搜档网
当前位置:搜档网 › 道路桥梁计算书

道路桥梁计算书

道路桥梁计算书
道路桥梁计算书

设计总说明书

一、概述

(一)、任务依据

根据合肥学院工程管理专业道路与桥梁工程方向《道路与桥梁工程概论任务书》。

(二)、设计标准

1、根据设计任务书要求,该设计路线为微丘区(是指起伏不大的丘陵,地面自然坡度在20?以下,相对高差在100以内,设线一般不受地形限制)三级公路。设计速度为40km/h,路基为双幅双车道,宽度8.5m,车道宽度3.5m。起终设计高程均为地面高程。

2、设计执行的部颁标准、规范有:

《公路工程技术标准》JTGB01-2003

《公路路线设计规范》JTJ011-94

《公路路基设计规范》JTJ013-95

《公路沥青路面设计规范》JTJ014-97

《公路水泥混凝土路面设计规范》JTG D40-2002 (三)、路线起讫点

本路段起点A:K0+90.00为所给地形图坐标(6308.6832,6646.0742,205.3),终点B:K0+1490为所给地形图坐标(7137.7297,7742.4193,215.4),全长1.4公里。

(四)、沿线自然地理概况

该工程整个地形、地貌特征平坦,地形起伏不大,最高海拔高为271.8米,最低海拔高为205.3米,总体高差在66.5米左右。

(五)、沿线筑路材料等建设条件

沿线地方材料有:碎石、砾石、砂、石灰、粉煤灰等。其他材料如沥青、水

泥、矿粉需到外地采购。

二、路线

本路段按三级公路标准测设,设计车速40KM/h,测设中在满足《公路路线设计规范》及在不增加工程造价的前提下,充分考虑了平、纵、横三方面的优化组合设计,力求平面线型流畅,纵坡均衡,横断面合理,以达到视觉和心理上的舒展。

路线测设里程全长1.4公里,主要技术指标采用情况如下:

平曲线个数(个) 3

平均每公里交点个数(个) 1.5

平曲线最小半径(米/个) 200/1

平曲线占路线长(%) 52

直线最大长(米) 467.439

变坡点个数(个)9

平均每公里变坡次数(次) 2.3

最大纵坡(%) 4.15

最短坡长(米/处) 200

凸型竖曲线最小半径(米/处) 3000

凹型竖曲线最小半径(米/处) 2000

三、横断面设计

1、路基横断面布置:

0.75+3.75+3.75+0.75=8.5米

式中数字自左至右分别为:左路肩、行车道、行车道、右路肩。

路面横坡设置(不含超高路段):路肩为3%,行车道为2%。

2、加宽、超高方式

全线加宽采用比例过度,超高方式为绕内边线旋转。路基土石方计算控制标高为土基标高,不含路面厚度。

3、路基施工注意事项:

路基施工应严格按规范进行,对能作为填方用土的挖方应尽量移挖作填,尽量减少取、弃土场地。

取、弃土场地应选择荒山、山地处,不得随意乱弃,堵塞河道,且要做好防护,绿化工作,以免造成水土流失。

土基填筑前应进行清表、清淤,耕地填前夯实工作,做好填前排水。

(二)排水

1、排水:挖方路段路面雨水通过路肩进入边沟,填方

路段路面雨水经坡面

散排至排水沟。

四、本次设计项目

1、确定道路技术等级和技术标准

2、纸上定线

3、平面定线设计

4、路线纵断面设计

5、路线横断面设计

第1章设计说明

1.1工程概况

该设计路线为微丘区(是指起伏不大的丘陵,地面自然坡度在20?以下,相对高差在100以内,设线一般不受地形限制)三级公路。设计速度为40km/h,路基为双幅双车道,宽度8.5m,车道宽度3.5m。起终设计高程均为地面高程。

1.2公路技术等级及技术标准

1.2.1公路技术等级

设计路段公路等级为三级,适应于将各种车辆折合成小客车的年平均日

交通量为2000~6000辆。

1.2.2技术标准

(1)、控制要素:

<1>、服务水平:三级

<2>、设计车速:40km/小时

(2)、平面设计技术指标:

<1>、圆曲线最小半径:

①、一般值:100m

②、极限值:60m

③、不设超高最小半径:600m

④、最大半径:10000m

<2>、缓和曲线最小长度:35m

<3>、平曲线间插直线长度:同向平曲线间插直线长度应大于6V(240m)为宜,同向平曲线间插直线长度应大于2V(80m)为宜。

<4>、平曲线最小长度:70m

(3)、纵断面设计技术指标:

<1>、最大纵坡度:7%

<2>、最小坡长:120m

<3>、不同纵坡度最大坡长:

纵坡坡度与最大坡长表1-1

纵坡坡度

(%) 最大坡长

(m)

3 —

4 1100

5 900

6 700

7 500

注:当纵坡坡度小于或等于3%时,最大坡长没有限制。

<4>、竖曲线最小半径和最小长度:

竖曲线最小半径和最小长度表1-2

凸形竖曲线半径(m)一般值700

极限值450 凹形竖曲线半径(m) 一般值700

极限值450

竖曲线最小长度(m) 35

<5>、纵向坡度与横向坡度的合成坡度最大值:10% (4)、路基横断面技术指标:

<1>、行车道宽度:2×3.5m

<2>、土路肩宽度:2×0.75m

<3>、路基总宽度:8.5m

<4>、视距保证:

①、停车视距:40m

②、会车视距:80m

③、超车视距:200m

<5>、双车道路面加宽值:

设计路段采用第3类加宽值,不同圆曲线半径、下的路基全加宽值如下表:

圆曲线半径

(m) 加宽值

(m)

圆曲线半径

(m)

加宽值(m)

250~200 0.8 100~70 2.0 200~150 1.0 70~50 2.5 150~100 1.5

<6>、路拱及土路肩横坡度:路拱横坡度取用2%,土

路肩横坡度取用3%。

<7>、不同圆曲线半径的超高值:

圆曲线半径与超高表1-3

圆曲线半径(m) 超高值(%)

600~390 1

390~270 2

270~200 3

200~150 4

150~120 5

120~90 6

90~60 7

注:当圆曲线半径大于600m时,可不设超高。

第2章平面选线及定线

2.1平面选线

2.1.1平面选线的原则

(1)、在道路设计的各个阶段,应运用各种先进手段对路线方案作深入、细致的研究,在多方案论证、比选的基础上,选定最优路线方案。

(2)、路线设计应在保证行车安全、舒适、迅速的前提下,做到工程量小、造价低、运营费用省、效益好,并有利于施

工和养护。在工程量增加不大时,应尽可能的采用较高的技术指标。不轻易采用极限指标,也不应为了采用较高指标而使得工程量过分增大。

(3)、选线应能满足国家或地方建设对路线使用任务、性质的要求,保证路线能够加强居民区特别是经济较发达地区的之间的联系,同时也应注意同农田等基本建设相配合,尽量少占用农田,避免可多的拆迁工程。

(4)、在选线过程中,对严重不良地质路段,如滑坡、崩坍、泥石流、岩溶、泥沼及排水不良等特殊地区,应慎重对待,一般情况下应设法绕避,如必须穿过时,应选择合适位置,缩小穿越范围,并采取必要的工程措施。

2.1.2选线过程

(1)、控制点的选定

(2)、加密控制点

(3)、确定路线走向:

在前面各项工作的基础上,顺着等高线,避免初定的路线尽量少的切割等高线,把各个控制点连结起来,定出路线的走向。考虑到路线在各控制点间的不同连结方式,初步定出甲、乙、两条路线方案。

(4)、方案比选:

分别对甲、乙两条路线方案作进一步的研究,得出各个方案的主要技经济指标,如表2-1所示:

