搜档网
当前位置:搜档网 › 高中数学步步高大一轮复习讲义(文科)选修45-不等式选讲

高中数学步步高大一轮复习讲义(文科)选修45-不等式选讲

高中数学步步高大一轮复习讲义(文科)选修45-不等式选讲
高中数学步步高大一轮复习讲义(文科)选修45-不等式选讲

选修4-5不等式选讲

1.两个实数大小关系的基本事实

a>b?________;a=b?________;a

2.不等式的基本性质

(1)对称性:如果a>b,那么________;如果________,那么a>b.即a>b?________.

(2)传递性:如果a>b,b>c,那么________.

(3)可加性:如果a>b,那么____________.

(4)可乘性:如果a>b,c>0,那么________;如果a>b,c<0,那么________.

(5)乘方:如果a>b>0,那么a n________b n(n∈N,n>1).

(6)开方:如果a>b>0,那么n

a________

n

b(n∈N,n>1).

3.绝对值三角不等式

(1)性质1:|a+b|≤________.

(2)性质2:|a|-|b|≤________.

性质3:________≤|a-b|≤________.

4.绝对值不等式的解法

(1)含绝对值的不等式|x|a的解集

不等式a>0a=0a<0

|x|

|x|>a

(2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法

①|ax+b|≤c?______________;

②|ax+b|≥c?______________.

(3)|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法

①利用绝对值不等式的几何意义求解,体现了数形结合的思想;

②利用“零点分段法”求解,体现了分类讨论的思想;

③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.

5.基本不等式

(1)定理:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.

(2)定理(基本不等式):如果a ,b >0,那么a +b

2________ab ,当且仅当________时,等号成

立.也可以表述为:两个________的算术平均________________它们的几何平均. (3)利用基本不等式求最值 对两个正实数x ,y ,

①如果它们的和S 是定值,则当且仅当________时,它们的积P 取得最________值; ②如果它们的积P 是定值,则当且仅当________时,它们的和S 取得最________值. 6.三个正数的算术—几何平均不等式

(1)定理 如果a ,b ,c 均为正数,那么a +b +c 3________3

abc ,当且仅当________时,等号

成立.

即三个正数的算术平均____________它们的几何平均. (2)基本不等式的推广

对于n 个正数a 1,a 2,…,a n ,它们的算术平均__________它们的几何平均,即a 1+a 2+…+a n n ________n

a 1a 2…a n ,

当且仅当________________时,等号成立. 7.柯西不等式

(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.

(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2

,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i

=1,2,…,n )时,等号成立.

(3)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 8.证明不等式的方法 (1)比较法 ①求差比较法

知道a >b ?a -b >0,a b ,只要证明________即可,这种方法称为求差比较法. ②求商比较法

由a >b >0?a

b >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明________即可,这

种方法称为求商比较法.

(2)分析法

从待证不等式出发,逐步寻求使它成立的____________,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法. (3)综合法

从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法. (4)反证法的证明步骤

第一步:作出与所证不等式________的假设;

第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立. (5)放缩法

所谓放缩法,即要把所证不等式的一边适当地________________,以利于化简,并使它与不等式的另一边的不等关系更为明显,从而得到欲证不等式成立. (6)数学归纳法

设{P n }是一个与自然数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切自然数成立.

1.不等式|2x -1|-|x -2|<0的解集为__________. 2.不等式1<|x +1|<3的解集为__________________.

3.(2013·福建改编)设不等式|x -2|

2?A .则a 的值为

________.

4.已知a 、b 、m 均为正数,且a

b ,N =a +m b +m ,则M 、N 的大小关系是________.

5.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小关系为__________.

题型一 含绝对值的不等式的解法

例1 (2012·课标全国)已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集;

(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.

思维升华解绝对值不等式的基本方法:

(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;

(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;

(3)利用绝对值的几何意义,数形结合求解.

已知函数f(x)=|x-a|.

(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;

(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

题型二柯西不等式的应用

例2已知3x2+2y2≤6,求证:2x+y≤11.

思维升华使用柯西不等式时,关键是将已知条件通过配凑,转化为符合柯西不等式条件的式子,二维形式的柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时等号成立.若3x+4y=2,试求x2+y2的最小值.

题型三 不等式的证明方法

例3 已知a ,b ,c ∈(0,+∞),且a +b +c =1, 求证:(1)(1a -1)·(1b -1)·(1

c -1)≥8;

(2)a +b +c ≤ 3.

思维升华 用综合法证明不等式是“由因导果”,分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.

设a ,b ,c >0,且ab +bc +ca =1.

求证:(1)a +b +c ≥3; (2) a bc

+ b ac

+ c

ab

≥3(a +b +c ).

