搜档网
当前位置:搜档网 › 功率控制技术

功率控制技术

功率控制技术
功率控制技术

功率控制技术(7人)

阐述功率控制在移动通信系统中的作用,总结并阐述功率控制的类型、实现原理、以及在移动

作者列表(按项目排列)

指导教师签字:

年月日

第一章功率控制技术

1概述

1.1 CDMA系统功率控制技术

功率控制(power control)技术用于动态地调整发射机的发射功率,它是CDMA系统的关键技术之一,精确和稳定的功率控制对于提高CDMA系统的容量和保证服务质量有着至关重要的作用。

CDMA系统是一个自干扰系统,CDMA系统中的用户在同样的频率和时间上发送信号,不同的用户采用不同的扩频码来区分。由于扩频码之间的互相关性不为零,使得每个用户的信号都成为其他用户的干扰,即多址干扰。同时CDMA系统是一个干扰受限系统,即干扰对系统的容量直接影响。当干扰达到一定程度后,每个用户都无法正确解调自己的信号,此时系统的容量也达到了极限。因此,如何克服和降低多址干扰就成为CDMA系统中的主要问题之一。通过功率控制,使发射功率尽可能的小,从而有效地限制多址干扰。

由于用户的移动性,不同的移动台和基站之间的距离是不同的。而在无线通信系统中,信号的强度随传输距离而成指数衰减。因此,在反向链路上,如果所有的移动台的功率发射都相同,则离基站近的移动台的接受信号强,离基站远的移动台的接收信号弱。这样就会产生以强压若的现象,即远处用户的信号会被近处用户的信号淹没,以至于不能正确解调,这种现象称为“远近效应”。为了克服这种现象,对移动台的发射功率进行调整时非常有必要的,使得基站接收到的所有移动台的信号功率基本相等。

在前向链路上,同一基站所有的信道经历的无线环境是相同的,因次不存在远近效应。前向链路中的干扰主要来自于其它基站的前向信号和服务基站内其他用户的前向信号,尽管不存在远近效应,但是当移动台位于相邻小区的交界处时,收到的服务基站的有用信号很低,同时还会收到相邻小区基站的较强干扰。如果要保证各个移动台的通信质量,则在小区边缘的移动台比距离基站近的移动台需

要更高的功率。因此,仍需要对前向功率进行一定的控制,以降低干扰,保证通信质量。

在CDMA系统中,采用功率控制是非常有必要的,它也是CDMA走向实用化的核心技术之一。功率控制在对接受信号的能量或信噪比进行评估的基础上,适时补偿无线信道的衰落,来不断的调整发射信号的功率,从而保证一定的通信质量,又降低对其他用户的干扰,保证系统容量。功率控制的核心目的是在保证一定通信质量的前提下,尽可能降低发射功率,以降低干扰,减少功耗。

1.2 TD-SCDMA系统功率控制技术

TD-SCMA系统是一个干扰受限系统,由于“远近效应”,系统的容量主要受限于系统内各移动台和基站间的干扰,因而,若每个移动台的信号到达基站时都能达到保证通信质量所需的最小信噪比并且保持系统同步,TD-SCDMA系统的容

量将会达到最大。

功率控制就是为了克服“远近效应”而采取的一项措施。它是在对接收机端的信号强度或信噪比等指标进行评估的基础上,适时改变发射功率来补偿无线信道中的路径损耗和衰落,从而既维持了信道的质量,又不会对同一无线资源中其他用户产生额外的干扰。另外,功率控制使得发射机功率减小,从而延长电池是使用的时间。

功率控制算法通常从两个层次进行分析和研究。若从全局的层次上进行分析,则假定内环功率控制速率足够快,能够从理想地跟上信道变化,因此信道增益在一次功率控制达到稳定状态前是恒定的。从这个角度看功率控制问题,着重考虑的问题包括容量、全局稳定性和系统负荷,以及全局控制问题是否有解,即是否能够满足所有用户的性能要求(SIR)。若从局部的层次上进行分析链路通信的

目标SIR值假定不变,并且满足所有用户要求。从这个角度考虑问题,则局部功率控制算法收敛性质和收敛速度,即快速跟上信道变化能力,是功率控制算法研究的重点。

1.3 WCDMA系统功率控制技术

功率控制是WCDMA系统的关键技术之一。由于远近效应和自干扰问题,

功率控制是否有效直接决定了WCDMA系统是否可用,并且很大程度上决定了WCDMA系统性能的优劣,对于系统容量、覆盖、业务的QoS(系统服务质量)都有重要影响。

功率控制的作用首先是提高单用户的发射功率以改善该用户的服务质量,但由于远近效应和自干扰的问题,提高单用户发射功率会影响其他用户的服

务质量,所以功率控制在WCDMA系统中呈现出矛盾的两个方面。

WCDMA系统采用宽带扩频技术,所有信号共享相同频谱,每个移动台的

信号能量被分配在整个频带范围内,这样移动台的信号能量对其他移动台来

说就成为宽带噪声。由于在无线电环境中存在阴影、多径衰落和远距离损耗

影响,移动台在小区内的位置是随机的且经常变动,所以信号路径损耗变化

很大。如果小区中的所有用户均以相同的功率发射,则靠近基站的移动台到

达基站的信号强,远离基站的移动台到达基站的信号弱,另由于在WCDMA系

统中,所有小区均采用相同频率,上行链路为不同用户分配的地址码是扰码,且上行同步较难,很难保证完全正交。这将导致强信号掩盖弱信号,即远近

效应。

因此,功率控制目的是在保证用户要求的QoS的前提下最大程度降低发

射功率,减少系统干扰从而增加系统容量。

2 功率控制准则

功率控制是指在移动通信系统中根据信道变化情况以及接收到的信号电平,通过反馈信道,按照一定准则控制,调节发射信号电平。

2.1 功率平衡准则

功率平衡准则是指通过功率控制使接收端接收到的有用信号功率相等,该准则比较易实现,但是性能不如信噪比平衡准则。

2.2 信噪比平衡准则

信噪比平衡准则是指通过功率控制使接收端有用信号的信噪比相等。该准则虽然能够提供较好的性能,但是可能会产生正反馈,导致系统不稳定。即当某个移动台信噪比低于目标只时,会增加发射功率,同时也就增加了对其他用户的干扰,会导致其他用户也增大发射功率,最终会导致系统崩溃。

2.3 功率平衡和SIR平衡混合体制准则

功率控制准则的控制方法易于实现,但其性能不及基于SIR平衡准则的功率控制,基于SIR平衡准则的功率控制也存在局限性,若某移动台到达基站的SIR过低时,需增大发射功率以使SIR达到平衡,但这也相应的增加了对其他移动台的干扰,必然导致其他移动台发射功率增大,如此不断恶性循环导致系统崩溃。为了克服SIR的正反馈带来的系统不稳定性,人们又提出了将SIR平衡准则与功率平衡准则相结合。

2.4 误码率(BER)平衡准则

BER一般指平均误码率,它需要在一段时间内求平均值。因此以它作为准则存在一定的时延,这段时延与求BER平均值的时间段是相互矛盾的,平均时间长时延大,延迟后执行功率控制的时间也就长,从而影响功率控制的正确性。

3 功率控制的分类

3.1 反向功率控制

反向功率控制就是在反向链路进行的功率控制,用于调整移动台的发射功率,使信号到达基站接收机时,信号电平刚刚达到保证通信质量的最小信噪比门限,从而克服远近效应,降低干扰,保证系统容量。反向功率控制可以将移动台的发射功率调整至最合理的电平,从而延长电池寿命。

由于用户的移动性,不同的移动台到基站的距离一般不同,这导致不同用户之间的路径损耗差别很大,甚至可能相差80dB,而且不同用户的信号所经历的

无线信道也有很大的不同。因此反向链路必须采用大动态范围的功率控制方法,快速补偿迅速变化的信道条件。

反向功率控制包括反向开环功率控制和反向闭环功率控制。

3.1.1 反向开环功率控制

反向开环功率控制的前提条件是假设前向和反向链路的衰落一致,系统内的每一个移动台接受并测量前向链路的信号强度,根据所接收的前向链路信号强度来估计传播路径损耗,然后根据这种估计,调整其发射功率。接收信号较强时,表明信道环境较好,将降低发射功率;接收信号较弱时,表明信道环境较差,将增加发射功率。

开环功率控制只是对发送电平的粗略估计,因此它的反应时间既不应太快,也不应太慢。如果反应太慢,在开机或进入阴影、拐弯效应时,开环起不到应有的作用;而如果反应太快,将会由于前向链路中的快衰落而浪费功率。因为前向、反向衰落是两个相对独立的过程,移动台接收的尖峰式功率很有可能是由于干扰而形成的。