各路线方案主要技术经济指标比较表表2-1

指标单位方案甲方案乙

路线总

km 623 715

通过村

个0 0

回头弯个0 0

线形好中

土石方

中较多

挡土墙少中

总造价较低较高

比较结

推荐

通过上表的比较发现,乙方案的各项技术经济指标都较平均,造价较高,还难以满足平曲线间插直线长度要求。相比之下,甲方案的综合指标比乙都好,所以推荐甲方案。

2.2纸上定线

设计路段为微丘区三级公路,地形较复杂,横坡陡峻,路线平、纵,横面所受的限制较严,定线时应尽可能的克服高程。

2.2.1 定导向线:

(1)、首先在1:2000的地形图上,仔细研究路线选线阶段选定的主要控制点间的地形、地质情况,选择有利地形,拟定路线走法。

(2)、地形图上的等高线间距为10m ,选用5.0%的平均自然坡度,按式2-1算出等高线间平距: h

a i =均

(式2-1)

由式2-1得: 10

200 m 0.05

a =

= 使两脚规的开度等于a (按图上的比例尺为10cm ),从路线起点A 开始,拟定的路线走法在等高线上依次截取各点,直到最后一点的位置和标高按近路线终点B 为止。

(3)、连接各点,分析该折线在利用地形和避让地物,以及工程艰巨的情况,从而选出应穿应避让的特征点为中间控制点,并重新连接各点。 2.2.2 确定路线位置

第3章 线路平面设计

3.1 确定平面设计所需数据 3.1.1 确定交点坐标

(1)、根据地形图上所定出的路线位置,通过地形上的等高线推

算各交点的坐标。

(2)、按上述方法推算出的各交点坐标如表3-1。

交点坐标表表3-1

交点X(N)Y(E)

起点6308.68

32

6646.07

42

JD1 6462.16

40

6775.34

79

JD2 6560.66

06

6949.41

23

JD3 6606.76

06

7144.02

68

终点7137.72

97

7742.41

93

3.1.2初拟平曲线半径及缓和曲线长

纸上定线时所初定的各交点处平曲线半径及缓和曲线长如表3-2。

半径及缓和曲线长表3-2

交点半径(m) 缓和曲线长(m)

JD1 300 25 JD2 300 25 JD3 300 25

3.2 平面设计计算

3.2.1 平面设计计算有关内容及计算公式 (1)、交点间距、坐标方位角及转角值的计算:

设起点坐标为

)

,(000Y X JD ,第

i

个交点坐标为

n i Y X JD i i i , , 3 , 2 , 1 , ),( =,则:

1122 : (3-2)

: ()() (3-3)i i i i X X X Y Y Y L X Y --?=-?

??=-?=?+?坐标增量式交点间距式象限: arctg

(3-4): 0 , 0 : 0 , 0 : 180 Y

X

X Y fw X Y fw θθ

θ?=??>?>=?=-角式计算方位角当时当时1 (3-5)

0 , 0 : 180 0 , 0 : 360 : i i i X Y fw X Y fw A A θθα-??

?

???<=-?

=-式当时当时转角 (3-6) "" "" i i αα+-式当为时路线右偏,当为时路线左偏

(2)、曲线要素计算:

2243

(m) (3-7)2240 (m) (3-8)

242688() tg

(m) (3-9)2

s s

s s

s L L q R L L p R R T R p q Ly R L α

α=

-=-=++=-式式式 (3-10)2 (3-11)() sec

(3-12)2

2 s L Ly L E R p R J T L α

=+=+-=-式式式 (3-13)

式 3.2.2 平面设计计算过程 一、起终点及交点坐标:

1: 6308.6832 , 6646.0742 2: 6462.1640 , 6775.3479 3: 6560.6606 , 6949.4123 4: 6606.7606 , 7144.0268 5: 7137.7297 , 7742.4193

二、半径及缓和曲线长:

2: 300 25.000

3: 300 25.000

4: 300 25.000

三、方位角和交点间距:

fw( 1- 2) : 40.1067

L( 1- 2) : 200

fw( 2- 3) : 60.4961

L( 2- 3) : 200

fw( 3- 4) : 76.6735

L( 3- 4) : 200

fw( 4- 5) : 48.4165

L( 4- 5) : 800

四、转角:

由公式(3-6)得

α2右=θ2-θ1=20°22′56″

α3右=θ3-θ2=16°10′44″

α4左=θ3-θ4=28°15′42″

五、曲线要素:

对于JD1处的曲线

取R=300m>R一般min=100m

L S=40m>35m

α2右=20°22′56″

由公式(3-7)-(3-13)得

q1= 40/2-403/(240*3002)=20.00m

p1= 402/(24*300)-404/(2384*3002)=0.22m

β1=28.6479*40/300=3°49′10.99″<α2左/2

T1=(300+0.22)tg(20?22'56″/2)+20.00=73.99 m L1=(20?22′56″-2*3°49′10.99″)*∏*300/180+2*40=146.74m>70m

E1=(300+0.22)sec(20°22′56″/2)-300=5.04m

J1=2* T1- L1=2*73.99-146.74=1.24m

则圆曲线长度L1= L1-2* L S=66.74m>35m

满足要求,初步可以按此方案设定曲线。

同理,接下来的JD2、JD3、JD4处的曲线元素可以如下设置(考虑反向曲线间直线的长度要大于80m,同向的要大于240m)

R2=300m L S2=40m

q2=20.00m p2=0.22m

β2=3°49′10.99″ T2=62.67m

L2=124.69m E2=3.24m

J2=0.65m

R3=300m L S3=40m

q3=20.00m p3=0.22m

β3=3°49′10.99″ T3=95.57m

L3=187.91m E3=7.85m

J3=3.23m

六、平曲线间插直线长度:

L( 2- 3) : 124.69>120

L( 3- 4) : 187.91>120 满足曲线最小插直线段要求

七交点桩号:

由公式(3-3)得

起点与JD2之间的距离为:

D1=200m

D2=200m

D3=200m

D4=800m

起点桩号: K0+90.00

jd( 1) : K0+290

jd( 2) : K0+490

jd( 3) : K0+690

八、各曲线要素点桩号:

起点桩号:K0+90.00

对于JD2处的曲线:

JD2:K0+90.00+200= K0+290

ZH2=JD2-T1=K0+216.01

HY2=ZH2+L S1=K0+256.01

QZ2=ZH2+L1/2=K0+289.38

HZ2=ZH2+L1=K0+362.75

YH2=HZ2- L S1=K0+322.75

校核:JD2+ T1=K0+290+73.99=K0+363.99

HZ2+ J1= K0+362.75+1.24=K0+363.99

两者相等,故以上桩号即为所求。

同理,计算其它曲线处桩号可得以下数据:

JD3=HZ2+S=K0+362.75+200-73.99=K0+488.76

ZH3=K0+426.09 HY3=K0+466.09

QZ3=K0+488.435 HZ3=K0+550.78

YH3=KO+510.78

JD4=K0+688.11

ZH4=K0+592.54 HY4=K0+632.54

QZ4=K0+686.495 HZ4=K0+780.45

YH4=K0+740.45

九、逐桩坐标表:

桩号X坐标Y坐标方向角

JD1 6462.16406775.3479 α2右=20°22′56″

JD26560.66066949.4123α3右=16°10′44″

JD36606.76067144.0268α4左=28°15′42″

3.3 平面设计成果

3.3.1绘制平面图

根据《直线、曲线及转角表》和《逐桩坐标表》在地形

图绘制线路平面图,具体见附表一。

第4章路基纵断面设计

4.1竖曲线计算

根据平纵组合原则以及纵断面设计有各项工程技术标准,按公式ω/L

R=确定各变坡点处所取用的竖曲线半径,以及定坡时在CAD上算出的各直线段坡度和桩号、坡长如表4-1所示:

变坡点数据表表4-1

变坡点竖曲线半

径(m)

坡度(%) 桩号坡长(m)

起点/ / K0+90.00 /

变坡点1 700 0.286 K0+290.0

200

变坡点2 700 0.286 K0+490.0

200

边坡点3 700 0.286 K0+690.0

200

终点/ / K0+1490.