绝对值不等式的解法

典例:(10分)解不等式|x +1|+|x -1|≥3.

思维启迪 本题不等式为|x -a |+|x -b |≥c 型不等式,解此类不等式有三种方法:几何法、分区间(分类)讨论法和图象法. 规范解答

解 方法一 如图所示,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1,到A ,B 两点的距离和为3,A 1对应数轴上的x

.

[4分]

∴-1-x +1-x =3,得x =-3

2

.

同理设B 点右侧有一点B 1到A ,B 两点距离之和为3,B 1对应数轴上的x ,∴x -1+x -(-1)=3.∴x =3

2

.

从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都大于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3.[8分] 所以原不等式的解集是????-∞,-32∪????3

2,+∞.[10分] 方法二 当x ≤-1时,原不等式可化为 -(x +1)-(x -1)≥3,解得:x ≤-3

2.[3分]

当-1

x +1-(x -1)≥3,即2≥3.不成立,无解.[6分] 当x ≥1时,原不等式可以化为 x +1+x -1≥3.所以x ≥3

2

.[9分]

综上,可知原不等式的解集为?

??

?

??x |x ≤-32或x ≥32.[10分]

方法三 将原不等式转化为|x +1|+|x -1|-3≥0. 构造函数y =|x +1|+|x -1|-3, 即y =????

?

-2x -3,x ≤-1;-1,-1

2x -3,x ≥1.

[3分]

作出函数的图象,如图所示:

函数的零点是-32,3

2

.

从图象可知,当x ≤-32或x ≥3

2时,y ≥0,[8分]

即|x +1|+|x -1|-3≥0.

所以原不等式的解集为????-∞,-32∪???

?3

2,+∞.[10分] 温馨提醒 这三种方法是解|x +a |+|x +b |≥c 型不等式常用的方法,方法一中关键是找到特殊点,方法二中的分类讨论要遵循“不重不漏”的原则,方法三则要准确画出函数图象,并准确找出零点.

方法与技巧

1.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.

含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x -a |+|x -b |>m 或|x -a |+|x -b |<m (m 为正常数),利用实数绝对值的几何意义求解较简便. 2.不等式的证明方法灵活,要注意体会,要根据具体情况选择证明方法.

3.柯西不等式的证明有多种方法,如数学归纳法,教材中的参数配方法(或判别式法)等,参数配方法在解决其它问题方面应用比较广泛.柯西不等式的应用比较广泛,常见的有证明不等式,求函数最值,解方程等.应用时,通过拆常数,重新排序、添项,改变结构等手段改变题设条件,以利于应用柯西不等式. 失误与防范

1.理解绝对值不等式的几何意义. 2.掌握分类讨论的标准,做到不重不漏.

3.利用基本不等式必须要找准“对应点”,明确“类比对象”,使其符合几个著名不等式

的特征.

4.注意检验等号成立的条件,特别是多次使用不等式时,必须使等号同时成立.

A 组 专项基础训练

1.已知集合A ={x ∈R ||x +3|+|x -4|≤9},B ={x ∈R |x =4t +1

t -6,t ∈(0,+∞)},求集合

A ∩

B .

2.(2013·江苏)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .

3.若a 、b 、c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π

6.求证:a 、b 、c 中

至少有一个大于0.

4.(2013·课标全国Ⅱ)设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤1

3;

(2)a 2b +b 2c +c 2

a ≥1.

5.设不等式|2x -1|<1的解集为M . (1)求集合M ;

(2)若a ,b ∈M ,试比较ab +1与a +b 的大小.

6.(2013·辽宁)已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;

(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.

B 组 专项能力提升

1.若n ∈N *,S

n =1×2+2×3+…+n (n +1),求证:n (n +1)2

2

.

2.(2013·课标全国Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )

(2)设a >-1,且当x ∈????-a 2,1

2时,f (x )≤g (x ),求a 的取值范围.

3.(2012·福建)已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值;

(2)若a ,b ,c ∈R +,且1a +12b +1

3c =m ,求证:a +2b +3c ≥9.

4.设a ,b ,c 为正实数,求证:1a 3+1b 3+1

c 3+abc ≥2 3.

答案

要点梳理

1.a -b >0 a -b =0 a -b <0

2.(1)b c (3)a +c >b +c (4)ac >bcac (6)> 3.(1)|a |+|b | (2)|a +b | |a |-|b | |a |+|b | 4.(1){x |-a a 或x <-a } {x |x ∈R 且x ≠0} R

(2)①-c ≤ax +b ≤c ②ax +b ≥c 或ax +b ≤-c 5.(2)≥a =b 正数 不小于(即大于或等于) (3)①x =y 大 ②x =y 小 6.(1)≥a =b =c 不小于 (2)不小于 ≥a 1=a 2=…=a n 8.(1)①a -b >0 ②a

b >1 (2)充分条件

(4)相反 (5)放大或缩小 夯基释疑

1.{x |-1b >c 题型分类·深度剖析

例1解 (1)当a =-3时,f (x )=????

