电池的容量,缩短电池的寿命。当电池处于过放电状态的时间超过规定时间,则电池由于电池电压过低可能无法再充电使用,从而使得电池寿命降低。 根据以上所述,充电方式对免维护铅酸蓄电池的寿命有很大影响,同时为了使电池始终处于良好的工作状态,蓄电池保护电路必须能够对电池的非正常工作状态进行检测,并作出动作以使电池能够从不正常的工作状态回到通常工作状态,从而实现对电池的保护。 3.单元模块设计 3.1充电模块 芯片的充电模块框图如图2所示。该电路包括限流比较器、电流取样比较器、基准电压源、欠压检测电路、电压取样电路和逻辑控制电路。 该模块内含有独立的限流放大器和电压控制电路,它可以控制芯片外驱动器,驱动器提供的输出电流为20~30 mA,可直接驱动外部串联的调整管,从

太阳能光伏发电系统设计思路

太阳能光伏发电设计思路

摘要:简要介绍太阳能光伏发电系统设计思路和组成光伏系统器件选型方法,分析和研究太阳能光伏发电的热点和核心技术。 前言:当今世界,能源是促进经济发达与社会进步的原动力。目前所使用之主要能源为化石能源,然而其蕴藏量有限,且在开发过程造成空气污染、环境破坏,积极开发低污染及低危险性的新能源乃为迫切需要。 太阳能发电是指太阳能光伏发电,光伏发电是利用半导光生伏特效应将光能直接转变为电能的一种发电技术。太能是一种非常理想的干净、安全且随处可得的清洁能源,因此各国均不断地研发各种相关技术,藉以提高系统发电效率并降低发电成本,推广普及使用太阳能。

第一部分 太阳能电池发电系统原理 太阳能电池发电系统(又称光伏发电系统),从大类上分为 独立(离网)和并网光伏发电系统两大类。 目前应用比较广泛的光伏发电系统,主要是在偏远地区可以 作为独立的电源使用,也可以与风力发电机或柴油机等组成混合发电系统,在城市太阳能光伏建筑集成并网发电得到了快速发展,光伏发电与建筑一体化是太阳能光伏与建筑的完美结合,属于分布式发电的一种。它能够减少电网用电,大大减轻公共电网的压力,就近向电网输送电力。 1.1独立的电源使用(光伏离网发电系统) 太阳能光伏组件组成太阳电池方阵,在充足情况下,一方面给负载供电(直流负载,若交流负载需要逆变器),另一方面给蓄电池组充电,晚上依靠蓄电池组放电供负载使用(如下图示意)。 图1-1直流负载光伏发电示意图 在方阵工作时,阻塞二极管防止向电池方阵反充电,止逆二极管两端有一定的电压降,对硅二极管通常为0.60.8V ;肖特基或锗 太阳电池方阵 控制器 负载 阻塞二极管 蓄电池

相关主题