00

/

4.2竖曲线要素计算

竖曲线要素设计公式为:

21 (4-1)

i i

ω=-式

"+""-"ωω式中:当为时表示凹形竖曲线,当为时表示凸形竖曲线

: (4-2): (42L R L

T ω==

竖曲线长度式竖曲线切线长式2

-3): (4-4)

2T E R =竖曲线外距式 根据前面确定的竖曲线半径及坡度值,计算各变坡点处的竖曲线要素如下:

(1)、变坡点1:(m 1000=R )

m

170.01000

2415.182m 415.182

m

83.3603683.01000)( 03683.0065.002817.02

212=?====

=?==-=-=-=R T E L

T R L i i ωω凸形

(2)、变坡点2:(R=750m)

m

90.0750

281.362m 81.362

m

628.7309817.0750)( 09817.002817.007.02

212=?====

=?===--=-=R T E L

T R L i i ωω凸形

4.3纵断面设计成果表

由前面的计算即可确定出各直线段坡线上所对应的中桩标高,再由公式R x h 2/2=算出竖曲线内各点的竖距,凸形竖曲线的曲线上中桩标高即为对应直线坡线标高减去竖距h ,凹形竖曲线的曲线上中桩标高即为对应直线坡线标高加上竖距h 。由此即可确定纵断面线上各中桩的标高,也就可以算出各中桩的填、挖高度。

某桥梁桩基础设计计算

第一章桩基础设计 一、设计资料 1、地址及水文 河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。 2、土质指标 表一、土质指标 3、桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.0m 。拟定采用四根桩,设计直径 1.0m 。桩身混凝土用20号,其受压弹性模量h E =2.6×104MPa 4、荷载情况 上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时: 5659.4N KN =∑、 298.8H KN =∑、 3847.7M KN m =∑ 恒载及二孔活载时: 6498.2N KN =∑。桩(直径 1.0m )自重每延米为: 2 1.01511.78/4 q KN m π?= ?= 故,作用在承台底面中心的荷载力为:

5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN =+???===+?=∑∑∑ 恒载及二孔活载时: 6498.2(7.0 4.5 2.025)8073.4N KN =+???=∑ 桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度 为3h ,则:002221 []{[](3)}2 h i i N p U l m A k h τλσγ==++-∑ 当两跨活载时: 8073.213.311.7811.7842 h N h =+?+? 计算[P]时取以下数据: 桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长 2 22 02021211.15 3.6,0.485,0.7 4 0.9, 6.0,[]550,12/40,120, a a a u m A m m K Kp KN m Kp Kp ππλσγττ?=?== ======== 1 [] 3.16[2.740( 2.7)120]0.700.90.7852 [550 6.012( 3.33)]2057.17 5.898.78k p h h N h m =??+-?+??? +??+-==+∴= 现取h=9m ,桩底标高为26.2m 。桩的轴向承载力符合要求。具体见如图1所示。

8m钢筋混凝土空心板简支梁桥上部结构计算书完整版

8m钢筋混凝土空心板简支梁桥 上部结构计算书 7.1设计基本资料 1.跨度和桥面宽度 标准跨径:8m(墩中心距) 计算跨径:7.6m 桥面宽度:净7m(行车道)+2×1.5m(人行道) 2技术标准 设计荷载:公路-Ⅱ级,人行道和栏杆自重线密度按照单侧8kN/m计算,人群荷载取3kN/m2 环境标准:Ⅰ类环境 设计安全等级:二级 3主要材料 混凝土:混凝土空心板和铰接缝采用C40混凝土;桥面铺装采用0.04m 沥青混凝土,下层为0.06m厚C30混凝土。沥青混凝土重度按23kN/m3计算,混凝土重度按25kN/m3计算。 钢筋:采用R235钢筋、HRB335钢筋 2.构造形式及截面尺寸 本桥为c40钢筋混凝土简支板,由8块宽度为1.24m的空心板连接而成。 桥上横坡为双向2%,坡度由下部构造控制

空心板截面参数:单块板高为0.4m ,宽1.24m ,板间留有1.14cm 的缝隙用于 灌注砂浆 C40混凝土空心板抗压强度标准值Mpa f ck 8.26=,抗压强度设计值 Mpa f cd 4.18=,抗拉强度标准值Mpa f tk 4.2=,抗拉强度设计值Mpa f td 65.1=, c40混凝土的弹性模量为Mpa E C 41025.3?= 图1 桥梁横断面构造及尺寸图式(单位:cm ) 7.3空心板截面几何特性计算 1.毛截面面积计算 如图二所示 2)-4321?+++=S S S S S A (矩形 2 15.125521cm S =??= 2 cm 496040124=?=矩形S 225.1475)5.245(cm S =?+= 2 35.2425.2421cm S =??=

桥梁工程量计算规则

桥梁的工程量计算 桥梁工程量计算规则 预算基价项目的工程量计算规则: ㈠桩基 钢筋混凝土方桩、板桩按桩长度(包括桩尖长度)乘以桩横断面面积计算; 钢筋混凝土管桩按桩长度(包括桩尖长度)乘以桩横断面面积,减去空心部分体积计算; 钢管桩按成品桩考虑,以吨计算。 焊接桩型钢用量可按实调整。 陆上打桩时,以原地面平均标高增加1m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量。 支架上上打桩时,以当地施工期间的最高潮水位增加0.5m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量. 船上打桩时,以当地施工期间的平均水位增加1m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量。㈢㈣㈤㈥ 灌注桩混凝土体积按设计桩面积乘以设计桩长(桩尖到桩顶)加超钻0.5m的几何体积计算。 ㈡现浇混凝土 混凝土工程量按设计尺寸以实体积计算(不包括空心板、梁的空心体积),不扣除钢筋、铁丝、铁件、预留压浆孔道和螺栓所占的体积。

㈢预制混凝土 预制空心构件按设计图尺寸扣除空心体积,以实体积计算。空心板梁的堵头板体积不计入工程量内,其消耗量以在预算基价中考虑。 预制空心构件按设计图尺寸扣除空心体积,以实体积计算。空心板梁的堵头板体积不计入工程量内,其消耗量已在定额中考虑。 预制空心板梁,凡采用橡胶囊做内模的,考虑其压缩变形因素,可增加混凝土数量,当梁长在16m以内时,可按设计计算体积增加7%,若梁长大于16m时,则增加9%计算。如设计图以注明考虑橡胶囊变形时,不得再增加计算。 预应力混凝土构件的封锚混凝土数量并入构件混凝土工程量计算。安装预制构件已m3为计量单位的,均按构件混凝土实体积(不包括空心部分)计算。 ㈣砌筑 砌筑工程量按设计砌体尺寸以立方米体积计算,嵌入砌体中的钢管、沉降缝、伸缩缝以及0.3m3以内的预留孔所占体积不予扣除。 ㈤挡墙、护坡 1.块石护底、护坡以不同平面厚度按m3计算。 2.浆砌料石、预制块的体积按设计断面以m3计算。 3.浆砌台阶以设计断面的实砌体积计算。 4.砂石滤沟按设计尺寸以m3计算。 ㈥立交箱涵 1.箱涵滑板下的肋楞,其工程量并入滑板内计算。