(1)反向开环功率控制的优缺点

开环功率控制的优点是简单易行,不需要在基站和移动台之间交换信道状态及控制信息,因而开销小且控制速度快。由于开环功率控制是建立在上、下链路具有对称性的基础上,才能根据下行接收信号强度或SIR直接控制上行发射信号功率。对于慢衰落,其“阴影”效应在上、下链路具有位置上的对称性,故对抗这种衰落的影响很有效。

但是对于空间选择性衰落,即多径传播引起的快衰落,不具备上、下链路的对称性,因此开环功率控制对抗这类衰落性能较差。

对于IS-95频分双工(FDD)移动通信系统,其上、下链路所占频段相差45MHz 以上,远远大于信号相干带宽(200kHz左右),因此前反向链路的快衰落是完全独立和不相关的。在这种情况下,移动台根据接收到的下行信号的SIR,即衰

落状况来控制移动台发送信号功率,显然效果很差,开环功率控制会导致在某些时刻出现较大误差。

但是对于时分双工(TDD)移动通信系统,如TD-SCDMA系统,由于其上、下链路处于同一频段的不同时隙,只要上、下行时隙间隔不要太大,此时信道衰落基本上可以被认为是对称的,开环功率控制可以提高控制精度。

(2)反向开环功率控制的方法

在反向开环功率控制中,移动台根据整个频段内接收到的前向链路总功率,结合已知的一些接入参数,采用一定的算法计算得出接入时的发射功率大小。

开环功率控制是分步计算的,其步骤如下。

①当刚进入接入状态时,移动台将按照下式定义的平均输出功率来发射第一个接入探测:

平均输出功率(dBm)= -平均输入功率(dBm)+K+NOM-PWR+INIT-PWR (3-1)

式(3-1)中,平均功率是相对1.23MHz的标准CDMA信道带宽而言的;常数K取值为-73dBm;NOR-PWR用于告知移动台基站标称功率的变化信息;INIT-PWR 用于调整第一个接入探测的功率。后两个参数都需要根据具体传播环境的当地噪声电平通过计算得出。

②其后的接入探测不断增加发射功率(增加的步长为PRW-STEP),直到收到一个响应或序列结束。这时移动台开始在反向业务信道上发送信号,其平均输出功率电平为

平均输出功率(dBm)=平均输入功率(dBm)+K+NOM-PWR+

INIT-PWR+接入探测校正(3-2)

其中,接入探测校正= PWR-LVL×PWR-STEP,这里,PWR-LVL是接入探测功率电平调整, PWR-STEP是连续的两个接入试探之间功率的增加量。

③移动台接收到确认后,开始在反向业务信道上发送信号,其平均输出功率为

平均输出功率(dBm)= -平均输入功率(dBm)+K+NOM-PWR+

INIT-PWR+接入探测校正之和(3-3)

④移动台一旦从前向链路接收到功率控制比特,将开始进行闭环功率控制,即

平均输出功率(dBm)= -平均输入功率(dBm)+K+NOM-PWR+INIT-PWR+

接入探测校正之和+所有闭环功率控制校正之和(3-4)

反向开环功率控制是为了补偿平均路径损耗以及慢衰落,所以它必须要有一个很大的动态范围。根据空中接口标准,它至少应该达到±32dB的动态范围。NOM-PWR,INIT-PWR和PWR-STEP均为在接入参数消息中定义的参数,在移动台发射之前便可得到这些参数。NOM-PWR参数范围为-8~7dB,标称值为0dB。INIT-PWR 参数的动态范围为-16~15dB,标称值为0dB。PWR-STEP参数范围为0~7dB。这些校正参数对平均输出功率所做调整的精度为0.5dB。移动台平均输出功率可调整的动态范围至少应该达到±32dB的动态范围。

3.1.2 反向闭环功率控制

反向闭环功率控制是指基站根据测量到的反向信道的质量,调整移动台的发射功率。其基本原则是如果测量到的反向信道质量低于一定的门限,则命令移动台增加发射功率;反之命令移动台降低发射功率。

反向闭环功率控制是反向功率控制的核心。它通过基站,对移动台的开环功率估计进行迅速纠正,从而使移动台保持最理想的发射功率。反向闭环功率控制是对反向开环功率控制的不准确性进行弥补的一种有效手段,需要基站和移动台的共同参与。反向闭环功率控制在开环功率控制的基础上,能够提供±24dB的动态范围。

反向闭环功率控制包括两部分:内环功率控制和外环功率控制,如图3.1-1所示。内环功率控制的目的是使移动台业务信道的信噪比t b N E /(b E 是每个比特的能量,t N 是噪声的功率谱密度)能够尽可能地接近目标值,而外环功率控制则对指定的移动台调整t b N E /的目标值。内环功率控制在基站(BTS )完成,外环功率控制在基站控制器(BSC )完成。

外环(Outer Loop )功率控制内环(Inner Loop )功率控制

图3.1-1反向闭环功率控制

内环功率控制测量反向业务信道的t b N E /,将测量的结果与目标t b N E /相比较。如果实测的t b N E /小于目标值,则说明反向信道质量不好,因此命令移动台增加功率。如果实测的t b N E /大于目标值,则说明反向信道质量较好,因此命令移动台降低功率,以减小干扰。

外环功率控制测量反向信道的误帧率(FER ),将测量的结果与目标FER 相比较。如果实测的FER 超过目标值,说明反向信道质量不好,则命令提高提高内

环功率控制的t b N E /目标值;否则命令降低内环功率控制的t b N E /目标值。外环功率控制通过动态地调整内环功率控制中信噪比的目标值,来维持恒定的目标误帧率,以适应无线环境的变化,保证一定的通信质量。

同时使用外环功率控制和内环功率控制,可以保证有足够的信号能量,使接收接能在容许的错误概率情况下解调信号,又可以将对其他用户的干扰降至最低。

反向闭环功率控制流程图如图3.1-2所示。

图3.1-2反向闭环功率控制流程图

3.2 前向功率控制

前向功率控制是为在保证一定通信质量的前提下,尽量减少业务信道的发射功率,从而降低干扰。前向功率控制能使基站根据移动台的测量结果(前相信道误帧率的反馈报告),调整对每个移动台的发射功率。对衰落小的移动台分配相对较小的前向发射功率,对衰落比较大的移动台分配较大的前向发射功率。前向功率控制采用的也是闭环形式。前相信道的质量远好于反向信道,这是因为,小区内各个信道之间是同步的,移动台可以根据前向导频信道进行相干解调。前向链路对功率控制动态范围的要求也比较低。如图3.2-1为前向功率控制

3.2-1为前向功率控制

IS-95中前向功率控制采用较简单的慢速功率控制方案。下行功率控制实质上是对下行功率的最优分配。前向链路总功率与各信道之间功率分配:导频信道

约占20%,同步信道约占3%,寻呼信道约占6%,剩下的功率分配给各业务信道。如图3.2-2,当一个基站有12个用户时,每个信道分配功率百分比。

20%

备用29%

其他7信道25%

图3.2-2 12个用户时的信道分配

为了克服前向链路的“拐弯效应”,基站必须控制分配给每个不同用户的发射功率,以实现不同时段最佳下行功率分配。具体实现过程为:移动台采集前相信到的统计信息,然后通过功率测量报告消息(PMRE )把统计信息发送给基站控制器(BSC )。BSC 计算出前向信道的误帧率(FER )。如果实际的FER 超过了目标FER ,命令基站增加发射功率;如果实际FER 低于目标FER ,命令基站降低发射功率。基站的发射功率有一定的动态范围,既要避免发射功率过大,形成强干扰,也要避免发射功率过低,降低通信质量。

功率测量报告消息(PMRM )是指移动台测量的前向信道的帧数以及误帧的个数。移动台发送PMRM 的模式有两种:周期报告和门限报告。周期报告是指隔一段时间发送一次PMRM ,门限报告是指错误帧数达到一定门限时,发送PMRM 。这两种功率测量报告消息的存在方式是根据运营商的具体要求来设定的,既可以同时存在,也可以只用一种或两种都不用。

由于移动台的PMRM报告发送周期较长,基站控制器控制前向功率的周期也较长,这样前向闭环功率控制的速度比较慢,不能适应信道环境的快速变化。图3.2-3为IS-95系统中前向慢速功率控制的过程,该图中移动台的报告方式为门限方式,移动台接收到两个坏帧后,发送PMRM。

业务

信道

增益

图3.2-3前向慢速功率控制

3.3 软切换中的功率控制

与单条链路不同的是,软切换中的快速功率控制有两个主要问题:一个是下行链路中Node B功率的功率漂移:另一个是UE中上行链路功率控制指令的可靠检测。以下详细介绍这种现象,并且提供一个改善功率控制信令质量的解决方案。