?

-2x +5,x ≤2,1,2

2x -5,x ≥3.

当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2

当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4. 所以f (x )≥3的解集为{x |x ≤1或x ≥4}. (2)f (x )≤|x -4|?|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,|x -4|-|x -2|≥|x +a | ?4-x -(2-x )≥|x +a |?-2-a ≤x ≤2-a . 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围为[-3,0].

跟踪训练1 解 方法一 (1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3. 又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},

所以?????

a -3=-1,

a +3=5,

解得a =2.

(2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5), 于是g (x )=|x -2|+|x +3|=????

?

-2x -1,x <-3,

5,-3≤x ≤2,

2x +1,x >2.

所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5; 当x >2时,g (x )>5.

综上可得,g (x )的最小值为5.

从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].

方法二 (1)同方法一. (2)当a =2时,f (x )=|x -2|. 设g (x )=f (x )+f (x +5).

由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5. 从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].

例2证明 由于2x +y =

23(3x )+1

2

(2y ), 由柯西不等式(a 1b 1+a 2b 2)2≤(a 21+a 22)(b 21+b 2

2)得

(2x +y )2≤[(

23)2+(1

2

)2](3x 2+2y 2) ≤(43+12)×6=11

6×6=11, ∴|2x +y |≤11,∴2x +y ≤11.

跟踪训练2 解 由柯西不等式(32+42)·(x 2+y 2)≥(3x +4y )2,① 得25(x 2+y 2)≥4,所以x 2+y 2≥425

.

不等式①中当且仅当x 3=y

4

时等号成立,x 2+y 2取得最小值,

由方程组?????

3x +4y =2,

x 3=y 4,解得???

x =6

25,y =825.

因此当x =625,y =825时,x 2+y 2取得最小值,最小值为425.

例3证明 (1)∵a ,b ,c ∈(0,+∞), ∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , (1a -1)·(1b -1)·(1

c -1) =(b +c )(a +c )(a +b )abc

2bc ·2ac ·2ab

abc

=8.

(2)∵a ,b ,c ∈(0,+∞),

∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , 2(a +b +c )≥2ab +2bc +2ca , 两边同加a +b +c 得

3(a +b +c )≥a +b +c +2ab +2bc +2ca =(a +b +c )2.

又a +b +c =1,∴(a +b +c )2≤3, ∴a +b +c ≤ 3.

跟踪训练3 证明 (1)要证a +b +c ≥3, 由于a ,b ,c >0,因此只需证明(a +b +c )2≥3. 即证:a 2+b 2+c 2+2(ab +bc +ca )≥3, 而ab +bc +ca =1,

故需证明:a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ). 即证:a 2+b 2+c 2≥ab +bc +ca .

而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 2

2=a 2+b 2+c 2 (当且仅当a =b =c 时等号成立)

证得.

∴原不等式成立. (2)

a

bc

+ b ac

+ c ab =a +b +c abc

. 在(1)中已证a +b +c ≥ 3. 因此要证原不等式成立,只需证明1

abc

≥a +b +c . 即证a bc +b ac +c ab ≤1, 即证a bc +b ac +c ab ≤ab +bc +ca . 而a bc =ab ·ac ≤ab +ac

2

b a

c ≤ab +bc 2,c ab ≤bc +ac

2

.

∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =3

3

时等号成立). ∴原不等式成立. 练出高分 A 组

1.解 |x +3|+|x -4|≤9, 当x <-3时,-x -3-(x -4)≤9, 即-4≤x <-3;

当-3≤x ≤4时,x +3-(x -4)=7≤9恒成立; 当x >4时,x +3+x -4≤9, 即4

综上所述,A ={x |-4≤x ≤5}. 又∵x =4t +1

t -6,t ∈(0,+∞),

∴x ≥2

4t ·1t -6=-2,当t =1

2

时取等号. ∴B ={x |x ≥-2}, ∴A ∩B ={x |-2≤x ≤5}.

2.证明 2a 3-b 3-(2ab 2-a 2b )=2a (a 2-b 2)+b (a 2-b 2)=(a 2-b 2)(2a +b )=(a -b )(a +b )(2a +b ).

因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0, 从而(a -b )(a +b )(2a +b )≥0,即2a 3-b 3≥2ab 2-a 2b . 3.证明 假设a 、b 、c 都不大于0, 即a ≤0,b ≤0,c ≤0,所以a +b +c ≤0. 而a +b +c =?