桥梁工程课程设计计算书

桥梁工程课程设计及计算书 设计题目: 桥梁工程课程设计 学院:土木与建筑学院 指导老师:汪峰 姓名: 学号: 班级: 2014年6月

一、基本资料 1.标准跨径:20 m 计算跨径:19.50 m 主梁全长:19.96 m 2.桥面净宽:净7.5 m+2×0.25 m 3. 车辆荷载:公路— 级 4. 人群荷载:3.0 KN/m2 5. 选用材料: 钢筋:采用HRB300钢筋,HRB335钢筋。 混凝土:主梁C40 人行道及栏杆:C25 桥面铺装:C25(重度24KN/m) 6. 课程设计教材及主要参考资料: 《桥梁工程》.姚玲森编.人民交通出版社,1990年 《桥梁工程》.邵旭东等编.人民交通出版社,2007年 《桥梁工程》.范立础编.人民交通出版社,2001年 《简支梁桥示例集》.易建国编.人民交通出版社,2000年 《桥梁工程课程设计指导书》.桥梁教研室.哈尔滨工业大学教材科, 2002年 《梁桥设计手册》.桥梁编辑组.人民交通出版社,1990年 《公路桥涵设计通用规范》(JTG D60-2004)人民交通出版社北京 《拱桥设计手册(上、下)》.桥梁编辑组.人民交通出版社,1990年 《配筋混凝土结构设计原理》袁国干主编,同济大学出版社 二、桥梁尺寸拟定 1.主梁高度:h=1.5m 梁间距:采用5片主梁,间距1.8m。 2.横隔梁:采用五片横隔梁,间距为4×4.85m,梁高1.0m, 横隔 梁下缘为15cm,上缘为16cm。 3.主梁梁肋宽:梁肋宽度为18cm。 4.桥面铺装:分为上下两层,上层为沥青砼厚2.0cm, 下层为C25 防水混凝土垫层厚10.0cm。桥面采用1.5%横坡。 5.桥梁横断面及具体尺寸:(见作图)

桥梁工程计算书

第一章设计资料 1.1设计内容 ①根据已给地形图等设计资料,选择三至四种以上可行的桥型方案,拟定桥梁结构主要尺寸,根据技术经济比较,推荐最优方案进行桥梁结构设计。 ③对推荐桥梁方案进行运营阶段的内力计算,并进行内力组合,强度、刚度、稳定性等验算。 ④选择合理的下部结构形式,拟定构件尺寸,并进行内力计算,内力组合、配筋设计。 ⑤绘制桥梁总体布置图、上部结构一般构造图、钢筋构造图、桥台一般构造图、桥墩盖梁一般构造图、桥墩盖梁配筋图。 ⑥编写设计计算书。 1.2设计技术标准 1、设计桥梁的桥位地型及地质图一份 2、设计荷载:公路—I级; 3、桥面净空:净-2×0.5+9=10米 4、桥面横坡:1.5% 5、最大冲刷深度:2.0m 6、地质条件:根据断面图确定 7、桩基础施工方法:旋转钻成孔 8、安全系数:γ0=1 1.3采用材料: (1)预应力钢筋:? s15.2钢绞线 (2)非预应力钢筋:直径D≥12mm用HRB335, 直径D≤12mm用R235; (3)混凝土:

主梁混凝土采用C50; 铰缝为C30细集料混凝土; 桥面铺装采用C40沥青混凝土; 栏杆及人行道板为C30混凝土; 盖梁、墩柱用C30混凝土; 系梁及钻孔灌注桩采用C30混凝土; 桥台基础用C30混凝土; 桥台台帽用C30混凝土; (4)锚具用OVM锚 1.4主要技术规范 JTG D60-2004《公路桥涵设计通用规范》 JTG D62-2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTJ 022-85《公路砖石及混凝土桥涵设计规范》 JTJ 024-85《公路桥涵地基与基础设计规范》 第二章方案比选 在我国,安全、经济、适用、美观是桥梁设计中的主要考虑因素,安全尤为重要。桥梁结构造型简洁,轻巧,设计方案力求结构新颖,保证结构受力合理,技术可靠,施工方便。本设计桥梁的形式可以考虑以下形式:连续梁桥、拱桥、斜拉桥三种形式。 2.1拟定方案 (1)方案一:箱型连续梁桥 对于桥孔的分跨主要考虑以下影响因素:桥址地形、水文地质条件、墩台基础支座等构造,力学的要求。 本设计采用三跨桥孔布置,边跨长度可取为中跨的0.5—0.8倍。本桥总长215m,本设计跨度组合为:60米+95米+60米

桥梁的工程量计算

桥梁的工程量计算桥梁工程量计算规则 预算基价项目的工程量计算规则: ㈠桩基 钢筋混凝土方桩、板桩按桩长度(包括桩尖长度)乘以桩横断面面积计算; 钢筋混凝土管桩按桩长度(包括桩尖长度)乘以桩横断面面积,减去 空心部分体积计算; 钢管桩按成品桩考虑,以吨计算。 焊接桩型钢用量可按实调整。 陆上打桩时,以原地面平均标高增加1m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量。 支架上上打桩时,以当地施工期间的最高潮水位增加0.5m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量. 船上打桩时,以当地施工期间的平均水位增加1m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量。㈢㈣㈤㈥ 灌注桩混凝土体积按设计桩面积乘以设计桩长(桩尖到桩顶)加超钻0.5m的几何体积计算。 ㈡现浇混凝土 混凝土工程量按设计尺寸以实体积计算(不包括空心板、梁的空心体积),不扣除钢筋、铁丝、铁件、预留压浆孔道和螺栓所占的体积。 ㈢预制混凝土 预制空心构件按设计图尺寸扣除空心体积,以实体积计算。空心板梁的堵头板体积不计入工程量内,其消耗量以在预算基价中考虑。

预制空心构件按设计图尺寸扣除空心体积,以实体积计算。空心板梁的堵头板体积不计入工程量内,其消耗量已在定额中考虑。 预制空心板梁,凡采用橡胶囊做内模的,考虑其压缩变形因素,可增加混凝土数量,当梁长在16m以内时,可按设计计算体积增加7% 若梁长大于16m时,则增加9%+算。如设计图以注明考虑橡胶囊变形时,不得再增加计算。 预应力混凝土构件的封锚混凝土数量并入构件混凝土工程量计算。 安装预制构件已m3为计量单位的,均按构件混凝土实体积(不包括空心部分)计算。 ㈣砌筑 砌筑工程量按设计砌体尺寸以立方米体积计算,嵌入砌体中的钢管、 沉降缝、伸缩缝以及0.3m3以内的预留孔所占体积不予扣除。 ㈤挡墙、护坡 1.块石护底、护坡以不同平面厚度按m3计算。 2.浆砌料石、预制块的体积按设计断面以m3计算。 3.浆砌台阶以设计断面的实砌体积计算。 4.砂石滤沟按设计尺寸以m3计算。 (六)立交箱涵 1.箱涵滑板下的肋楞,其工程量并入滑板内计算。 2.箱涵混凝土工程量,不扣除0.3m3以下的预留孔洞体积。 3.顶柱、中继间护套及挖土支架均属专用周转性金属构件,预算基价中已按摊销量计列,不得重复计算。 4.箱涵顶进预算基价分空顶、无中继间实土顶和有中继间实土顶三类,