3.3.1 下行链路功率漂移

UE发送一条指令来控制下行链路发射功率,激活集中的所有Node B都会接收到该指令。为避免网络中太长处理时延与过多的信令开销,功率控制指令不能在RNC中合并,而是由激活集中的Node B各自独立地对该指令进行检测和接收。由于空中接口传播会产生错误,各Node B检测出的功率控制指令可能不同。

这就有可能引起某Node B降低对UE的发射功率,同时另一Node B却提高对该UE的发射功率。这是个Node B的下行链路功率开始出现分化,这种情况称为功率漂移。

功率漂移不是我们所希望的,因为它大大降低了下行链路的软切换的性能。通过RNC可以控制功率漂移。最简单的方法是对下行链路功率控制的动态范围设置相对严格的限制。移动台的发射功率不同,就应该采取不同的功率控制动态范围。所以,允许的功率控制动态范围越小,最大功率漂移也越小,但另一方面,大的功率控制动态范围通常可以提高功率控制的性能。

减小功率漂移的另一方法为:RNC可以从各Node B接收到关于软切换进程中发射功率电平的信息,然后将这些发射功率电平在多个功率控制指令期间取平均。功率漂移问题只有在下行链路中应用快速功率控制技术时才会发生。在IS-95的下行链路只有慢速功率控制,因此不需要采取抑制功率漂移的措施。

3.3.2 上行链路功率控制指令的可靠性

激活集中的所有Node B均独立给UE发射功率控制指令以控制上行链路的发射功率。激活集中即使只有一个Node B正确接收上行链路的信号就足够了。因此,如果其中一个Node B发送降低功率的指令,UE就会降低它的发射功率。在软切换过程中,因为所有参与软切换的Node B发送相同的数据比特,所以UE 对软切换中的数据比特采用最大比合并。但各Node B发来的功率控制指令包含着不同的信息,所以UE对功率控制比特不能采用最大比合并接收,因此功率控制比特的可靠性低于数据比特的可靠性。UE用一个门限值来检测各功率控制指令的可靠性。因为干扰可能破坏功率控制指令,因而UE会丢弃哪些非常不可靠的功率控制指令。

3.3.3功率控制信令质量的改善

当UE处于软切换时,为下行链路专用物理控制信道(DPCCH)设置高于专用物理数据信道(DPDCH)的功率可以改善信令的传输质量。如图3.3-1所示,对于不同的DPCCH域(功率控制比特域、导频比特域和TFCI域),DPCCH与DPDCH 之间的功率偏移量不同。

图3.3-1为改善下行链路信令质量的功率偏移

因为采用功率偏移量,所以UE发射功率一般可以减小多达0.5dB。之所以有这样的结果,是因为功率控制信令的质量得以改善。

4 对功率控制算法的要求

一个功率控制算法要以固定的或可变的增量功率步长和固定的或可变的时间步长更新发射功率。移动通信的系统结构对使用分布式异步功率更新算法的要求是明显的。也就是说,每一个信道中的发射机应当仅使用本地的测量信息和本地时钟更新自己的发射功率。只有在下行链路中,才可以使用一些同步算法。

另一个要求是控制过程的稳定性。随机变换环境中功率控制算法稳定的关键是更新功率的误差分布。信号的传播和干扰的变化是随时间变化的随机过程。这些随机过程的采样值被用于解码、纠错和估计,而采样统计受到随时间变化的统计误差的影响。总之,稳定性仅仅视作SIR以预先规定的范围内波动。这个概率解释为纠错的能力,控制函数应综合考虑估计分布和功率控制算法。

对功率控制算法的最后要求是实现的容易性和鲁棒性。

影响功率控制算法的因素包括:

(1)容量和系统负载:蜂窝移动通信系统在任意时刻只能够服务有限的用户,因此在特定状态下需要定量的分析系统负载,并和网络最大理论容量联系起来。

(2)全局稳定性和系统性能:每条独立链路所对应的分布功率控制算法相互之间的内在关系,即相关性会影响整个系统的全局性质,例如稳定性和系统性能。因此,局部性能和全局性能之间需要一定的机制进行管理。

(3)通信质量测量:语音业务的评价标准是一项非常主观的测量指标,而数据业务测量标准相对客观,因此质量评价指标基于各种业务性质而不相同。

(4)功率限制:发射机由于硬件限制,其输出功率是一些给定的离散值的集合,这包括了量化的过程和上、下限制约。

(5)时延:测量和控制信令的传输造成了网络时延,它主要包括两个方面:第一是测量过程和将测量结果报告给功率控制算法模块产生时延;第二是通过功率控制算法计算得到的功率在发射机使用前造成的时延。

5 未来功率控制的研究趋势

传统的功率控制技术以话音业务为主,主要有集中式和分布式功率控制、开环和闭环功率控制、基于恒定接收和基于质量功率控制。

目前的功率控制的研究集中在数据业务和多媒体业务方面,多为联合考虑功率控制和速率控制研究。功率控制和速率控制两者的目标是相互抵触的,功率控制的目标是让更多的用户同时享有更多的服务。速率控制则是以增加系统吞吐量为目标,使得个别用户或业务具有更高的传输速率,同时达到公平性和吞吐量的双重目标。

更深入的研究将结合功率和速率控制技术进行联合控制,达到系统的最大优化。对于非实时的数据业务,要求对用户的传输速率进行有效控制,以充分利用频谱资源。不同的多媒体业务可以有不同的QoS来描述,只有设计合理的速率控制方案,才能有效地利用频谱资源。在无线信道中,传输速率和信干比之间关系密切。而功率控制是调节信干比最有效地手段,因此将速率控制和功率控制相结合是很自然地。

在功率和速率联合控制中,不同的速率以不同的处理增益或不同的调制编码技术来实现,且每个用户都有一个最小速率要求。

在实际通信系统中,可用的传输速率是一组离散的数值,链路控制的目的

即在于使通信系统吞吐量最大。由于速率的离散性,存在多种速率组合可以得到相同的系统吞吐量,但消耗的总发射功率却不同,而保证发射功率最小可以减小对相邻小区的干扰,提高整个系统的吞吐量。因此,功率控制和速率控制的问题可以归结为用最小总发射功率来最大化系统总吞吐量。有关功率和速率联合控制的数学分析和算法实现都在不断地研究过程中,主要的研究方向有:功率控制和速率控制结合,如内环快速闭环功率控制和AMC技术的结合;功率控制技术在数据分组业务中的应用;功率控制和功率分配技术在OFDM系统中的应用。

6小结

在第三代移动通信系统中有许多关键技术,如多载波技术、智能天线技术、软件无线电技术、多用户检测技术等。功率控制技术是CDMA系统的核心技术之一,它使系统能维护高质量通信,显著提高系统通信容量,同时可以延长手机电池使用寿命,并减低建网成本。本文分析目前PHS、GSM系统中的功率要求,详

细阐述了在CDMA系统中的功率控制,针对其中的前向功率控制和反向功率控制

技术,分析其控制过程及优缺点,对于3G系统的设计具有一定指导意义。

功率控制的能力和性能很大程度上依赖于功率测量的精度和功率控制

命令产生和传输处理时延。由于信号在移动通信传输中呈瑞利衰落,功率控制系统无法补偿由快衰落引起的信号功率的变化,特别是当移动台的运动速度很快时,功率控制技术会失效。要提高CDMA系统中的功率控制技术,最终需要多种关键

技术的有机结合,才能够实现3G的高质量通信。此外,在CDMA中除了功率控制以外,还包括功率的分配,它们共同构成了功率管理。对于功率控制技术,更深入地研究是结合功率和速率控制技术进行联合控制,达到系统的最大优化。

程序:

disp('please input d值的范围(0:10)d为距离发射天线的距离'); d=input('d 值');

disp('please input p0=?p0距发射天线d0处的参考点的功率');

p0=input('p0 值');

disp('please input d0=?d0参考距离 ');

d0=input('d0 值');

disp('please input n=?n 为距离衰减指数');

n=input('n 值');

p_r=p0*(d/d0).^(-n); % 距离发射天线d 处的接收功率 plot(d,p_r);

xlabel('距发射天线的距离');

ylabel('距离发射天线d 处的接收功率');

title('接收功率曲线');

0123456

78910

05

10

15202530

35

距发射天线的距离距离发射天线d 处的接收功率接收功率曲线

程序

disp('please input M=? ') M=input('M='); %用户个数C_I=1./(M-1); %载干比plot(M,C_I);