???x 2-2y +π

2+ ?

???y 2-2z +π3+????z 2-2x +π6

=(x 2-2x )+(y 2-2y )+(z 2-2z )+π =(x -1)2+(y -1)2+(z -1)2+π-3.

所以a +b +c >0,这与a +b +c ≤0矛盾,故a 、b 、c 中至少有一个大于0. 4.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1, 即ab +bc +ca ≤1

3

.

(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2

a +a ≥2c ,

故a 2b +b 2c +c 2

a +(a +

b +

c )≥2(a +b +c ), 即a 2b +b 2c +c 2

a ≥a +

b +

c . 所以a 2b +b 2c +c 2

a

≥1.

5.解 (1)由|2x -1|<1得-1<2x -1<1,解得0

(2)由(1)和a ,b ∈M 可知00. 故ab +1>a +b . 6.解 (1)当a =2时, f (x )+|x -4|=????

?

-2x +6,x ≤2,2,2<x <4,

2x -6,x ≥4.

当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1; 当2<x <4时,f (x )≥4-|x -4|无解;

当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5; 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ), 则h (x )=????

?

-2a ,x ≤0,4x -2a ,0<x <a ,

2a ,x ≥a .

由|h (x )|≤2,解得a -12≤x ≤a +1

2.

又已知|

h (x )|≤2的解集为{x |1≤x ≤2}, 所以???

??

a -1

2=1,a +12=2,于是a =3.

B 组

1.证明 ∵n (n +1)>n 2, ∴S n >1+2+…+n =n (n +1)2.

又∵

n (n +1)

2

∴S n <(1+12)+(2+12)+…+(n +1

2)

=n (n +1)2+n 2=n 2+2n 2<(n +1)2

2.

∴n (n +1)2

2.

2.解 (1)

当a =-2时,不等式f (x )

则y =???

-5x ,x <1

2

-x -2,12

≤x ≤1,

3x -6,x >1,

其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0, 所以原不等式的解集是{x |0-1,则-a 2<1

2,

∴f (x )=|2x -1|+|2x +a |

=?????

-4x +1-a ?

???x <-a

2a +1 ???

?-a 2≤x <124x +a -1 ???

?x ≥12

当x ∈????-a 2,1

2时,f (x )=a +1, 即a +1≤x +3在x ∈????-a 2,1

2上恒成立. ∴a +1≤-a 2+3,即a ≤4

3,

∴a 的取值范围为????-1,4

3. 3.(1)解 因为f (x +2)=m -|x |, f (x +2)≥0等价于|x |≤m .

由|x |≤m 有解,得m ≥0,且其解集为 {x |-m ≤x ≤m }.

又f (x +2)≥0的解集为[-1,1],故m =1. (2)证明 由(1)知1a +12b +1

3c

=1,

又a ,b ,c ∈R +,由柯西不等式得a +2b +3c =(a +2b +3c )·????1a +12b +13c ≥(a ·1a

+2b ·

12b +3c ·1

3c

)2=9.

4.证明 因为a ,b ,c 是正实数,由算术—几何平均不等式可得1a 3+1b 3+1

c 3≥331a 3·1b 3·1c 3,

即1a 3+1b 3+1c 3≥3

abc

. 所以1a 3+1b 3+1c 3+abc ≥3

abc +abc .

3

abc

+abc ≥2 3abc

·abc =23, 当且仅当a =b =c 且abc =3时,取等号. 所以1a 3+1b 3+1

c

3+abc ≥2 3.

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学不等式训练习题

不等式训练1 A 一、选择题(六个小题,每题5分,共30分) 1.若02522 >-+-x x ,则221442-++-x x x 等于( ) A .54-x B .3- C .3 D .x 45- 2.函数y =log 2 1(x +11+x +1) (x > 1)的最大值是 ( ) A .-2 B .2 C .-3 D .3 3.不等式x x --213≥1的解集是 ( ) A .{x| 43≤x ≤2} B .{x|4 3≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .b a 11< B . b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值 21和最大值1 B .最大值1和最小值4 3 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式组? ??->-≥32x x 的负整数解是____________________。 2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为____________________。 3.不等式0212<-+x x 的解集是__________________。 4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。 5.若f(n)=)(21)(,1)(,122N n n n n n n g n n ∈= --=-+?,用不等号 连结起来为____________.