2019桥梁工程计算题

1) 计算图1所示T 梁翼板所构成铰接悬臂板的设计内力。桥梁荷载为公路—Ⅰ级,桥面铺装为80mm 厚C50 混凝土配@φ8100钢筋网;容重为253 kN/m /;下设40mm 厚素混凝土找平层;容重为233 kN/m /,T 梁翼板材料容重为253 kN/m /。 图 1 铰接悬臂行车道板 (单位:mm ) 解:a .恒载及其内力(以纵向1m 宽的板条进行计算) 每延米板上的恒载g ; 钢筋混凝土面层g 1:...kN/m 008?10?25=200 素混凝土找平层g 2:...kN/m 004?10?23=092 T 梁翼板自重g 3: ....kN/m 008+014 ?10?25=2752 合计: i g =g .kN/m =567∑ 每米宽板条的恒载内力 弯矩 ...kN m Ag M gl 2201 =- -?567?100=-284?2 1=2 剪力 g ...kN Ag Q l 0=?=567?100=567 b .公路—Ⅰ级荷载产生的内力 要求板的最不利受力,应将车辆的后轮作用于铰缝轴线上,见图2,后轮轴重为P =140kN ,着地长度为 2=0.2m a ,宽度为 2b .m =060,车轮在板上的布置及其压力分布图见图1-1

图2公路—Ⅰ级荷载计算图式(单位:mm ) 由式 ...m ...m a a H b b H 1212=+2=020+2?012=044=+2=060+2?012=084 一个车轮荷载对于悬臂根部的有效分布宽度: ...m>1.4m a a l 10=+2=044+142=186(两后轮轴距) 两后轮的有效分布宽度发生重叠,应一起计算其有效分布宽度。铰缝处纵向2个车轮对于悬臂板根部的有效分布宽度为: ....m a a d l 10=++2=044+14+142=326 作用于每米宽板条上的弯矩为: () ()A p b P M l a μ10=-1+-24 ..(.).140084=-13??10-2?3264 .kN m =-2205? 作用于每米宽板条上的剪力为: () ..kN .Ap P Q a μ140=1+=13?=279122?326 c. 行车道板的设计内力 ...(.).(.).kN m ......=45.88kN A Ag Ap A Ag Ap M M M Q Q Q =12?+14?=12?-284+14?-2205=-3428?=12?+14?=12?567+14?2791 2) 如图23所示为一座桥面板为铰接的T 形截面简支梁桥,桥面铺装厚度为0.1m ,净跨径为1.4m ,试计算 桥面板根部在车辆荷载作用下的活载弯矩和剪力。(车辆前后轮着地宽度和长度分别为:m b 6.01=和 m a 2.01=;车辆荷载的轴重kN P 140=) 1.4 0.1 板间铰接 图23 解:(1)荷载

桥梁工程计算书

钢筋混凝土简支T形梁桥设计 1.1基本设计资料 1、跨度和桥面宽度 (1)标准跨径:10m。 (2)计算跨径:9.6m。 (3)主梁全长:9.96m。 (4)桥面宽度:1.5m(人行道)+净-7m(行车道)+0.5m(防撞栏)。 2.技术标准 设计荷载:公路—Ⅱ级,人行道和栏杆自重线密度按照单侧6kN/m计算,人群荷载为3kN/m2。 环境标准:Ⅰ类环境。 设计安全等级:二级。 3.主要资料 (1)混凝土:混凝土简支T形梁及横梁采用C50混凝土:桥面铺装上层采用0.03m沥青混凝土,下层为厚0.06~0.13m的C50混凝土,沥青混凝土重度按 26kN/m3计。 (2)钢材:主筋采用HRB335钢筋,其它用R235钢筋。 4.构造截面及截面尺寸

图1-1 桥梁横断面和主梁纵断面图(单位:cm) 如图1所示,全桥共由5片T形梁组成,单片T形梁高为0.9m,宽1.8m;桥上横坡为双向1.5%,坡度由C50混凝土桥面铺装控制;设有三根横梁。 1.2 主梁的计算 1.2.1 主梁的荷载横向分布系数计算 1.跨中荷载横向分布系数 桥跨内设有三根横隔梁,具有可靠的横向联系,且承重结构的宽跨比为: B/l=9/9.6=0.9375>0.5。故先按修正的刚性横隔梁法来绘制横向影响线和计算分布系数m c。 (1)计算主梁大的抗弯及抗扭惯性矩I和I T: 1)求主梁截面的重心位置x(见图1-2): 图1-2 主梁抗弯及抗扭惯性矩计算图式 翼缘板的厚按平均厚度计算,其平均厚度为h1=1/2×(10+16)cm=13cm

则(18018)1313/2901890/2 23.24(18018)139018 x cm cm -??+??= =-?+? 2)抗弯惯性矩I 为 I=[1/12×(180-18)×133+(180-18)×13×(23.24-13/2)2+1/12×18×903 +18×90× (90/2-23.24)2] cm 4 =2480384 cm 4 对于T 形梁截面,抗扭惯性矩可进似按下式计算: 31m T i i i i I c b t ==∑ 式中 b i 、t i──── 单个矩形截面的宽度和高度; c i ──── 矩形截面抗扭刚度系数; m ──── 梁截面分成单个矩形截面的个数。 I T 的计算过程及结果见表1-1。 表1-1 I T 计算表 即得I T =2.631×10-3m 4 (2)计算抗扭惯性矩β:对于本次计算,主梁的间距相同,将主梁近似看成等截面,则得 2 1 1(/) T GI l B EI βξ= + 式中,G=0.425E ;I T =2.631×10-3m 4;I=2480384 cm 4; l=9.6m ;B=1.8×5=9.0m ;ξ=1.042 代人上式,计算得β=0.949。 (2) 按修正的刚性横梁法计算横向影响线竖坐标值

土木5桥梁桩基础课程设计word文档

桥梁桩基础课程设计任务书

1、桥墩组成:该桥墩基础由两根钻孔灌注桩组成。桩径采用φ=1.2m ,墩柱直径采用φ=1.0m 。桩底沉淀土厚度t = (0.2~0.4)d 。局部冲刷线处设置横系梁。 2、地质资料:标高25m 以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%21=ω,液限 %7.22=l ω,塑限%3.16=p ω。标高25m 以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量 %8.17=ω,液限%7.22=l ω,塑限%3.16=p ω。 3、桩身材料:桩身采用25号混凝土浇注,混凝土弹性模量 αMP E h 41085.2?=,所供钢筋有Ⅰ级钢和Ⅱ级纲。 4、计算荷载 ⑴ 一跨上部结构自重G=2350kN ; ⑵ 盖梁自重G 2=350kN ⑶ 局部冲刷线以上一根柱重G 3应分别考虑最低水位及常水位情况; ⑷公路Ⅱ级 : 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 支座对桥墩的纵向偏心距为3.0=b m (见图2)。计算汽车荷载时考虑冲击力。 ⑸ 人群荷载: 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 ⑹ 水平荷载(见图3) 制动力:H 1=22.5kN (4.5); 盖梁风力:W 1=8kN (5); 柱风力:W 2=10kN (8)。采用常水位并考虑波浪影响0.5m ,常水位按45m 计,以产生较大的桩身弯矩。W 2的力臂为11.25m 。

图4 5、设计要求 ⑴确定桩的长度,进行单桩承载力验算。 ⑵桩身强度验算:求出桩身弯矩图(用座标纸画),定出桩身最大弯矩值及其相应截面位置和相应轴力,配置钢筋,验算截面强度(采用最不利荷载组合及常水位)。 ⑶计算主筋长度、螺旋钢筋长度及钢筋总用量。 ⑷用A3纸绘出桩的钢筋布置图。 二、应交资料 1、桩基础计算书 2、桩基础配筋图 3、桩基础钢筋数量表