电力负荷控制技术应用及发展趋势分析

电力负荷控制技术应用及发展趋势分析 发表时间:2018-10-01T17:51:58.973Z 来源:《基层建设》2018年第24期作者:赵鹏 [导读] 摘要:电力负荷控制系统是我国电力系统的重要组成部分,电力负荷控制技术是保证电力负荷控制系统正常工作的重要技术,进而也是整个电力系统正常工作的技术保障,电力负荷控制技术的内容比较复杂,在应用的过程中必须抓住该技术的要点使其更好地发挥作用。 国网吉林省电力有限公司榆树市供电公司吉林长春 130400 摘要:电力负荷控制系统是我国电力系统的重要组成部分,电力负荷控制技术是保证电力负荷控制系统正常工作的重要技术,进而也是整个电力系统正常工作的技术保障,电力负荷控制技术的内容比较复杂,在应用的过程中必须抓住该技术的要点使其更好地发挥作用。本文将研究电力负荷控制技术及应用情况。 关键词:电力负荷;控制技术;应用;发展趋势 1电力负荷控制技术 1.1无线电力负荷控制技术 无线电力负荷控制技术采用无线电波作为信息传输通道,控制中心通过无线电台与中转站、接收执行站交换信息,向大中小各用户发送各种负荷控制指令,控制用户侧用电设备的控制系统,实现负荷控制目的。 1.2工频电力负荷控制技术 工频电力负荷控制技术要求在每个变电站装设一台工频信号发射机,应用配电网络作为传输通道。其基本原理是根据控制中心发来的控制信号,在配电变压器低压侧,在电源电压过零点前25°左右时产生一个畸变,该畸变信号返送到10kV侧,再传输给该变电站的低压侧。 由于畸变是按照信息编码的要求产生的,所以在接收端通过判别电压过零前的畸变来接收编码信息,即可实现用户侧的负荷控制。 1.3载波电力负荷控制技术 传统的载波通信是把载波信号耦合到高压线的某一相上,经高压线传送,接收端通过从同一相的高压线上获取此载波信号来实现一对一的远方通信。而载波负荷控制技术是把调制到10kHz左右频率的控制信号耦合到配电网的6~35kV母线上,并随配电网传输到位于电网末端的低压侧。位于低压侧的载波负荷控制接收机从电源中检测出此控制信号,完成相应的控制操作。载波电力负荷控制能直接控制到千家万户,有很好的扩展性。 2电力负荷控制技术的主要内容 电力负荷控制技术属于电力系统远动技术的范畴,电力负荷控制系统作为我国电力系统中众多控制系统中的一个组成部分,具有其自身的特点和优势,电力负荷控制系统与电网监控系统最大的不同就是电力负荷控制技术主要是控制用户端的用电情况,而不是控制发电站的发电情况。电力负荷控制技术的应用既增加了电力系统的用电安全又从某种程度上降低了用电的成本。电力负荷控制技术的内容比较复杂,下面将介绍电力负荷控制技术的主要内容。 2.1监控电力系统中的负控终端 电力系统中的负控终端就是指用电的个人或者部门那一端,在对实际的用电终端实施检测之前,应该利用模拟技术模拟出不同的用电环境,利用相关的检测软件和计算机技术来控制系统中的硬件部分,进而对模拟的不同用电环境中用电终端的用电情况进行控制和检测,找到及时解决用电问题或者是电路问题的方法,这是电力负荷控制技术的工作原理。电力负荷控制技术在实际的使用过程中主要是通过在用电终端安装检测控制装置,监测用户终端的用电情况,可以限制用户的用电量,防止不合理不公平用电情况的发生,维护用电终端的用电秩序,保证用户用电的合理性。控制系统还可以完成远程电表数据的观测工作,在用户没有及时缴费的情况下提醒用户缴纳电费或者是在用户电量将要用完的情况下提醒用户续缴电费,保证用户用电的连续性,防止因电力问题影响用户的生活。负控终端的检测工作不仅能够保证用户端用电的合理性,而且还能够为电力企业的生产和销售工作提供依据,终端控制系统能够收集实时的用电数据,电力企业可以根据用电数据分析用户的用电需求情况,合理安排电力的生产工作和营销工作。 2.2电力负荷控制技术的主要类别 目前电力负荷控制技术主要包括四种:工频电力负荷控制技术、音频电力负荷控制技术、载波电力负荷控制技术、无线电力负荷控制技术、光纤通讯与GPRS公网通讯模式等。工频电力负荷控制技术主要应用于变电站,在变电站安装工频信号发射器,一般情况下每个变电站配设一台工频信号发射器,传输工频信号发射器发射出的信号的通道是配电网络。工频电力负荷控制技术的主要工作程序是:调度中心发射带有一定指令的控制信号,人为地造成变电站相应装置的短路,进而让高压母线上的电压在短时间内产生一定程度的畸变,人为造成的短路是根据调度中心发出信号中携带的指令进行的,因此人为短路的形成也携带了一定的信息,使接收端可以根据不同的信息编码完成相应的负荷控制工作。音频电力负荷控制技术则是在变电站安设信号注入设备,一般情况下也是每个变电站配设一套信号注入设备,输入信号设施的主要部件有站端控制机、载波式音频信号发射器和信号耦合设备,其中站端控制机主要负责接收带有不同指令的调度信号,并把调度信号输入到载波式音频信号发射机,载波式音频信号发射机把带有指令的信号转换成音频脉冲,信号耦合设备把音频脉冲注入到配电网中,实现对用电终端的检测和控制。载波电力负荷控制技术主要是通过把控制信号进行调制,调制成为六到十六赫兹的信号,利用信号耦合设备把经过调制的信号注入到六到三十五千伏的配单线路中,电压系统中的低压部分装设的载波负荷控制接收装置接收耦合设备传输的信号,并根据信号的要求完成对用电终端的检测控制工作,载波电力负荷控制技术的工作流程与音频电力负荷控制技术的工作流程具有相似之处,但是载波电力负荷控制技术能够控制电线所到之处所有部位的负荷情况。无线电力负荷控制技术主要依靠无线电波来完成对用电终端的控制,具体控制流程为:调度指挥中心利用无线电台发射无线电波,通过无线电波来向中转站和接收执行站传输信息,接收执行站通过分析无线电波中携带的信息和指令来完成相应的负荷控制工作。 这四种电力负荷控制技术都有自己的优势和特点,其中音频电力负荷控制技术和载波电力负荷控制技术在使用过程中信号的传输质量更高,系统能够根据高质量的信号更好地完成控制工作而且设备价格也比工频电力负荷控制技术和无线电力负荷控制技术中的设备价格低,但是系统的维修改造费用较高,控制范围不如其他技术的控制范围广。无线电力负荷控制技术的信息传输效率高,能够在短时间内通过传输大量的信息完成多项控制工作。在实际的电力负荷控制技术选择的过程中应该根据具体的资金情况、系统的环境等具体情况选择出

智能功率分配器原理

智能功率分配器原理 平均户型面积为100m2 ,电力外网设计时平均每户设计标准为6KW,按照建筑物节能率为65%标准,电工暖热负荷不超过34W,耗热指标不超过15W,但为提升温度,实际安装按50W/m2 进行。每户电供暖总负荷为5000W,电视、冰箱、照明小负荷设备,即长时间运行设备总负荷约800W,合计为5800W,未超过每户住宅6KW标准。 智能功率分配器通过实时监控电力负荷,合理分配电流输出,由智能功率分配器中的智能程序启动和停止电供暖负荷。当家用电器达到用电高峰时,电采暖低负荷运行。当家用电器负荷低谷时,电采暖自动开启投入运行。一般住户用电高峰为早、中、晚、三个时间段,时间不超过一天的三分之一,所以不影响电采暖正常使用

随着人们生活水平的提高,家庭中的家用电器越来越多,家庭使用电力负荷也越来越大。在冬季使用电采暖系统时,所有家用电器的实时总负荷将大于电力系统给每户额定输入功率,总负荷增大后,用户的电力系统部安全因素将增加或者不能正常供电。智能功率分配器通过实时监控进户电网功率,根据不同时间与不同用户要求,使用优先方式、分时方式、均分方式合理的分配主功率与电采暖功率的大小,避免了用户实际使用负荷过大问题,使供电电网更加安全。

A:检测进户主负载功率,根据时间与用户要求自动分配电采暖输出功率。 B:检测供电电压,当电压过大时自动保护旁路中的电热线缆。C:三路电采暖负载输出,每一路独立输出最大功率为2KW。D:自动保护电采暖输出回路,电采暖输出回路出现短路、断路时,自动关闭当前电采暖输出回路。 E:实时显示主回路与电采暖回路功率。 F:每天电采暖工作时间不小于16小时,在最低温度下完全满足任何用户的采暖量。 G:完善的故障保护,故障警告。 H:结构尺寸小巧,可以直接安装在用户的进户配电箱中。