高二第一学期数学教学计划教学进度表

2019年高二第一学期数学教学计划教学进 度表 第1周 数学必修2:立体几何 1.1空间几何体的结构1.2空间几何体的三视图和直观图(1)(2) 第2周 1.2空间几何体的三视图和直观图(1)(2) 第3周 1.3表面积体积空间几何体的复习(1)(2) 第4周 2.1空间点、直线、平面之间的位置关系(1)(2)(3)(4)(单元检测) 第5周 2.2直线、平面平行的判定及其性质(1)(2)(3)(4) 第6周 2.3直线、平面垂直的判定及其性质(1)(2)(3)(4)(单元检测) 第7周 2.3直线、平面垂直的判定及其性质(4) 空间点、线、面复习(月考) 第8周

选修2-1:空间向量 第三章3.1空间向量及其运算 第9周 空间向量及其运算3.2立体几何中的向量方法 第10周 期中考试 第11周 空间向量复习(单元检测) 第12周 第一章常用逻辑用语: 1.1命题及其关系1.2充分条件与必要条件 第13周 1.3简单的逻辑连结词1.4全称量词与存在量词 第14周 常用逻辑用语复习(2课时)2.1椭圆(3课时) 第15周 2.1椭圆(3课时)2.2双曲线(2课时) 第16周 2.2双曲线(2课时)2.3抛物线(3课时) 第17周 2.3抛物线(1课时)2.4直线与圆锥曲线的位置关系(3课时) 第18周

曲线与方程(2课时)复习(单元检测) 第19周 总复习 第20周 要练说,先练胆。说话胆小是幼儿语言发展的障碍。不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。总之,说话时外部表现不自然。我抓住练胆这个关键,面向全体,偏向差生。一是和幼儿建立和谐的语言交流关系。每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。二是注重培养幼儿敢于当众说话的习惯。或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。长期坚持,不断训练,幼儿说话胆量也在不断提高。期末考试

高中数学基本不等式的解法十例

高中数学基本不等式问题求解十例 一、基本不等式的基础形式 1.222a b a b +≥,其中,a b R ∈,当且仅当a b =时等号成立。 2.2a b a b +≥,其中[),0,a b ∈+∞,当且仅当a b =时等号成立。 3.常考不等式: 2 2 2 2112 2a b a b a b a b ++??≥≥≥ ??? + ,其中(),0,a b ∈+∞,当且仅当a b =时等号成立。 二、常见问题及其处理办法 问题1:基本不等式与最值 解题思路: (1)积定和最小:若a b 是定值,那么当且仅当a b =时,()m in 2a b a b +=。其中[),0,a b ∈+∞ (2)和定积最大:若a b +是定值,那么当且仅当a b =时,()2 m a x 2a b a b +??= ??? ,其中,a b R ∈。 例题1:若实数,a b 满足221a b +=,则a b +的最大值是 . 解析:很明显,和为定,根据和定积最大法则可得:2 2 222 221222 4 a b a b a b a b -++?= ??≤≤? ??+≤-? ? ,当且 仅当1a b ==-时取等号。 变式:函数1 (0,1)x y a a a -=>≠的图象恒过定点A ,若点在直线1m x n y +=上,则m n 的最大值为______。 解析:由题意可得函数图像恒过定点()1,1A ,将点()1,1A 代入直线方程1m x n y +=中可得1m n +=,明显,和为 定,根据和定积最大法则可得:2 124m n m n +?? ≤= ? ?? ,当且仅当12m n ==时取等号。 例题2:已知函数()2 122 x x f x +=+ ,则()f x 取最小值时对应的x 的值为__________. 解析:很明显,积为定,根据积定和最小法则可得:2 2 1122212 2 x x x x +++≥? =,当且仅当2 12 12 x x x += ?=-时 取等号。 变式:已知2x >-,则12 x x + +的最小值为 。 解析:由题意可得()120,2 12 x x x +>+ ?= +,明显,积为定,根据和定积最大法则可得: ()1122 222 2 x x x x ++≥+?=++,当且仅当122112 x x x x += ?+=?=- +时取等号,此时可得

高中数学不等式练习题

1、设恒成立的c的取值范围是 A.B.C.D. 2、设,且(其中),则M的取值范围是A.B.C.D. 3、若实数、满足,则的取值范围是 A.B.C.D. 4、已知,,,则的最小值是() (A)(B)4(C)(D) 5、若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 (A)(B)(C)(D) 6、已知,若在上恒成立,则实数的取值范围是()

A.B.C.D. 7、已知正实数满足,则的最小值为。 8、如图,目标函数可行域为四边形(含边界),若是该目标函数的最优解,则的取值范围是() (A)(B)(C)(D) 的最大值与最小值之和为 9、函数,当时,恒成立,则 D. 10、已知正数满足,则的最小值为 A.3B.C.4D. 11、二次函数轴两个交点的横坐标分别为。(1)证明:;(2)证明:; (3)若满足不等式的取值范围。 12、设满足约束条件,若目标函数的最大值为10,则的最小值为.