结构设计大赛(桥梁)计算书

桥梁结构设计理论方案作品名称蔚然水岸 参赛学院建筑工程学院 参赛队员吕远、李丽平、李怡潇、赵培龙 专业名称土木工程 一、方案构思 1、设计思路 对于这次的设计,我们分别考虑了斜拉桥、拱桥、梁式桥和桁架桥的设计方案。斜拉桥可以看作是小跨径的公路桥,且对刚度有较高的要求,所以斜拉桥对材料的要求比较高,对于用桐木强度比不上其他样式的桥来得结实;拱桥最大主应力沿拱桥曲面而作用,而沿拱桥垂直方向最小主应力为零,可以很好的控制桥梁竖直方向的位移,但锁提供的支座条件较弱,且不提供水平力,显然也不是一个好的选择;梁式桥有较好的承载弯矩的能力,也可以较好的控制使用中的变形,但桥梁的稳定性是个很大的问题,控制不了桥梁的扭转变形,因此,我们也放弃了制作梁式桥的想法;而桁架桥具有比较好的刚度,腹杆即可承拉亦可承压,同时也可以较好的控制位移用料较省,所以,相比之下我们最后选择了桁架桥。 2、制作处理

(1)、截杆 裁杆是模型制作的第一步。经过试验我们发现,截杆时应该根据不同的杆件,采用不同的截断方法。对于质地较硬的杆应该用工具刀不断切磋,如同锯开;而对于较软的杆应该直接用刀刃用力按下,不宜用刀口前后切磋,易造成截面破损。 (2)、端部加工 端部加工是连接的是关键所在。为了能很好地使杆件彼此连接,我们根据不同的连接形式,对连接处进行处理,例如,切出一个斜口,增大连接的接触面积;刻出一个小槽,类似榫卯连接等。 (3)拼接 拼接是本模型制作的最大难点。由于是杆件截面较小,接触面积不够,乳胶干燥较慢等原因,连接是较为困难的。我们采取了很多措施加以控制,如用铁夹子对连接处加强压、用蜡线进行绑扎固定等。对于拱圈的制作,则预先将杆件置于水中浸泡并加上预应力使其不断弯曲,并按照先前划定的拱形不断调整,直至达到理想形状。 在拱脚处处理时,先粘结一个小的木块,让后用铁夹子施加很大的压力,保证连接能足够牢固。 乳胶粘接时要不断用电吹风间断性地吹风,使其尽快形成粘接力,达到强度的70%(基本固定)后即可让其自行风干。 (4)风干 模型制作完成后,再次用吹风机间断性地吹粘接处,基本稳定后,让其自然风干。 (5)修饰

桥梁桩基础计算书

桥梁桩基础课程设计

桥梁桩基础课程设计 一、恒载计算(每根桩反力计算) 1、上部结构横载反力N1 N1= 1 2 ?2350=1175kN 2、盖梁自重反力N2 N2= 1 2 ?350=175kN 3、系梁自重反力N3 1 2 ?25 ?3.5 ?0.8 ?1=35kN 4、一根墩柱自重反力N4 KN N 94.222)1025(5.01.5255.0)1.54.13(224=-???+???-=ππ(低水位) KN N 47.195255.08.4155.06.8224=???+???=ππ (常水位) 5、桩每延米重N5(考虑浮力) m KN N /96.16152.14 25=??= π 二、活载反力计算 1、活载纵向布置时支座最大反力 ⑴、公路二级:7.875/k q kN m = 193.2k P kN =

Ⅰ、单孔布载 55.57822.1932 875 .74.24=?+?=)(R Ⅲ、双孔布载 24.427.875 (193.2)2766.3082R kN ??=+?= (2)、人群荷载 Ⅰ、单孔布载 11 3.52 4.442.72R kN =??=

1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u ) 汽 ?∑i i y P + 人?ql = 1175+175+(1+0.2)?1.245?766.308+1.33?85.4 =2608.45kN (汽车、人群双孔布载) 2、计算桩顶最大弯矩 ⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽 ?∑i i y P + 人 ?ql 2 1 = 1175+175+1.2?1.245?578.55+1.33?42.7 = 2271.14kN (汽车、人群单孔布载) ⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M 0N = max R +3N + 4N (常水位) = 2608.45+35+195.47=2838.92 kN 0Q = 1H + 1W + 2W = 22.5+8+10=40.5 kN 0M = 14.71H + 14.051W + 11.252W + 0.3活max R = 14.7?22.5+14.05?8+11.25?10+0.3?(2608.45-1175-175) = 933.185kN.m 活max R ——组合Ⅰ中活载产生的竖向力。 四、钻孔灌注桩单桩承载力及强度计算 1、单桩承载力计算 桩长计算:

桥梁工程的工程量计算方法

桥梁工程的工程量计算方法 1、土石方体积均以天然实体积(自然方)计算,回填土按碾压后的体积(实方)计算,余松土和堆积土按堆积方乘以 0.8系数折合为自然方计算。 2、土方工程量按图纸尺寸计算,修建机械上下坡道土方量并进入工程量内。 3、挖土放坡和沟、槽加宽应按图纸尺寸计算。 4、石方工程量按图纸尺寸加允许超挖量: xxxx20cm,普特坚xx15cm。 5、放坡挖土交接处产生的重复工程量不扣除。如在同一断面内遇有数类土,其放坡系数可按各类土占全部深度的百分比加权计算。 6、土石方运距应以挖土重心至填土或弃土重心最近距离计算,挖土、填土、弃土重心按施工组织设计确定。 7、挖沟槽、基坑需挡土板时,其宽度按图示沟槽、基坑底宽,单面加 10cm,双面加20cm计算。有支挡土板者,不再计算土方放坡。 8、沟槽、基坑、平整场地和一般土石方的划分: 底宽7m以内,低长大于底宽3倍以上按沟槽计算;低长小于底宽3倍以内按基坑计算;厚度在30cm以内就地挖、填土按平整场地计算。超过上述范围的土、石方按挖石方和一般石方开挖计算。 9、平整场地、原土夯实(碾压),按设计图纸以平方米为单位计算。 10、各类挡土板工程量,均按槽、坑按槽、坑垂直支撑面积以平方米为单位计算。 4.2.

2、围堰、井点降水 1、土草围堰,土、石混合围堰,按围堰的施工断面乘以围堰中心线的长度以立方米为单位计算。 2、木板桩围堰、圆木桩围堰、钢板桩围堰、木(竹)笼围堰分高度(高度按施工期内最高临水面加 0.5cm),按围堰中心线的长度以延长米为单位计算。 3、恐岛填心均按设计尺寸立方米为单位计算。 4.2. 3、打桩工程 (一)打桩 各种桩的打桩工程量,均按桩的设计长度(包括桩尖长度)乘以断面积以立方米为单位计算。 (二)送桩 1、采用陆上打桩,按桩截面面积乘以送桩长度(即原地平均标高至桩顶面另加1cm)以立方米为单位计算工程量。 2、采用支架上打桩,按截面面积乘以送桩长度(即当地施工期的平均水位至桩顶面另加1cm)以立方米为单位计算工程量。 3、采用船上打桩,按桩截面面积乘以送桩长度(即当地施工期的平均水位至桩顶面另加1cm)以立方米为单位计算工程。 4、接桩 各类接桩按设计接头以个为单位计算。 (三)灌注桩成孔工程量