功率回退技术

1dB压缩点(P1dB) 在小信号区域,放大器的输出和输入呈线性关系。当输入功率增加时,输出功率逐渐接近非线性区,1dB压缩点被定义为放大器的增益比小信号增益低1dB时的输出功率,或说是被压缩1dB时的输出功率P1dB。通常将1dB压缩点作为一个放大器的线性区和非线性区的分界点。 图1 1dB压缩点 三次交调截取点(IP3) 在射频或微波多载波通讯系统中,三阶交调截取点OIP3是一个衡量线性度或失真的重要指标。交调失真对模拟微波通信来说,会产生临近信道的串扰,对数字微波通信来说,会降低系统的频谱利用率,并使误码率恶化;因此容量越大的系统,要求IP3越高,IP3越高表示线性度越好和更少的失真。IP3通常用两个输入音频测试,这里所指的音频与我们低频电子线路的音频没有区别,实际上是两个靠的比较近的射频或微波频率。 图2 放大器的输出功率和互调分量岁输入功率的变化 如放大器,基频是1:1增长,3rd是3:1增长,IP3点就是3rd信号影响超过基频的点。 从图2 中可以发现输出电平按照1:1的斜率随输入信号电平变化,而三阶互调失真则按照3:1的斜率变化。虽然输出和三阶互调都会在某个电平上饱和,但将二条曲线的线性区分延长并获得相交点,这个交点对应X轴和Y轴的读数分别被称为输入和输出三次截断点IP3;而二者之差即为放大器的小信号增益,如输入IP3为5dBm,输出IP3为50dBm,则放大器增益为45dB。

功率放大器的线性化技术主要有:功率回退法、负反馈法、预失真法、前馈法。 功率回退法: 功率回退法就是把功率放大器的输入功率从1dB压缩点(放大器有一个线性动态范围,在这个范围内,放大器的输出功率随输入功率线性增加。随着输入功率的继续增大,放大器渐渐进入饱和区,功率增益开始下降,通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,用P1dB表示。)向后回退6-10dB,工作在远小于1dB压缩点的电平上,使功率放大器远离饱和区,进入线性工作区,从而改善功率放大器的三阶交调系数。一般情况,当基波功率降低1dB时,三阶交调失真改善2dB。 A类放大器具有良好的线性放大性能,一般来讲,A类放大器在1dB压缩点输出时,三阶交调系数约为-23.7dBc(一般取-20dBc)。 采用回退方式的传统RF功率放大器往往采用固定栅压偏置或带温度补偿的栅压偏置方式(如图3所示),放大器的输出功率和偏置栅压没有进行关联控制,因此输出功率只能在回退到较小时才能达到较好的线性度,随着输出功率的增大线性指标将快速恶化。 功率回退法简单且易实现,不需要增加任何附加设备,是改善放大器线性度行之有效的方法,缺点是效率大为降低。另外,当功率回退到一定程度,当三阶交调制达到-50dBc以下时,继续回退将不再改善放大器的线性度。因此,在线性度要求很高的场合,完全靠功率回退是不够的。 图3 采用传统控制方式的功率放大器的示意图 放大管的偏置栅压输出功率具有一组相对应最佳值使其在零输出至满输出之间均能保持较好的线性输出能力。在输出功率较小时,删压维持一较高值,输出功率过了临界点后随着输出功率的加大,必须减小删压。 为了使功率放大器的偏置删压能够跟随输出功率的变化来实时的进行调节,我们采用如图4所示的电路结构并使用单片机的查表技术来实现这一目标。采用功率——删压关联偏置技术,将首先对输出功率进行检测,然后和单片机内的功率——删压表进行比对,找出输出功率和最佳匹配的删压值送给功放的栅极进行动态偏置。因此不同的输出功率,均有一个对应的最佳删压值,也就是说功率放大器可以在每个不同的输出功率下都可以具有较好的线性和效率指标,从而实现功率放大器在零输出至满输出之间,同时具有良好的线性和较高的效率。 图4 采用输出功率—栅压关联方式的功放示意图

功率控制

LTE功率控制 LTE功率控制的对象包括PUCCH,PUSCH,SRS,RA preamble, RA Msg3等。由于这些上行信号的数据速率和重要性各自不同,其具体功控方法和参数也不尽相同。PUSCH和SRS的功控基本相同。 1 标称功率(Nominal Power) eNB首先为该小区内的所有UE半静态设定一标称功率P0(对PUSCH和PUCCH有不同的标称功率,分别记为P0_PUSCH和P0_PUCCH ),该值通过系统消息SIB2(UplinkPowerControlCommon: p0-NominalPUSCH, p0-NominalPUCCH)广播给所有UE;P0_PUSCH的取值范围是(-126,24)dBm。 需要注意的是对于动态调度的上行传输和半持久调度的上行传输,P0_PUSCH的值也有所不同(SPS-ConfigUL: p0-NominalPUSCH-Persistent)。 另外RA Msg3的标称功率不受以上值限制,而是根据RA preamble初始发射功率(preambleInitialReceivedTargetPower)加上?Preamble_Msg3 (UplinkPowerControlCommon: deltaPreambleMsg3)。 每个UE还有UE specific的标称功率偏移(对PUSCH和PUCCH有不同的UE标称功率,分别记为P0_UE_PUSCH和P0_UE_PUCCH ),该值通过dedicated RRC信令(UplinkPowerControlDedicated: p0-UE-PUSCH, p0-UE-PUCCH)下发给UE。P0_UE_PUSCH和P0_UE_PUCCH的单位是dB,因此这个值可以看成是不同UE对于eNB范围标称功率P0_PUSCH和P0_PUCCH的一个偏移量。对于动态调度的上行传输和半持久调度的上行传输,P0_UE_PUSCH的值也有所不同。 最终UE所使用的标称功率是(eNB范围标称功率 + UE Specific偏移量)。 2 路损补偿 在标称功率基础上,UE还需要根据测量得到的路损数据自动进行功率补偿。UE 通过测量下行参考信号(RSRP)计算得到下行路损,乘以一个补偿系数α后作为上行路损补偿。系数α由eNB在系统消息中半静态设定(UplinkPowerControlCommon: alpha)。对于PUCCH和Msg 3,α总是为1。标称功率设定和路损补偿都属于半静态功率控制,UE的动态功率控制有基于MCS 的隐式功率调整和基于PDCCH的显示功率调整。 3 基于MCS的功率调整 根据Shannon公式,发射功率需要正比于传输数据速率。在LTE系统中,MCS决定了每个RB上行数据量的大小,因此调度信息中的MCS隐式地决定了功率调整需求。 根据公式可以得到功率调整量。 公式中的MPR即是由MCS决定的per RE的数据块大小; 公式中的KS一般情况下=1.25。 公式中的β是上行数据全为控制数据(如CQI)而无其他上行数据情况下的调整系数;如果有其他上行数据则为1。 基于MCS的功率调整仅针对PUSCH数据,对PUCCH和SRS不适用。 eNB可以对某UE关闭或开启基于MCS的功率调整,通过dedicated RRC信令(UplinkPowerControlDedicated: deltaMCS-Enabled)实现。