13、已知对任意实数x,二次函数f(x)=ax2+bx+c恒非负,且a

2020年教学计划高中数学

教学计划高中数学 教学计划(课程计划)是课程设置的整体规划,以下是整理的关于教学计划高中数学,欢迎阅读参考。 我以前一直是在教文科班的数学,这学期对于我来说,面临着挑战,因为本学期我接手了两个理科班。以前我带的始终是文科班,对于文科班的学生的情况比较理解,但对于理科班来说,我不知道他们对学习会有怎样的想法与做法。针对这种情况,我制定了如下的高中数学教学计划: 一、指导思想 在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”、“五严”。利用有限的时间,使学生在获得所必须的基本数学知识和技能的同时,在数学能力方面能有所提高,为学生今后的发展打下坚实的数学基础。 二、教学措施 1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。 2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。

3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。 4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。 5.注重对所选例题和练习题的把握: 6.周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力. 7.多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的.不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强.教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力. 三、对自己的要求——落实教学的各个环节 1.精心上好每一节课 备课时从实际出发,精心设计每一节课,备课组分工合作,利用集体智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 考点不等式的解法 1不等式ax>b 若a>0,解集为 ? ? ? ? ? ? x| x> b a;若a<0,解集为?? ? ? ? ? x| x< b a;若a=0,当b≥0时,解集为?,当b<0时,解集为R. 2一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式ax2+bx+c>0与ax2+bx+c<0的解集,可归纳为: 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程 ax2+bx+c=0 (a≠0)的根 有两相异实根 x=x1或x=x2 有两相同实根 x=x1=x2 无实根 一元 二次 不等 式的 解集 ax2+bx+ c>0(a>0) {x|xx2} { x∈R| x≠ - ? ? ? b 2a R ax2+bx+ c<0(a>0) {x|x10(a0≠0,n∈N*,n≥3)可以转化为a0(x-x1)(x-x2)…(x-x n)>0(其中x10时,由于f(x)=a0(x-x1)(x-x2)…(x-x n)的值的符号在上述区间自右至左依次为+、-、+、-、…,所以正值区间为f(x)>0的解集. 4分式不等式的解法 (1) f(x) g(x) >0(<0)?f(x)·g(x)>0(<0); (2) f(x) g(x) ≥0(≤0)? ?? ? ??f(x)·g(x)≥0(≤0), g(x)≠0.

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

高中数学教学进度表

高一上教学进度周次节次教学内容(包括复习,测试等安排) 11集合的含义及其表示2子集,全集,补集 1交集,并集 21习题课 1一元二次不等式的解法 1简单高次不等式及分式不等式的解法1简单绝对值不等式的解法 1复习课 32函数的概念和图像1函数的概念和图像2函数的表示方法 42函数的简单性质2函数的简单性质1映射的概念 52函数习题课 1二次函数图像、概念和性质 61二次函数在给定区间上的最值问题2分数指数幂 71指数函数3指数函数1对数 81对数 1对数函数2对数函数1幂函数 92习题课 1简单复合函数的研究2简单复合函数的研究 101二次函数与一元二次方程1用二分法求方程的近似解2函数模型及其应用 1习题课 112复习与期中考试 121任意角 1弧度制 1习题课(角范围的表示)

1任意角的三角函数的概念 1三角函数线(补充简单的三角不等式) 131同角三角函数的基本关系1同角三角函数的基本关系2诱导公式 1习题课 141三角函数的周期性 1正、余弦函数的图象及五点法 1正、余弦函数的性质(补充对称性)1正、余弦函数的性质习题课 1正切函数的图象与性质 151习题课 2函数y=Asin(ωx+φ)的图像2三角函数的应用 161向量的概念及其表示1向量的加法 1向量的减法 2向量的数乘 172习题课 1平面向量的基本定理 1平面向量的座标表示及运算1向量平行的座标表示 181向量的数量的概念 1向量数量积的座标表示1习题课 1复习与小结 191两角和与差的余弦 2两角和与差的正弦 1习题课(补asinx+bcosx的内容) 1两角和与差的正切 201 习题课 2二倍角的三角函数,明确降幂公式1 习题课 1 几个三角恒等式 三角函数的化简、求值和证明

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

高中数学基本不等式专题复习

第11课:基本不等式与双√函数 一、双√函数 形如.0,0,>>+=q p x q px y 图像如右图所示: (1)0>x 时,当p q x =时取到pq y 2min =; (2)值域: (3)当0,0<-+=x x x y 正确解法: 两者联系: (1)基本不等式去等号时的值即为双勾函数的拐点,