桥梁计算书规定

桥梁计算书规定 一.混凝土连续梁结构(含预应力、钢筋砼结构) ●(一)静力计算采用荷载 ●1.活载:按规范取用 ●汽车冲击力: ●汽车荷载的冲击力为汽车荷载乘以冲击系数。 ●总体静力计算的冲击系数按照《公路桥涵设计通用规范》( JTG D60-2004 )的规定计 算,悬臂板上冲击系数采用1.3。 ●2.支座沉降:桥梁不均匀沉降采用1/3000跨径。 ●3.温度:体系温度按(如150C合拢)升温,降温计算;日照梁上温度梯度仅计沥青 层作为桥面铺装,沥青层下砼调平层不考虑温度梯度作用、折减; ●4.砼弹性模量折减: ●1)计算结构强度及应力时不折减; ●2)计算结构变形时折减,按新规范取用; ●5.梁体计算时砼容重按预应力结构26KN/m3,普通钢筋混凝土结构25KN/m3;沥青 混凝土容重:24kN/m3、混凝土调平层容重:25 kN/m3 ●6.桥梁下部结构考虑纵横向外力组合; ●7.曲线段桥梁按规范考虑离心力; ●8.梁体偏载、剪滞影响按弯矩增大1.2~1.25。 ●9.支座摩阻力按作用于支座上的竖向力乘以支座的摩擦系数计算;盆式活动支座的摩擦 系数为0.05,板式活动支座(聚四氟乙烯板与不锈钢板)摩擦系数为0.06。 ●(二)动力荷载 ●设计风速按基本风压换算; ●施工风速根据施工周期确定。 ●(三)计算控制及注意问题 ●预应力梁体 ?小于100米跨径预应力结构按部分预应力A类构件设计; ●2)施工阶段 ●(1)注意挠度计算及预拱度设置; ●(2)注意计算局部应力; ●(3)按规范控制砼拉、压应力(建议拉应力不大于-0.5 Mpa),钢束应力。

●对于悬臂浇注连续梁施工阶段荷载: ●(1)施工时桥面一侧均布荷载2KN/m; ●(2)挂篮重;冲击系数u=0.2; ●(3)砼容重不均匀性,主跨侧26 KN/ m3,边跨侧25KN/ m3; ●(4)节段差; ●(5)施工风力; ●(6)悬臂施工时一侧挂篮脱落。 ?使用阶段 ●(1)长期效应控制砼无拉应力,短期效应控制砼拉应力不大于0.5Mpa;钢束应力不 超规范;弹性阶段C50混凝土压应力不大于15MPa(规范规定不大于16.2 MPa)。 短期效应主拉应力不大于-1.3 MPa。弹性阶段混凝土主压应力标准值不大于17.5 MPa (规范规定不大于19.4MPa),弹性阶段混凝土主拉应力标准值≤-1.3 MPa按构造配置箍筋,大于-1.3 MPa按规范7.1.6配置箍筋。 ●(2)注意挠度计算; ●4)注意支座偏移量的设置; ●5)注意梁体预应力径向力引起的整体、局部应力计算及处理; ●6)原则上预应力控制张拉应力腹板束采用1395 MPa,顶、底板束采用1339 MPa, 采用塑料波纹管,计算参数u=0.155,k=0.0015;预应力钢束松弛率:0.035;一端锚具变形、钢束回缩及垫板压密值:6mm; ●7)钢束定位网采用“井”字形,钢筋直径10mm,定位网在钢束直线段每80cm一道, 曲线段每50cm一道;计算钢束曲线段保护层厚度; ●2.普通钢筋混凝土结构 ●1)桥面板及框架整体计算,变高梁注意加入预应力径向力,注意控制底板裂缝宽度, 汽车布载工况考虑周全; ●2)横梁计算注意由于腹板刚度不同而引起的腹板传力不同。 ●3)普通钢筋混凝土梁体裂缝控制不大于0.18mm; ●4)梁体腹板近支座处1倍梁高箍筋加强; ●5)普通钢筋混凝土梁体主筋按受力需要,并要考虑受扭、剪滞等影响; ●下部结构 ●1)墩身:按规范钢筋砼计算。 ●2)承台:计算考虑抗弯、撑杆-系杆强度、冲剪、剪切、主拉应力等; ●3)桩:计算考虑偏压强度、裂缝宽度、地基承载力; ●4)计算考虑墩顶水平位移,基础总沉降量、相临墩台沉降差;

桥梁工程课程设计计算书

钢筋混凝土T 型梁桥设计计算书 1 行车道板内力计算 1.1恒载产生的内力 以纵向1米宽的板条进行计算如图1.1所示。 图1.1铰接悬臂板计算图示(单位:cm ) 沥青混凝土面层:= 0.02×1.0×21= 0.42/kN m C25号混凝土垫层:=0.06×1.0×24=1.44/kN m T 形翼缘板自重: = 0.100.16 1.025 3.25/2 kN m +??= 合计:g=i g ∑=++=0.42+1.44+3.25=5.11/kN m 每米宽板条的恒载内力: 弯距:22011 5.110.95 2.3122AG M gl kN m =-=-??=-? 剪力:0 5.110.95 4.85AG V gl kN ==?=1.2荷载产生的内力 按铰接板计算行车道板的有效宽度如图1.2所示)。 由<<桥规>>得=0.2m ,=0.6m 。桥面铺装厚度为8cm ,则有: =+2H=0.2+2×0.08=0.36m =+2H=0.6+2×0.08=0.76m 荷载对于悬臂板的有效分布宽 度

为:=+d+2=0.36+1.4+1.90=3.66m 冲击系数采用1+=1.3, 作用为每米宽板条上的弯矩为: 01(1)/2(/4)AP M P a l b μ=-+??- 1.3140/2/3.66(0.950.76/4)=-??-18.90KN m =-? 作用于每米宽板条上的剪力为: 图1.2 荷载有效分布宽度图示(cm ) 140(1) 1.324.8622 3.66 AP P V KN a μ=+=?=? 1.3内力组合 承载能力极限状态内力组合: 1.2 1.4 1.2 2.31 1.418.9029.23j Ag Ap M M M KN m =+=-?-?=-? 1.2 1.4 1.2 4.85 1.424.8640.62j Ag Ap V V V KN =+=?+?= 1.4 截面设计、强度验算 (HRB335钢筋:335sk f MPa =,280sd f MPa =,C25混凝土:16.7,ck f MPa = 1.78,11.5, 1.23tk cd td f MPa f MPa f MPa ===) 翼缘板的高度:h=160mm ;翼缘板的宽度:b=1000mm ;假设钢筋截面重心到截面受拉边缘距离=35mm ,则=125mm 。 按<<公预规>>5.2.2条规定:010()2d u c x M M f bx h γα==- 1.029.2311.51000(0.125)2 x x ?=???- 解得:x=0.0224m 验算00.550.1250.0688()0.0224()h m x m ξ=?=>= 按<<公预规>>5.2.2条规定:sd s cd f A f bx = 211.5 1.00.0224/280920s A mm =??= 查有关板宽1m 内钢筋截面与间距表,考虑一层钢筋为8根由规范查得可供使

桥梁桩基础设计计算部分

一方案比选优化 公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。 1、按承载能力极限状态设计时,可采用以下两种作用效应组合。 (1)基本作用效应组合。基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为 (1-1) 或(1-2) γ0-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级一级、二级、三级,分别为1.1、1.0和0.9; γGi-第i个永久荷载作用效应的分项系数。分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2; 对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》; γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。 γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1.4,但风荷载的分项系数取γQ1= 1.1;