电力负荷控制的原理分析及控制策略 刘海丰

电力负荷控制的原理分析及控制策略刘海丰 发表时间:2017-12-23T21:52:29.097Z 来源:《电力设备》2017年第26期作者:刘海丰 [导读] 摘要:随着社会经济的发展,人们对电能的需求量也在逐渐增加,对电力负荷控制的关注度也越来越高,加强对电力负荷的控制变得非常的重要。通过对电力负荷控制,不但能有效的节约用电,还能降低供电线路的损耗,同时还能有效的提升电网运行过程中的可靠性和经济性。 (国网内蒙古东部电力有限公司通辽供电公司内蒙古 028000) 摘要:随着社会经济的发展,人们对电能的需求量也在逐渐增加,对电力负荷控制的关注度也越来越高,加强对电力负荷的控制变得非常的重要。通过对电力负荷控制,不但能有效的节约用电,还能降低供电线路的损耗,同时还能有效的提升电网运行过程中的可靠性和经济性。本文对电力负荷控制的原理及控制策略进行了分析和探讨。 关键词:电力负荷控制;原理;控制策略 一、电力负荷控制简介 电力负荷控制运用所涉及的核心机能包括:计算机技术应用、信息管理技术以及自动控制系统。电力系统能通过该系统的运行来对电力营销实行监控和管理,同时,通过该系统还能实现对数据的采集、网络的连接以及营业抄收等。负荷控制的别称就是负荷管理,是通过碾平负荷曲线均衡电力负荷的使用,从而有效的提升电网系统运行的经济性和安全性,促进整个企业的效益增长。负荷控制的方法非常多,比较常见的控制方式有直接控制、简介控制、集中控制以及分散控制。 二、电力负荷控制的原理分析 2.1电力负荷系统的组成 电力负荷的主要构成部分是负荷控制中心、通信系统以及控制终端。负荷控制中心也被称为主控站,主要是针对各个负荷的终端进行控制和监视,作为负荷控制中心监视和控制的核心设备,用户端是控制终端的安装位置。 2.2电力负荷系统的工作原理 负荷控制终端主要由主控组件、显示单元、电台、调制解调组件、输入输出组件以及一些开关电源组成,以下是电力负荷系统的工作原理: (1)电源接通以后,系统会默认进入上电复位程序开始运行,首次运行的过程中,终端会收到一系列由中心站发出的运行参数,然后终端会依据该参数进行运行。正常运行过程中,中心站发出指令信号,由终端天线接收后经电台解调为SK低频信号送至调制解调单元,再将处理数据送向主控单元。主控单元的应用程序截取异步通信接口的数据后,经过分析识别后分由不同的系统组织进行处理。 (2)经过对上述的数据进行传输后,终端怎会根据中心站所发出的一些运行参数通过变送器计算出模拟量,然后再计算出相应的电压和电流。而开关的分、合状态则被控辅助接电送出的开关信号检测。然后终端在接收到相应的命令后,就会执行当地的闭环空,并发出声光信号。当功控时间段内,负荷超过规定值时,系统就会发出声光报警,若报警信号达到一定的次数而没有进行一定的处理措施,终端系统就会自动跳闸,后期也会轮番的出现跳闸现象。等负荷值低于规定值时,警告信号就会自动的消除,等功控时段结束后,用户就能进行合闸操作。 (3)接收功控解除或允许合闸的命令后,越限跳闸状态就可以进行解除,而电量控制状态下,日电量或者是月电量超过电量定值的百分之八十时,警报信号会再次发出,完全超过定量值时,终端便会采取跳闸行动。同样,当有功控解除或允许合闸后,又或是在日末或月末时,有关电量的越状态会自动清除。 三、电力负荷的控制策略 3.1削峰 制定年度削峰计划时,应按年度负荷延续曲线,确定削峰目标。在峰荷期间削减负荷,可用:(1)减荷,即由客户主动在峰荷期间停用可间断负荷避峰。 (2)直接控制负荷,即用集中或分散型控制装置在峰荷时直接控制负荷。 (3)用分时电价刺激客户在峰荷时降荷,其关键是要制定一个合理的高峰电价,在峰荷期间,客户每增加1kW负荷,由发电到输、配电各环节的设备容量均需相应增加。因此,高峰负荷期间,客户除应支付电能电费外,还需要支付发、输、配电设备每千瓦摊销的投资。为了鼓励客户均衡用电,低谷期间的电能电价应给予优惠,而高峰期间的电能电价则应予以提高。这样,客户在高峰期间的用电就要交纳比低谷期间高得多的电费。 (4)实行可间断供电电价,即对客户可间断供电负荷进行控制,则电力公司将对该客户的电价给予不同的电价优惠。提前通知的时间日分为一天、四小时和一小时三种。规定控制时间应不少于每天六小时和每年一百小时。 3.2填谷 所谓填谷就是在不是用电的高峰期时段使用电力,具体的实施方法有: (1)可以在用电的低谷时段采取一定的措施,对热量进行及时的存储,在这一时段是可以存储到大量的热量,而整个电网在运行的时候可以依靠这些热量进行十几个小时的热量供应; (2)在不同的季节要采取不同的电价,这样能有效的改善和调节每年用电的低谷时期和高峰时期; (3)对电价的定价要采取非高峰时段用电计算价格的方式; (4)要实行不同时段采取不同电费计价标准的方式来进行填谷。 3.3移荷 所谓移荷,是将客户在高峰时的用电移到峰前和峰后使用。其方法有: (1)贮热,此种电气加热器贮热容量不够大,只能供应三个小时左右的应用; (2)用分时电价鼓励客户移荷; (3)对电器设备进行控制,例如可以控制电弧炉和加热炉之类的电气设备,使其由峰荷移出。 3.4政策性节电降载

LTE功率控制要点

L T E功率控制要点Last revision on 21 December 2020

功率控制 功率控制是无线系统中重要的一个功能。UE在不同的区域向基站发送信号,这样发送的功率就会有不一致。远的UE发送的功率应该大一些,近的稍微小一些,这样以便基站能够更好的将不同的UE能够解调出来。 功率控制也通常分为开环功率控制和闭环功率控制。开环功率控制通常不需要UE 反馈,基站通过自身的一些测量或者其他信息,来控制UE的功率发送或者自身的功率发送。闭环功率控制通常需要UE的一些相应的信息,包括信噪比(SIR/ SINR) 或者是BLER/FER等信息,来调整UE的发送功率。闭环功率控制又一般分为两种,一种是内环功率控制,一种是外环功率控制。内环功率控制是通过SIR来进行相应的功率控制,基站通过接收到UE的SIR,发现与预期的SIR有差距,然后产生功率控制命令,指示UE进行调整发送功能,以达到预期的SIR。外环功率通常是一种慢功率调整,主要是通过链路的质量来调整SIR,通过测量链路的BLER,来指示SIR的调整情况。 LTE的功率控制,有别于其他系统的功率控制。LTE在一个小区是一个信号正交的系统,所以小区内相互干扰比较小,LTE主要是在小区之间的干扰。所以LTE对于小区内的功率控制的频率相对比较慢。LTE有个概念下行功率分配时要使用到,the energy per resource element (EPRE),可以立即为每个RE的平均功率。 1上行功率控制 PUSCH的功率控制 UE需要根据eNB的指示设置每个子帧的PUSCH的发射功率 P: PUSCH

)}()()()())((log 10,min{)(TF O_PUSCH PUSCH 10CMAX PUSCH i f i PL j j P i M P i P +?+?++=α [dBm] 以下对于各个参数进行相应的解析。 CMAX P 是UE 的发射的最大的功率,在协议36101中定义的, )(PUSCH i M 是UE 在子帧i 所分配的PUSCH 的RB 的数目或者PUSCH 的RB 带宽,用 RB 数目来表示; )(O_PUSCH j P 是预期的 PUSCH 的功率,包括两部分,一部分是小区属性的参数 )( PUSCH O_NOMINAL_j P ,一个是 UE 属性的参数)(O_UE_PUSCH j P 。对于小区属性,是各个UE 都 相同的这样一个预期的小区的功率,而UE 的参数,则是根据不同的UE 所设置的参数; )(O_PUSCH j P = )( PUSCH O_NOMINAL_j P +)(O_UE_PUSCH j P 当 j=0时,是半静态调度; j=1时是动态调度; j=2时是RA 接入是功率控制的情况,0)2(O_UE_PUSCH =P ; 这几个参数都是在高层指派下来的,在36331中的UplinkPowerControl 中,其中 )( PUSCH O_NOMINAL_j P 范围为(-126..24),精度为 1dBm ,需要使用8比特来表示; )(O_UE_PUSCH j P 范围为(-8..7), 精度为 1db 。 α是路损的补偿权值,范围为{}1,9.0,8.0,7.0,6.0,5.0,4.0,0∈α,只有动态调度和半静态调度才需要高层指派,RA 过程时α=1。这个α值通常为之间能够达到相对比较好的性能,既能提升UE 的发送功能,又不产生很大的小区间干扰; PL 是UE 计算的下行路损,UE 通过参考信号功率和RSRP(参考信号接收功率)来计算,PL=参考信号功率-RSRP,RSRP 需要通过滤波器来处理,滤波器的权值在高层中定

功率因数控制器RVC的使用说明

功率因数控制器RVC的使用 1)、控制器RVC上电后可看到其默认界面为自动状态(Auto),按Mode键进入手动界面; 2)、按Mode键进入自动设定参数的界面; 3)、按Mode键进入手动设定目标功率因数cosψ的界面,通过按“+”和“-”键调整其大小,推荐cosψ为0.92--0.98; 4)、按Mode键进入设定灵敏系数C/k的界面,通过按“+”和“-”键调整其大小,可查阅RVC使用说明书的C/k表得到其值,也可通过下面的方法计算: 其中: Q:单步无功功率(kvar); U:系统电压(V); K:电流互感器变比。 5)、按Mode键进入手动设定相位值PHASE的界面,通过按“+”和“-”键调整其大小。严格按照RVC使用说明书要求的接线方式进行电压电流互感器信号的输入接线的前提下,可查阅使用说明书中的相位表得到相位值,也可以用以下方法设置: 确定RVC测试点实际的功率因数cosψ,然后调整相位值,进入RVC的自动界面查看其显示的功率因数是否与先前的实际值一致,若否,则调整相位值直到与实际值一致; 6)、按Mode键进入手动设定投切延迟时间Delay的界面,通过按“+”和“-”键调整其大小,推荐运行时的延迟时间为10秒,也可根据调试需要将其增大至40秒; 7)、按Mode键进入手动设定输出组数Output的界面,通过按“+”和“-”键调整其大小,补偿柜中的组数即为其值; 8)、按Mode键进入手动设定序列Sequence的界面,通过按“+”和“-”键调整其设定,可参见下表: 序列类型(组间容量的比例关系)显示值 1∶1∶1∶1∶1∶…∶1 1.1.1 1∶2∶2∶2∶2∶…∶2 1.2.2 1∶2∶4∶4∶4∶…∶4 1.2.4 1∶2∶4∶8∶8∶…∶8 1.2.8 1∶1∶2∶2∶2∶…∶2 1.1.2 1∶1∶2∶4∶8∶…∶8 1.1.8 1∶2∶3∶3∶3∶…∶3 1.2.3 1∶2∶3∶6∶6∶…∶6 1.2.6 1∶1∶2∶3∶3∶…∶3 1.1.3 1∶1∶2∶3∶6∶…∶6 1.1.6 9)、按Mode键进入自动界面(Auto),显示值即为测试到的功率因数值。若显示值与实际值不符,可以通过调整相位值PHASE改变相位关系,直到与实际值一致,