(2)凡是利用“积定和最小”求最值的函数均可换元为双勾函数! 三、利用基本不等式求最值 类型一:形如()()0,1≠++ +=c a d cx b ax y 采取配积为定! 1、求??? ??>-+ =455434x x x y 的最小值 2、求??? ??<-+=455433x x x y 的最大值 3、求()π,0,sin 2sin ∈+ =x x x y 的最小值的值域 4、求()的最小值01 1>-+=x e e y x x 的最小值 类型二:形如()0,2≠+++=c a d cx c bx ax y 采取配凑——分离术! 1、求0,92>++=x x x x y 的最小值 2、求0,192>+++=x x x x y 的最小值 3、求?? ????-∈+++=1,31,12122x x x x y 的值域 4、求4,1822-<+++=x x x x y 的最值

人教版高中数学教学计划-人教版高中数学进度安排教

人教版高中数学教学计划:人教版高中数学 进度安排教 人教版高中数学教学计划高中数学教学计划(一): 新学期已经开始,在学校工作总体思路的指导下,现将本学期数学组工作进行规划、设想,力争使本学期的工作扎实有效,为学校的发展做出新的贡献。 一、指导思想以学校工作总体思路为指导,深入学习和贯彻新课程理念,以教育教学工作为重点,优化教学过程,提高课堂教学质量。结合数学组工作实际,用心开展教育教学研究活动,促进教师的专业发展,学生各项素质的提高,提高数学组教研工作水平。 二、工作目标1、加强常规教学工作,优化教学过程,切实提高课堂教学质量。 2、加强校本教研,用心开展教学研究活动,鼓励教师根据教学实际开展教学研究,透过撰写教学反思类文章等促进教师的专业化发展。 3、掌握现代教育技术,用心开展网络教研,拓展教研的深度与广度。 4、组织好学生的数学实践活动,以调动学生学习用心性,丰富学生课余生活,促进其全面发展。

三、主要工作1、备课做好教学准备是上好课的前提,本学期要求每位教师做好教案、教学用具、作业本等准备,以良好的精神状态进入课堂。备课是上好课的基础,本学期数学组仍采用年级组群众备课形式,要求教案尽量做到环节齐全,反思具体,有价值。群众备课时,所有教师务必做好准备,每个单元负责教师要提前安排好资料及备课方式,对于教案中修改或补充的资料要及时地在旁边批注,电子教案的可在旁边用红色批注(发布学校网数学组板块内),使群众备课不流于形式,每节课前都要做到课前的“复备”。 每一位教师在个人研究和群众备课的基础上构成适合自我、实用有效的教案,更好的为课堂教学服务。各年级组每月带给单元备课活动记录,在规定的群众备课时间,教师无特殊原因不得缺席。 提高课后反思的质量,提倡教学以后将课堂上精彩的地方进行实录,以案例形式进行剖析。对于原教案中不合理的及时记录,结合课堂重新修改和设计,同年级教师能够共同反思、共同提高,为以后的教学带给借鉴价值。数学教师每周反思不少于2次,每学期要有1-2篇较高水平的反思或教学案例,及时发布在向学校网上,学校将及时进行评审。 教案检查分平时抽查和定期检查两种形式,“推门课”后教师要及时带给本节课的教案,每月26号为组内统一检查教案时间,每月检查结果将公布在学校网数学组板块中的留言板中。 2、课堂教学课堂是教学的主阵地。教师不但要上好公开课,更要上好每一天的“常规课”。遵守学校教学常规中对课堂教学的要求。

高中数学精讲教案-不等式的解法

高中数学-不等式的解法 若a<0时,可以先将二次项系数化为正数,对照上表求解. 3高次不等式的解法 如果一元 n 次不等式 a o x n + a 1X n 1+ …+ a n >0(a o 工 0, n € N *, n > 3)可以转化为 a °(x — X 1)(x — X 2)…(X — X n )>0(其中X 10时,由于f(x) = a o (x — X 1)(X — X 2)…(X — X n )的值的符号在上述区间自右至 左依次为+、一、+、一、…,所以正值区间为 f(x)>0的解集. 4分式不等式的解法 f x (1) g T>0(<0) ? f(x) g(x)>0(<0); y x f x f x g x > 0 < 0, (2严> 0( < 0)? g x g x 工 0. 总基础点重难点 1 不等式ax>b 若a>0,解集为x | x>-;若a<0,解集为 x | xv-;若a = 0,当b > 0时,解集为?,当b<0 a a — 时,解集为R. 2 一元二次不等式 “三个二次”分三种情况讨论,对应的一元二次不等式 集,可归纳为: ax 2 + bx + c>0 与 ax 2 + bx + c<0 的解 判别式 △= b 2 — 4ac 二次函数 y = ax 2 + bx + c (a>0)的图象 元二次方程 ax 2 + bx + c = 0 有两相异实根 有两相同实根 无实根 二次 不等 式的 解集 (a ^ 0)的根 ax 2 + bx + c>0(a>0) ax 2+ bx + c<0(a>0) X = X 1 或 X = X 2 X = X 1= X 2 {xxX 2} {X|X 1VX