13m跨径桥梁计算书

算例 某13米桥梁计算书(含全部项目) 本计算书中包括桥涵水文的计算、恒荷载计算、活荷载计算桩长、以及挡墙的计算。 荷载标准:公路Ⅱ级乘0.8的系数 桥面宽度:净4.5+2×0.5m 跨度:13孔×13m 1、工程存在问题 *****桥位于***闸下游1000m处,建于1982年,为钢筋砼双排架式桥墩,预制拼装型板梁桥面,17孔,每跨8.85m。总长150.45m,宽5.3m。该桥运行20多年,根据***省水利建设工程质量监测站检验测试报告检测结果如下:(1)桥墩 A.桥墩基础 桥墩基础为抛石砼,设计强度等级为150#,钻芯法检测砼现有强度代表值为16.4MPa。 B.排架立柱及联系梁 立柱设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为14.0~18.3MPa。联系梁设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为14.7MPa。 立柱外观质量总体较差,局部区域麻面较重。立柱砼碳化深度最大值为31mm,最小值为5mm,平均值为14mm。立柱钢筋保护层实测厚度为20mm,钢筋目前未锈,但碳化深度平均值已接近钢筋保护层厚度。通过普查,全桥64根立柱中有12根35处箍筋锈胀外露,有6处联系梁主筋外露。 C.盖梁 盖梁设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为

17.4~21.5MPa。 盖梁外观质量一般,梁体砼总体感觉较疏松。盖梁砼碳化深度最大值为24mm,最小值为9mm,平均值为18mm。,盖梁主筋侧保护层实测厚度为9~13mm,底保护层实测厚度29~42mm,砼碳化深度已超过钢筋侧保护层厚度,盖梁主筋已开始锈蚀。通过普查,全桥32根盖梁中共有14根15处主筋锈蚀膨胀,表层砼脱落,主筋外露,长度15~70cm;有28处箍筋锈胀外露。 (2)T型梁 T型梁设计强度等级为200#,每跨中间两根T型外观较好,两边T型梁外观较差。T型梁砼碳化深度最大值为20mm,最小值为7mm,平均值为14mm。T型梁主筋保护层设计厚度为20mm,砼碳化深度已经接近钢筋保护层设计厚度,实际保护层相对较薄的主筋已经开始锈蚀。通过普查,全桥34根边梁中共有9根10处肋梁主筋锈蚀膨胀,砼开裂或脱落,长度15~160cm;全桥34根边梁中共有15根工52处肋梁箍筋锈胀外露,有13块三角形隔板钢筋锈胀,表层脱落。 (3)桥台 两侧浆砌石桥台总体没有大的变形,左岸桥台浆砌石有纵向和斜向裂缝,右岸桥台浆砌石发现斜向裂缝,裂缝较长较宽。 (4)桥面及栏杆 桥面铺装层破损露石,栏杆老化损坏,钢筋外露,且多处被撞。 (5)桥墩基础防护工程 该桥的底部和侧向的防护工程水毁现象非常严重。左岸浆砌石护坡全部损毁、坍塌,7#桥墩基础裸露,基础下土壤已经开始流失,出现空洞。浆砌石护底下游的土壤(砂质)已全部被水流带走,经常受水流冲刷的护底局部已被淘空,护底已出现不同程度的损坏,危及桥墩基础乃至整座桥梁的安全。 (6)结论 由于该桥原设计标准较低,长期超负荷运行,工程老化失修,水毁严重,且为中和岛内防洪抢险撤离的主要通道,选取方案时优先考虑拆除重建方案。 2、设计标准 荷载标准:公路Ⅱ级乘0.8的系数; 桥面宽度:净4.5+2×0.5m;

桥桥墩桩基础基础设计

桥桥墩桩基础基础设计文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

华东交通大学 课程设计(论文) 题目名称某桥桥墩桩基础设计计算 院(系)土木建筑学院 专业道路与铁道工程 班级道铁2班 姓名欧阳俊雄 2011年 6 月 13 日至 2011 年 6 月 29 日共 1 周 指导教师: 耿大新 教研室主任: 李明华 资料收集 某桥梁上部构造采用预应力箱梁。标准跨径32m,梁长,计算跨径,桥面宽13m,墩上纵向设两排支座,一排固定,一排滑动,桥墩采用圆端形实心墩,平面尺寸形式如图1所示,墩高12m,计算墩顶变形时,不考虑墩身的挠曲。下部结构采用钻孔灌注桩基础。 1、地质及地下水位情况: 河面常水位标高,河床标高为,一般冲刷线标高,最大冲刷线标高处,一般冲刷线以下的地质情况如下:

2、设计荷载: (1)恒载: 桥面自重:1N=1500kN+学号×20kN=1500+16×20=1820kN 箱梁自重:2N=6000kN+学号×40kN=6000+16×40=6640kN 桥墩自重:3N=3875kN (2)活载 一跨活载反力:2835.75kN N4=,在顺桥向引起弯矩: M1? 3334.3 =; kN m 两跨活载反力: =+学号×50kN=+16×50=\ N 5 (3)水平力 =300kN,对承台顶力矩; 制动力:H 1 风力:H = kN,对承台顶力矩 2 主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ′=15kN/m3(浮容重)。

在班编号为20,所以桩基采用C30混凝土,HRB400级钢筋; 4、其它参数 结构重要性系数γso =,荷载组合系数φ=,恒载分项系数γG =,活载分项系数γQ =,风荷载ψ=,制动力: 拟定承台尺寸: 假设承台的厚度为,根据圆端形实心墩的平面尺寸计算承台的长和宽 宽度:m 615.123=??+ 长度:m 915.126=??+ 三、拟定桩的尺寸及桩数: 1、摩擦桩,桩身采用C30混凝土。 2、由于d 516=-,d=,所以设计桩径采用d=,成孔桩径为,钻孔灌注桩,采用旋转式钻头。 3、画出土层分布图,选用卵石层为持力层,则取桩长l=。 4、估算桩数:(按双孔重载估算) 估算公式: 据高等学校教材《基础工程(第四版)》(人民交通出版社)查表4—2可得λ=,查表4—3得m 0=, 查表2-24有k 2= 由于桩侧土为不同土层,应采用各土层容重加权平均,透水层采用浮容重,不透水层采用天然容重 3 2/46.105 .221 .11105.205.4102.187.3103.172.25.170.15.16m kN =?-+?-+?-+?+?= )()()(γ持力层为卵石,查表得650kPa ][0=fa ,q ik 查表4—1得

(完整版)桥墩桩基础设计计算书

基础工程课程设计 一.设计题目: 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN; 墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN (2)活载 一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m; 两跨活载反力:N6=5030.04kN+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩6.5m; 风力:H2=2.7 kN,对承台顶力矩4.75m 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋;

4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m 3。承台平面尺寸:长×宽=7×4.5m 2,厚度初定2.5m ,承台底标高20.000m 。拟采用4根钻孔灌注桩,设计直径1.0m ,成孔直径1.1m ,设计要求桩底沉渣厚度小于300mm 。 5、其它参数 结构重要性系数γso =1.1,荷载组合系数φ=1.0,恒载分项系数γG =1.2,活载分项系数γQ =1.4 6、 设计荷载 (1) 桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.5m 初步拟定采用四根桩,设计直径1m ,成孔直径1.1m 。桩身及承台 混凝土用30号,其受压弹性模量h E =3×4 10MPa 。 (2) 荷载情况 上部为等跨30m 的预应力箱梁桥,混凝土桥墩,作用在承台底面中心的荷载为: 恒载及一孔活载时: 1.2(158054008009751507 4.5 2.515 1.42835.751571 3.55N KN =?+++-+???+?=∑) 1.4(300 2.7)42 3.78H KN =?+=∑ [3334.3300(2.5 6.5) 2.7 4.75 2.5 1.48475.425M KN =+?++? +?=∑()] 恒载及二孔活载时: 1.2(158054008009751507 4.5 2.515N =?+++-+????∑)+1.45830.04=19905.556KN 桩(直径1m )自重每延米为: q= 2 11511.781/4 KN m ??=π(已扣除浮力) 三、计算 1、根据《公路桥涵地基与基础设计规范》反算桩长 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度, 设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为h 2,则: [][]{} )3(2 1 22200-++==∑h k A m l U P N i i h γσλτ

相关主题