电机和功率控制解决方案

借助ADI 公司业界领先的转换器、放大器和处理器技术,电机控制和逆变器客户能够设计出精度更高、更加节能、通信能力更强的产品。此外,ADI 公司丰富多样的模拟和处理器产品支持核心信号链,可加快产品上市时间,提高能效和工厂自动化集成度,降低维护成本。 ADI 公司的收发器和Blackfin ?处理器所提供的通信技术可将工厂自动化提升到更高层次。ADI MEMS 技术支持振动检测和定位控制,有助于实现更准确的预见性维护,降低运营成本。 ADI 公司的电源管理产品支持以更高的能效和控制水平实现所有这些功能。 电机和功率控制解决方案 目录 反馈和检测 ...............................2隔离 ...........................................5过程解决方案 ..........................6通信和系统集成 ......................7电源和支持功能 .......................8演示与参考设计 .....................11资源与工具............................. 12 https://www.sodocs.net/doc/8f14561748.html,/zh/motorcontrol

利用ADI 公司的RDC 优化速度/分辨率与负载位置的关系 许多电机控制系统以可变的轴转速工作。为提供最精确的位置信息,要求系统具有灵活可变的分辨率。AD2S1210正是这样一种能够即时改变分辨率的旋变数字转换器。这款转换器是一款集成解决方案,包括一个具有可编程频率的激励振荡器、可编程阈值电平、非常宽的模拟输入范围以及指示故障确切性质的信息。AD2S1210提供以更少的外部元件与旋转变压器接口所需的高级功能。AD2S1210 特性 ? 可变分辨率:10位至16位? 精度:2.5弧分 (16位分辨率) ? 最大跟踪速率:3125 rps (10位分辨率)? 可编程故障检测阈值? 可编程激励频率 利用ADI 公司的同步采样ADC 实现精密位置检测 电机控制伺服驱动器应用广泛,精密机器人、CNC(计算机数控)加工和工厂自动化就是其中的几例。这些系统集成轴位置反馈功能,以便精确检测位置,确保系统操作准确。此反馈功能由具备不同输出特性的各种编码器提供。 AD7262/AD7264集成有PGA 和双通道同步采样差分输入ADC ,能够与各种编码器直接接口,不同的设计都可以采用同一种器件,从而减少不同位置反馈平台的硬件变更,并提高软件重用率,最终缩短开发周期。 AD7262/AD7264内置4个比较器以与极点传感器接口,同时具有内部ADC 失调、系统失调和增益校准功能,以确保ADC 最终结果的准确性。这种单芯片解决方案在一个封装中集成了与位置传感器成功接口所需的全部功能,物料(BOM)成本和PCB 板复杂性得以降低,而性能则达到同类最高水平。 特性 ? 14位、1 MSPS 、双通道同步采样ADC ? 可编程增益放大器,具有14个不同的增益级? 高模拟输入阻抗,无需ADC 驱动电路 ? 4个片内比较器 反馈和检测 2 | 电机和功率控制解决方案

电力负荷控制技术运用分析

电力负荷控制技术运用分析 发表时间:2019-01-08T17:07:34.983Z 来源:《电力设备》2018年第24期作者:张倩倩[导读] 摘要:电力负荷控制技术是实施计划用电、节约用电、安全用电的技术措施,具有遥控操作、负荷控制、远程抄表、实时监控等功能,为需求侧管理提供了有效的技术支持,负荷控制系统的应用使需求侧管理工作有了相应的成效,利用负荷控制系统进行负荷管理,提高了客户终端用电效益,电力负荷控制系统也将在用电管理现代化实现的进程中起到越来越重要的作用本文对电力负荷控制技术运用进行 分析。 (山西省电力公司阳泉供电公司客户服务中心计量室山西省阳泉市 045000)摘要:电力负荷控制技术是实施计划用电、节约用电、安全用电的技术措施,具有遥控操作、负荷控制、远程抄表、实时监控等功能,为需求侧管理提供了有效的技术支持,负荷控制系统的应用使需求侧管理工作有了相应的成效,利用负荷控制系统进行负荷管理,提高了客户终端用电效益,电力负荷控制系统也将在用电管理现代化实现的进程中起到越来越重要的作用本文对电力负荷控制技术运用进行分析。 关键词:电力负荷;控制技术;运用现阶段,能源的不足成为了全世界普遍存在的问题,为了对这一问题进行解决,实现能源的有效利用。电力负荷控制技术就成为了电气企业必须应用的一项技术,在对这一技术进行应用的基础上能够有效的调控电价,无论是高峰期还是低谷期,在对电价进行调控的基础上才能够对用户进行调控,使得用户有意识的避开高峰用电期,进而对各个阶段和时间点的电力进行平衡。 1电力负荷控制装置结构功能对于电力负荷控制装置的结构功能主要能够分为集中控制和分散控制两种类型,其中在分散控制类型的结构上是能够直接安装在用户变电所以及配电箱内的负荷控制器,是对用电的时间以及天数等进行控制的开关。不仅能对用电的时间得到了有效控制,同时也对用电量定量器得到了有效控制,通过这一装置结构就能对用电负荷及时准确的进行监控,不仅如此,也能够对供电线路以及用电设备等从电力系统当中进行切除。另外,对于集中控制类型的电力负荷控制装置主要是通过中央控制机以及信息传输和控制终端几个部分所组成。中央控制机则是对信息处理控制的重要机构,而信息的传输则是信息传递的通道,最后的控制终端则是最高的智能终端,也就是双向终端,能够接收以及执行中心命令等。 2电力负荷控制技术类型分析 2.1无线电力负荷控制技术 无线电力负荷控制技术由于其信息传统通道是以无线电波为主,而将各种负荷控制指令发送给大中小各用户时则是由控制中心通过无线电台、中转站及接收执行站等来进行信息交换,从而达到对用户侧用电设备进行控制,无线电力负荷控制系统的应用,有效的确保了负荷控制的实现。 2.2工频电力负荷控制技术 工频电力负荷控制技术要求在每个变电站装设一台工频信号发射机,应用配电网络作为传输通道。其基本原理是根据控制中心发来的控制信号,在配电变压器低压侧,在电源电压过零点前25°左右时产生一个畸变,该畸变信号返送到10kV侧,再传输给该变电站的低压侧。由于畸变是按照信息编码的要求产生的,所以在接收端通过判别电压过零前的畸变来接收编码信息,即可实现用户侧的负荷控制。 2.3音频电力负荷控制技术 音频电力负荷控制技术与载波电力负荷控制之间不存在很大的差异,二者之间有很多共同点,音频电力控制技术实施的前提就是在各大变电站中安装信号注入设备,从而相互之间进行连接。注入设备包括站端控制机以及载波式音频信号发射机,除此之外还包括信号耦合装置。站端控制机的作用就在于其能够接收控制中心所发出的所有负荷控制指令,并且将其转入到载波式音频信号发射机之中,发射机在运行的过程中可以有效的将其进行转变,使其变为具有较大功能的控制信号,并且传送给配电网,将载波控制信号添加在配电网之上,在最后一个步骤才传输给用户。 2.4载波电力负荷控制技术 耦合载波信号存在于高压线之中,对高压线进行应用,从而向其某一相耦合载波信号传送,接收端能够在同一相高压线获取载波信号,在此基础上实现远方信号的一对一。将频率控制信号向配电网的母线耦合进行调制,并且传送向电网的末端低压侧,在传输的过程中还需要配合配电网。载波电力负荷能够对家家户户的进行直接的控制,其扩展性良好。 3电力负荷控制技术运用 3.1可运用于负控管理 电力负荷控制装置中的负荷控制功能可以向用户反馈电力负荷的情况和信息,让用户能够清楚的了解电力负荷的情况以便用户可以根据具体情况来安排自己的用电计划。电力负荷控制措施的实施能够让用户通过接收到的信息来进行生活及生产中的工作,为用户的用电计划提供理论的数据,使用户可以根据自身的实际情况来安排用电的顺序。电力公司也应当根据用户的用电情况来调整发电量,保证电能能够得到合理科学的使用,使发电计划合理化,促进企业经济的发展。通过采取电力负荷控制管理的措施,用户可以自由安排用电的时间,可以减少用户电力的支出。且电力公司可以采取相应的措施来应对市场的变化情况,保证能够及时有效的供电。用电高峰期容易造成线损,可以通过电力负荷控制装置来对高峰期的用电量进行有效控制,进而减少线损现象的发生。且通过采用电力负荷控制措施能够保证电能和计量装置的质量,有效保证供电的可靠性,进而实现电力企业营销自动化。且很多用电公司开始进行独立运作,很多硬件及软件技术也在不断发展,而电力负荷控制系统也成为用电公司的技术支持,其融合了营业运作、线损分析、多媒体信息、负荷预测等多种功能,是用电公司的必备设备。电力负荷控制系统目前已经深入到了用户内部,且目前的电力负荷控制技术能够实现负荷控制,并逐渐实现用电及配电的自动化管理,并得到了广泛的推广和应用。 3.2能够分析和预测负荷电量 预测的方法和手段以及预测所需的基础资料的质量决定了电力负荷分析的精确性。对数据的采集及整理是电力负荷控制系统的基本的功能,其获得的数据是预测及分析负荷电量的重要依据,且电力负荷控制系统提供的数据可以保证负荷电量分析及预测的准确性。 3.3远程自动抄表