高二数学不等式练习题及答案

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B ) a 1 +a ≥2 (a ≠0) (C )a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21 , g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

高中数学教学计划及进度表

川师大四中高二上学期数学教学工作计划 一、指导思想: 全面贯彻教育方针,深入实施素质教育,使学生在高一学习的基础上,进一步体会数学对发展自己思维能力的作用,体会数学对推动社会进步和科学发展的意义以及数学的文化价值,提高数学素养,以满足个人发展与社会进步的需要。 二、学生情况分析: 高二文科班学生,学习数学的气氛不浓、基础比较差。由于学生对学过的知识内容不及时复习,致使对高二的数学学习有很大的影响,高一数学成绩充分反映没有尖子生,成绩特差的学生也有不少,有一批思维灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,以后好好的引导,进一步培养他们的学习兴趣,从而带动全班同学的学习热情,提高学生的数学成绩。 三、本学期应达到的教学目标: 本学期本着从学生的实际出发,认真落实新课程的标准,认真体会新教材的要求,使自己的教学水平有长足的进步。本学期努力提高期末考试的优秀率和合格率,同时也重视培养学生的应试能力和对学科的兴趣,改善学生的学习习惯,全面落实基础,使学生的能力有较大的提高。达到以下目标: (1)通过分析问题的方法的教学,培养学生的学习的兴趣。 (2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。 (3)在探究过程中,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识 (4)基于情感目标,调控教学流程,坚定学习信念和学习信心。 (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。 四、教材分析和时间安排: 本学期教学内容为必修2第三章《直线与方程》、第四章《圆与方程》,必修3,选修1-2第一章《统计案例》,选修1-1第二章《圆锥曲线与方程》。本学期课本内容多、难度大,又要迎接月考,期中和期末考试,正常的教学工作很难完成。针对这些具体情况,对本学期的教学进度安排如下:

高中数学不等式的分类、解法讲解学习

高中数学不等式的分 类、解法

精品文档 收集于网络,如有侵权请联系管理员删除 高中数学简单不等式的分类、解法 一、知识点回顾 1.简单不等式类型:一元一次、二次不等式, 分式不等式,高次不等式,指数、对数不等 式,三角不等式,含参不等式,函数不等式, 绝对值不等式。 2.一元二次不等式的解法 解二次不等式时,将二次不等式整理成首 项系数大于0的一般形式,再求根、结合图像 写出解集 3三个二次之间的关系: 二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228) 二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法 法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法 法一:转化为不等式组;法二:数轴标根法 6.指数与对数不等式解法 a>1时)()()()(x g x f a a x g x f >?>; 0)()()(log )(log >>?>x g x f x g x f a a 0; ) ()(0)(log )(log x g x f x g x f a a < 7.三角不等式解法 利用三角函数线或用三角函数的图像求解 8.含参不等式解法 根据解题需要,对参数进行分类讨论 9.函数不等式解法 利用函数的单调性求解,化为基本不等式 (有时还会结合奇偶性) 10.绝对值不等式解法(后面详细讨论) 二、练习: (1)23440x x -++>解集为 (2 23x -<< )(一化二算三写) (2)213 022 x x ++>解集为 (R ) (变为≤,则得?)(无实根则配方) 三、例题与练习 例1已知函数)()1()(b x ax x f +?-= ,若不等式0)(>x f 的解集为)3,1(-,则不等式 0)2(<-x f 的解集为 ),2 1 ()23,(+∞--∞Y 解法一:由根与系数关系求出3,1-=-=b a ,得32)(2++-=x x x f ,再得出新不等式,求解

高中数学基本不等式练习题

一.选择题 1.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为() A.B.2C.4 D.4 2.已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2D.若a<b<0,则> 5.若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于() A.2 B.3 C.4 D.5 7.若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12 8.已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8 C.9 D.12 9.若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.已知x+3y=2,则3x+27y的最小值为() A. B.4 C. D.6 11.若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.已知a,b,c,是正实数,且a+b+c=1,则的最小值为() A.3 B.6 C.9 D.12 二.填空题 1.已知正数x,y满足x+y=1,则的最小值为. 2.已知a>0,b>0,且a+b=2,则的最小值为. 3.已知x>1,则函数的最小值为. 4.设2<x<5,则函数的最大值是. 5.函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为. 6.已知x>1,则函数y=2x+的最小值为.