功率控制

功率控制培训讲义 一、背景 控制无线路径上的发射功率的目的是在不需要最大发射功率,就能达到较好的传输质量的情况下,降低发射功率。这样做,既能保持传输质量高于给定门限,又能降低移动台和基站的平均广播功率,减少对其它通信的干扰。 功率控制分为上行功率控制和下行功率控制,上下行控制独立进行。上行功率控制移动台(MS),下行功率控制基站(BTS)。同一方向的连续两次控制之间的时间间隔由O&M设定。 功率控制包括移动台和基站的功率控制。 移动台功率控制的目的是调整MS的输出功率,使BTS获得稳定接收信号强度,以限制同信道用户的干扰,减少BTS多路耦合器的饱和度,降低移动台功耗;基站功率控制目的是调整BTS输出功率,使MS获得稳定接收信号强度,以限制同信道干扰,降低基站功耗。 基站动态功率控制目的是调整BTS输出功率,使MS获得稳定接收信号强度,以限制同信道干扰,降低基站功耗。基站动态功率控制仅使用稳态功率控制算法。 实现功率控制有两种算法——0508功率控制算法和华为动态功率控制算法(简称0508算法和动态功控算法)。 二、功率控制过程 1.移动台功率控制 移动台功率控制分为两个调整阶段——Stationary稳态调整和Initial初始调整。稳态调整是功率控制算法执行的常规方式,初始调整使用于呼叫接续最开始的时刻。当一个接续发生,MS以所在小区的名义功率输出,(名义功率即在收到功率调整命令之前,MS发射功率为所在小区BCCH信道上广播的系统消息中MS 最大发射功率MS_TXPWR_MAX_CCH。而如果MS不支持这一功率级别,则采用与之最接近的可支持的功率级别,如在建立指示消息中上报的MS类标Classmark所支持的最大输出功率级别)。但因为BTS可同时支持多个呼叫,必须在一个新的接续中尽快降低接收信号强度,否则该BTS支持的别的呼叫的质量会由于BTS 多路耦合器饱和而恶化,并且另外小区的呼叫质量也会由于强干扰而受到影响。

电力负荷管理终端管理办法

电力负荷管理终端管理办法

电力负荷管理终端管理办法 1 范围 本办法规定了如何加强对电力负荷管理系 统终端运行管理,提高设备运行可靠性,更好 地发挥电力负荷管理系统在电网运行管理中的 作用,适用于供电公司电力负荷管理终端及相 关设备的建设、运行、维护管理。 2 规范性引用文件 DL/T533-1993 《无线电负荷控制双向终端技术条件》 Q/GDW 129-2005 《电力负荷管理系统通用技术条件》 电营销〔2006〕881号 《负荷管理系统终端安装规定》 电营〔2005〕239号《省电力负 荷管理终端安装工作流程暂行规定》 国家电网公司生产营销[2004]116号 《电力负荷管理系统建设与运行管理办法》 经贸电力[2004]240 号《省经贸委关于 推广应用电力负荷管理装置的通知》 价[2004]商281号《省物价局关于电 力负荷管理系统有关收费问题的批复》 3 职责 3.1 配电部:负责负荷管理终端建设规划 以及省公司营销部下达的负荷管理终端项目筹

建。负责负荷管理终端安装调试技术培训、安装验收和档案管理。负责负荷管理终端日常运行维护管理、资产管理、技术管理。 3.2 营销部计量中心:负责负荷管理终端抄表数据比对、单轨设置的监督管理。负责负荷管理终端涉及的电能表计计量以及脉冲、485接口等功能的检定, 电能计量技术支持,三相高压表计的定期轮换。 3.3 各供电所:负责负荷管理终端日常巡视,以及巡视发现的缺陷反馈。负责用电客户管理信息系统登记的用电异常处理。负责每年终端安装需求提交,配合、协调终端安装。负责办理和负荷管理终端不匹配的表计换表工作。 4 管理内容与方法 4.1 建设管理 4.1.1 凡是由供电公司供电的100kVA及以上专变客户和从电网受电的各关口变电站都要按市供电有限公司营销部配电中心的统一规划装用电力负荷管理终端。 4.1.2 各供电所负责向配电中心上报每年电力负荷管理终端安装需求,营销部负责汇总平衡需求。 4.1.3 配电部根据省公司营销部下达的安装覆盖率指标和新增客户数量,向省公司营销部上报负荷管理终端的需量,并负责省公司

三相电压型PWM整流器直接功率控制方法综述

三相电压型PWM整流器直接功率控制方法综述 https://www.sodocs.net/doc/8f14561748.html,/tech/intro.aspx?id=565 点击数:260 刘永奎,伍文俊 (西安理工大学自动化学院电气工程系,陕西西安710048)摘要首先介绍了三相电压型PWM整流器的拓扑结构,在此基础上,对当前应用于PWM 整流器的直接功率控制策略进行了对比分析,介绍了其实现机理和优缺点,最后,对直接功率控制在三相电压型PWM整流器中的控制技术进行了展望。 关键字 PWM整流器;直接功率控制;综述 Summary about Direct Power Control Scheme of Three-Phase Voltage Source PWM Rectifiers LIU Yongkui,WU Wenjun (Xi'an University of Technology,Xi'an Shannxi 710048 China)Abstract The topological structure of three-phase PWM rectifiers is introduced. On this basis, several DPC methods of three-phase voltage source PWM rectifiers were introduced and compared. At last, the pros原per of the control scheme development trends in three-phase PWM rectifiers is presented. Keywords three-phase PWM rectifiers;direct power control;summary 1 概述 三相电压型PWM整流器具有能量双向流动、网侧电流正弦化、低谐波输入电流、恒定直流电压控制、较小容量滤波器及高功率因数(近似为单位功率因数)等特征,有效地消除了传统整流器输入电流谐波含量大、功率因数低等问题,被广泛应用于四象限交流传动、有源电力滤波、超导储能、新能源发电等工业领域。 PWM 整流器控制策略有多种,现行控制策略中以直接电流、间接电流控制为主,这两种闭环控制策略

功率控制

功率控制

功率控制 前向快速功率控制 -速率可达到800b/s CDMA2000 1x系统反向内环功率控制速率为(800 ) CDMA2000 1x系统反向外环功率控制速率为(50 ) DO反向功率控制信道数据速率为600bps 对于外环功率控制主要检验各项业务得到需要的服务质量(如PER),对于内环功率控制主要检验其按照外环指定的Eb/N0目标值调整AT发射功率的能力。 CDMA EV-DO 系统只有反向链路采用功率控制机制,反向功率控制的目标是与反向速率控制配合实现反向吞吐量与反向业务容量的均衡,保证反向链路PER 的稳定。反向功率控制与1X 系统类似,包括:开环功率控制(Open Loop Power Control)、闭环功率控制(Close LoopPower Control)及外

环功率控制(Outer Loop Power Control) [attach]221757[/attach] 开环功率控制如图2 所示,AT 通过Rx power estimation 模块测量前向链路的接收功率来确定Pilot Channel Gain,其他信道根据Pilot Chnanel Gain 来调整发射功率; Pilot Channel Gain 的计算公式如下: X0 = –Mean Received Power (dBm) + OpenLoopAdjust + ProbeInitialAdjust OpenLoopAdjust + ProbeInitialAdjust 的可调整范围从-81 dB到-66dB,与1X系统中的Offset power有所不同。不同厂家的OpenLoopAdjust默认值有所不同。 其他反向信道的发射功率均参照Pilot Channel Gain来确定 Cdma功率控制技术-FREE Cdma功率控制技术

相关主题